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Introduction

Belief space planning (BSP) — determine optimal actions (policy) over the belief
space with respect to a given objective, e.g. minimize state uncertainty

A fundamental problem in robotics and Al

Tight coupling with perception/inference

Perception & Inference Remmmd Belief Space Planning

Related problems: (multi-robot) informative planning/sensing, sensor
deployment, active SLAM, autonomous navigation, graph sparsification etc.
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Introduction — Posterior Belief

* State vector X; € R"attime 7,

* Posterior joint pdf can be represented by a factor graph - Kieg—8 (X8 (Kigd) -

Factors F :{fl.l,...,fl.”f} for 0 < l < {, \“\f* /

n; . . \ IJ :
P (Xk[H) o H H fi (X’Lj) Hy = {uok—1, 20:k }

1=07=1 history
Maximum a Posteriori (MAP) inference: - ‘\\@D\
b[X1] = p(Xi|Hp) = N (X3, 5) = N7 (15, Ag)

p
states/poses cee
belief ?ﬁ
Usually (square root) information form is used, admits comperefficient ‘

World model
(e.g. 3D points)
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Belief Space Planning (BSP)

* Consider a set of candidate actions A = {a1,as,...,an}

* For each (non-myopic) action ug.xr7,_1 =a; € A

» Belief at the [-th look-ahead step

b [ Xi+1] = p (Xk|wok—1, 20:ks Ukik1—1, Zht1:k+1)

history H k future actions & observations

]C—Fl z

* Given new factors and variables (if any), can be expressed as: b[Xy] b [Xe] [ [[# X;-j)
i=k+1 j=1

L
* Objective function (e.g. entropy) : J (up.pr—1) = E {Z ¢ (b [ Xkai] ,ukH)}

=1
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Multi-robot BSP

* Each robot 7 has its own discrete set of candidate actions A"

* Multi-robot joint belief for a specific candidate action permutation P = {PT, P }

R L(P")
—_ r r v . 7 7 }’,r' r rr
b[P]_p(Xk |ZO:k’UO:k—1)I I I I p(’xvl |xv171’uv171) p(Zvl |Xk+l)| Ip(Zi,j |xvi’xvj)
r=l | =1 6.7}
Current joint belief Local information Multi-robot observations
Multi robot future observations/constraints Corresponding factor graph Candidate actions
79{ goal 1 ‘* goal 2 - '
Y
o B
\/'

P (Ol Zo:1, wo:k—1)
Trajectories and mapped
Robot r areas by planning time t;, Robot 7’
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Challenges Include

* Calc. a globally optimal solution involves evaluating J(.) for all action permutations

* Comp. intractable (|.4|")

* Belief is over a high-dimensional state — comp. expensive to evaluate each cost ¢ (b [ Xk41] , Ur+1)

* Involves propagating posterior belief for each action
e Calc. of entropy is O(N?)

* Expensive also for focused case (reduce uncertainty of only some variables)

* Requires correct data association (e.g. loop closures, multi-robot constraints)

* Challenging in presence of ambiguity
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Agenda

Belief space planning in high-dimensional state spaces:

1. Computationally efficient information-theoretic BSP by re-using calculations and
avoiding explicit belief propagation

2. Action consistent and bounded BSP problem representations:
* Topological perspective (t-BSP)
» Sparsification perspective (s-BSP)

3. Active perception in ambiguous environments — data association aware BSP

Autonomous Navigation 2nd Workshop on Multi-Robot Perception-Driven Control and Planning, IROS’18
and Perception Lab
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Agenda

Belief space planning in high-dimensional state spaces:

Computationally efficient information-theoretic BSP by re-using calculations and

avoiding explicit belief propagation

2. Action consistent and bounded BSP problem representations:
* Topological perspective (t-BSP)
» Sparsification perspective (s-BSP)

3. Active perception in ambiguous environments — data association aware BSP
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BSP via factor graphs, the matrix determinant lemmma, and
re-use of calculation (rAMDL)

[Kopitkov and Indelman, IJRR’17]
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Objective & Key Idea

[Kopitkov and Indelman, IJRR’17]

* Co

nsider an information-theoretic cost (e.g. entropy, info. gain)

* Existing approaches:

* Propagate posterior belief for each actiona € A
* Calculate determinants of large matrices, O(N°)

1
J, (@) = dim.const — 5 In |Ak+L|

| k+L|

T

IG (a)=—

(reduced complexity in presence of sparsity)

Tif

fo(Xs,%2)

b[Xk] a {fs(xs,x[,) &\/ . . . . e o . A
— C (]
@\/ ° / )@/ Our objective: want to avoid explicitly calculating |Ax+ 1|
i . HX,.,] * Key ideas: (i) use (augmented) matrix determinant lemma
f ¢ ) (ii) re-use calculations between cand. actions
- Rl a\]; f5(x2,x3)'
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Posterior Information Matrix

[Kopitkov and Indelman, IJRR’17]

Our objective: want to avoid explicitly calculating |Ay4 1 |

e Foreach action a € A :

k+L m Factors Appropriate rows in Action Jacobian
. