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Introduction

• Belief	space	planning	(BSP)	– determine	optimal	actions	(policy)	over	the	belief	
space	with	respect	to	a	given	objective,	e.g.	minimize	state	uncertainty

• A	fundamental	problem	in	robotics	and	AI
• Tight	coupling	with	perception/inference
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• Related	problems:	(multi-robot)	informative	planning/sensing,	sensor	
deployment,	active	SLAM,	autonomous	navigation,	graph	sparsification etc.

Perception	&	Inference Belief	Space	Planning
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Introduction	– Posterior	Belief

• State	vector																			at	time	
• Posterior	joint	pdf	can	be	represented	by	a	factor	graph
• Factors																														for1{ , , }ini i iF f f= … 0 i kt t£ £
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Belief	Space	Planning	(BSP)

• Consider	a	set	of	candidate	actions	
• For	each	(non-myopic)	action	
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Multi-robot	BSP

• Each	robot	 has	its	own	discrete	set	of	candidate	actions
• Multi-robot	joint	belief	for	a	specific	candidate	action	permutation
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Challenges	Include

• Calc.	a	globally	optimal	solution	involves	evaluating	J(.)	for	all action	permutations	

• Comp.	intractable (									)

• Belief	is	over	a	high-dimensional	state	– comp.	expensive to	evaluate	each cost

• Involves	propagating	posterior	belief	for	each	action
• Calc.	of	entropy	is	
• Expensive	also	for	focused case	(reduce	uncertainty	of	only	some	variables)

• Requires	correct	data	association	(e.g.	loop	closures,	multi-robot	constraints)	

• Challenging in	presence	of	ambiguity
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Agenda

Belief	space	planning	in	high-dimensional	state	spaces:
1. Computationally	efficient	information-theoretic	BSP	by	re-using	calculations	and	

avoiding	explicit	belief	propagation
2. Action	consistent	and	bounded	BSP	problem	representations:	

• Topological	perspective	(t-BSP)
• Sparsification perspective	(s-BSP)

3. Active	perception	in	ambiguous	environments	– data	association	aware	BSP
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Agenda

Belief	space	planning	in	high-dimensional	state	spaces:
1. Computationally	efficient	information-theoretic	BSP	by	re-using	calculations	and	

avoiding	explicit	belief	propagation
2. Action	consistent	and	bounded	BSP	problem	representations:	

• Topological	perspective	(t-BSP)
• Sparsification perspective	(s-BSP)

3. Active	perception	in	ambiguous	environments	– data	association	aware	BSP

8



2nd	Workshop	on	Multi-Robot	Perception-Driven	Control	and	Planning,	IROS’18

BSP	via	factor	graphs,	the	matrix	determinant	lemma,	and	
re-use	of	calculation	(rAMDL)

[Kopitkov and	Indelman,	IJRR’17]
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Objective	&	Key	Idea

• Consider	an	information-theoretic	cost	(e.g.	entropy,	info.	gain)
• Existing	approaches:	

• Propagate	posterior	belief	for	each action
• Calculate	determinants	of	large	matrices,

(reduced	complexity	in	presence	of	sparsity)
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Posterior	Information	Matrix
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• is	a	sparse Jacobian	matrix	of	new factors,	with	dimension	
• Typically	number	of	involved variables	is	very	small
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Factors Appropriate	rows	in	Action	Jacobian

11

• For	each	action															:		

Posterior	belief

Posterior	info.	matrix

|⇤k+L|Our	objective:	want	to	avoid	explicitly	calculating

a 2 A

[Kopitkov and	Indelman,	IJRR’17]
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Matrix	Determinant	Lemma	(MDL)

• We	use	MDL	to	reduce	calculations:

• Applying	it	to	unfocused	not-augmented	BSP	(see	IJRR’17	paper):

T T
k k m kA A I A AL + = L × + ×S ×× ⌃k ⌘ ⇤�1

k 2 Rn⇥n A 2 Rm⇥nwhere

where:

is	a	partition	of						with	all	non-zero	columns

is	a	prior	marginal	covariance	of	involved variables	
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|⇤k +AT ·A|(	Instead of																																		)

[Kopitkov and	Indelman,	IJRR’17]

Factors Appropriate	rows	in	Action	Jacobian
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Matrix	Determinant	Lemma	(MDL)
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• We	can	avoid posterior	propagation	and	calc.	of	determinants	of	largematrices
• Calculation	of	action	impact	does	not	depend	on					,	given
• Calculation	complexity	depends	on						and																			,	typically	very	cheap

N
m

• We	propose	re-use	of	calculation:
• Only	few	entries from	the	prior	covariance	are	actually	required!
• Different	candidate	actions	often	sharemany	involved variables
• Combine	variables	involved	in	all	candidate	actions into	set	
• Perform	one-time	calculation of																(depends	on				)
• Calculate														for	each	action,	using

N

[Kopitkov and	Indelman,	IJRR’17]
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Extensions

• Approach	has	been	extended	to	support	other	BSP	problem	types	(see	IJRR’17	paper)

BSP	problem	type Non-Augmented Augmented

Unfocused ü ü
Focused

(reduce	uncertainty	only	of	
some	states)

ü ü

Aug T
k L k L A A+ +L L + ×=

• For	augmented case	(e.g.	active	SLAM),	Matrix	Determinant	Lemma	(MDL)	cannot be	used!
• We	extended	MDL	to	an	augmented	case	(AMDL),	details	in	the	paper
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• Focused:	

[Kopitkov and	Indelman,	IJRR’17]



2nd	Workshop	on	Multi-Robot	Perception-Driven	Control	and	Planning,	IROS’18

Results	– Unfocused,	Non-Augmented	- Sensor	Deployment

• Significant	time	reduction	in	Unfocused case

Uncertainty	field	(dense prior	information	matrix)

Uncertainty	field	after	sensors’	deployment
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[Kopitkov and	Indelman,	IJRR’17]
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Results	– Focused,	Augmented – SLAM	– Viktoria Park
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Zoom-in

• Significant	time	reduction	in	Focused case	– focus	on	last	robot	pose

[Kopitkov and	Indelman,	IJRR’17]
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• Significant	time	reduction	in	Focused case	– focus	on	mapped	landmarks
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Zoom-in

Results	– Focused,	Augmented – SLAM	– Simulation
[Kopitkov and	Indelman,	IJRR’17]



2nd	Workshop	on	Multi-Robot	Perception-Driven	Control	and	Planning,	IROS’18

rAMDL - Summary

• We	address	all	4	BSP	problem	types: BSP	cases Non-Augmented Augmented

Unfocused ü ü
Focused ü ü

• No	need for	posterior	belief	propagation
• An	exact solution
• Avoid calculating	determinants	of	large	matrices
• Calculation	Re-use
• Per-action	evaluation	does	not	depend	on	state	dimension,	given	marginal	prior	covariances
• Still	requires	a	one-time recovery	of	marginal	covariances of	involved	variables
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[Kopitkov and	Indelman,	IJRR’17]
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Agenda

Belief	space	planning	in	high-dimensional	state	spaces:
1. Computationally	efficient	information-theoretic	BSP	by	re-using	calculations	and	

avoiding	explicit	belief	propagation
2. Action	consistent	and	bounded	BSP	problem	representations:	

• Topological	perspective	(t-BSP)
• Sparsification perspective	(s-BSP)

3. Active	perception	in	ambiguous	environments	– data	association	aware	BSP
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Action	Consistent	&	Bounded	Approximations

[Elimelech and	Indelman,	ICRA’17,	IROS’17,	ISRR’17]
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Action	Consistent	&	Bounded	Approximations

• Paradigm:	generate	and	solve	a	simplified	decision	making	problem,										,	which	has	a	
minimal	impact	on	the	best-action	selection

• Key	observations:	
• In	decision	making,	only	need	to	sort	actions	from	best	to	worst
• Changing	reward	values	w/o	changing	order	of	actions	does	not	change	action	selection
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[Elimelech and	Indelman,	ISRR’17]
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Action	Consistent	&	Bounded	Approximations

• Action	consistency	cannot	be	always	guaranteed
• Sacrifice	in	performance	- definition:

actionsa? a?s

Js(bs, a)
J(b, a)

loss(b, bs, J, Js)loss(b, bs, J, Js)
.
= J(b, a⇤)� J(b, a⇤s)

a⇤s
.
= argmax

a2A
Js(bs, a)

a⇤
.
= argmax

a2A
J(b, a)

• Often	possible	to	settle	for	a	sub-optimal	action,	in	order	to	reduce	the	solution	complexity
• Need	tight	bounds	on																												!loss(b, bs, J, Js)

with

22

[Elimelech and	Indelman,	ISRR’17]
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Perspectives

• Belief	sparsification for	BSP	(s-BSP)

23

• Topological	BSP	(t-BSP)

[Elimelech and	Indelman,	ICRA’17,	IROS’17,	ISRR’17] [Kitanov and	Indelman,	ICRA’18]



2nd	Workshop	on	Multi-Robot	Perception-Driven	Control	and	Planning,	IROS’18

Perspectives

• Belief	sparsification for	BSP	(s-BSP)

24

[Elimelech and	Indelman,	ICRA’17,	IROS’17,	ISRR’17] [Kitanov and	Indelman,	ICRA’18]

• Topological	BSP	(t-BSP)
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Topological	Belief	Space	Planning	(t-BSP)

• Topological	properties	of	factor	graphs	dominantly	determine	estimation	accuracy
[Khosoussi et	al.	IROS’14,	IJRR’17]

• Key	idea:	
• Design	a	metric	of	factor	graph	topology	that	is	strongly	correlated	with	entropy
• Determine	best	action	using	that	topological	metric	(instead	of	entropy)
• Does	not	require	explicit	inference,	nor	partial	state	covariance	recovery

topological 
metric 

graph	signature

Corresponding	topology	represented	
by	a	graph

25

[Kitanov and	Indelman,	ICRA’18]

Factor	graph	for	a	2-robot	scenario,	
considering	some	specific	candidate	actions
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Topological	Belief	Space	Planning	(t-BSP)

26

actionsa? a?s

Js(bs, a)
J(b, a)

loss(b, bs, J, Js)

• Relation	to	action-consistent	&	bounded	approximations	framework:

• - Factor	graph	topology

• - Graph	signature

bs

Js s(G)

• Two	graph	signatures	currently	considered	in	t-BSP:
• Von	Neumann	entropy	of	G	(VN)		which	is	further	simplified	with	a	function	of	graph	node	degrees	d

• Signature	based	on	the	number	of	spanning	trees	of	G	(ST)
Cheap	to	calculate,	only	a	
function	of	node	degrees!

[Kitanov and	Indelman,	ICRA’18]
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Topological	Belief	Space	Planning	(t-BSP)

Metric	Space Topological	space
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Topological	and	info-theoretic	
metrics	are	strongly	correlated!

[Kitanov and	Indelman,	ICRA’18]
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t-BSP:	Application	to	Multi-Robot	BSP

28

Optimal paths found
Candidate	paths	of	two	robots	(red	and	green)	generated	
on	top	of	PRM	in	a	single	planning	session:

[Kitanov and	Indelman,	ICRA’18]
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t-BSP:	Gazebo	Initial	Results
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Perspectives

• Belief	sparsification for	BSP	(s-BSP)

30

• Topological	BSP	(t-BSP)

[Elimelech and	Indelman,	ICRA’17,	IROS’17,	ISRR’17] [Kitanov and	Indelman,	ICRA’18]
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Belief	sparsification for	BSP	(s-BSP):	Key	Idea
• Find	an	appropriate	sparsified information	space	(more	generally,	belief)
• Perform	decision	making	over	that,	rather	the	original,	information	space

⇤s⇤

actions

• Do	we	get	the	same	performance	(decisions),	i.e.	is	it	action	consistent?
• If	not,	can	we	bound	the	loss?

𝐽 𝑏, 𝑎 ≐ Λ + 𝐴+𝐴 𝐽 𝑏,, 𝑎 ≐ Λ, + 𝐴+𝐴

31

𝐽 𝑏, 𝑎

𝐽 𝑏,, 𝑎

[Elimelech and	Indelman,	ICRA’17,	IROS’17,	ISRR’17]
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s-BSP:	Initial	Results	– Sensor	Deployment
• Objective:	deploy	k	sensors	in	an												areaN ⇥N
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• Motivating	example:	extreme sparsification – drop	all off-diagonal	terms
• Action	consistency	is	guaranteed [Indelman	RA-L’16] for	a	restricted	problem	
setting	(myopic,	single-row	measurement	Jacobians)	
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s-BSP:	Initial	Results	- Active	SLAM

• Active	full	SLAM	scenario	– navigation	to	a	goal	in	an	unknown	environment

• LIDAR	sensor	– range-bearing	observations	of	surrounding	landmarks

• Primitive	actions	– star-pattern	search	of	best	progression	angle	(20	actions)
• Results	considering	3	sparsity	levels:	

(i)	original,	(ii)	sparsification of	uninvolved	variables,	(iii)	sparsification of	all	variables	(diag.	info.	matrix)
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Agenda

Belief	space	planning	in	high-dimensional	state	spaces:
1. Computationally	efficient	information-theoretic	BSP	by	re-using	calculations	and	

avoiding	explicit	belief	propagation
2. Action	consistent	and	bounded	BSP	problem	representations:	

• Topological	perspective	(t-BSP)
• Sparsification perspective	(s-BSP)

3. Active	perception	in	ambiguous	environments	– data	association	aware	BSP

34

[Pathak,	Thomas,	Indelman,	IJRR’18]
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• What	happens	if	the	environment	is	ambiguous,	perceptually	aliased?
• BSP	approaches	typically	assume	data	association	is	given and	perfect!	We	relax this	assumption

• Our	Data	Association	Aware	BSP	(DA-BSP) algorithm	considers	both
• Ambiguous	data	association (DA)	due	to	perceptual	aliasing,	and
• Localization	uncertainty due	to	stochastic	control	and	imperfect	sensing

• Approach	can	be	used	for	active	disambiguation	(for	example)

35

Active	Robust	Perception
[Pathak,	Thomas,	Indelman,	IJRR’18]

Angeli et	al.,	TRO’08
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Weight Conditional	Gaussian,	
represented	by	a	factor	graph

b[Xk] = P(Xk|Hk) =
MkX

j=1

⇠jkP(Xk|Hk, � = j)

Pathak	et	al.,	IJRR’18

• Belief	is	represented	by	a	Gaussian	Mixture	Model	(GMM)

• Main	idea:	Reason	how	a	GMM	belief	will	evolve	for	different	candidate	actions

• Number	of	modes	can	go	down,	and	go	up	(!)

Approach	Overview	

36

[Pathak,	Thomas,	Indelman,	IJRR’18]
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Approach	Overview	

• Likelihood	of	a	specific	𝑧./0 to	be	captured

37

• Posterior	given a	specific	observation	𝑧./0

• Marginalize	over	possible	data	associations
• Maintain	&	track	data	association	hypotheses

J (uk)
.
= E {c (b [Xk+1])} ⌘

[Pathak,	Thomas,	Indelman,	IJRR’18]
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Approach	Overview	

– Observation	is	given,	hence,	must capture	one (unknown)	scene	

– Which	one?	Consider	all	possible	scenes

• Posterior	belief

• In	other	words						

38

[Pathak,	Thomas,	Indelman,	IJRR’18]
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Approach	Overview	

• Likelihood	of	a	specific	𝑧./0 to	be	captured
• Marginalize	over	all	scenes	𝐴1 and	viewpoints	𝑥./0

39

[Pathak,	Thomas,	Indelman,	IJRR’18]
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Perceptual	Aliasing	Aspects

• No	perceptual	aliasing:
• Only	one non-negligible	weight	
• Reduces	to	state	of	the	art	belief	space	planning

• With	perceptual	aliasing:
• Multiple	non-negligible	weights					,	correspond	to	aliased	scenes	(given	𝑧./0)
• Posterior	becomes	a	mixture	of	pdfs	(GMM)
• In	practice,	hypotheses	pruning/merging	is	performed	(see	IJRR’18	paper)

• Approach	can	be	used	for	active	disambiguation	(between	DA	hypotheses)

40

[Pathak,	Thomas,	Indelman,	IJRR’18]
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Number	of	GMM	Components	Can	Increase

• Gazebo	simulation

41

[Pathak,	Thomas,	Indelman,	IJRR’18]
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Real	Experiment	with	April	Tags

No	object	detected

An	object		detected

• Octagonal	world	with	a	known	map
• April	Tags	used	to	simulate	aliasing	environment	and	for	localization	

42

[Pathak,	Thomas,	Indelman,	IJRR’18]
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Real	Experiment	with	April	Tags
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[Pathak,	Thomas,	Indelman,	IJRR’18]
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DA-BSP	- Summary

• Data	association	aware	belief	space	planning	(DA-BSP)

• Considers	data	association	within	BSP

• Relaxes	typical	assumption	in	BSP	that	DA	is	given and	correct

• Approach	in	particular	suitable	to	handle	scenarios	with	perceptual	aliasing and

localization	uncertainty

• Unified	framework	for	robust	active	and	passive	perception

44

[Pathak,	Thomas,	Indelman,	IJRR’18]
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Experiments	at	ANPL	– In	Process

45
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Summary

Belief	space	planning	(BSP)	in	high-dimensional	state	spaces:
• rAMDL:	Computationally	efficient	BSP	in	high	dim.	state	spaces
• Action	consistency	&	bounded	approximations

• s-BSP:	belief	sparsification for	BSP
• t-BSP:	topological	BSP

• Active	perception	in	ambiguous	environments:	Data	association	aware	BSP
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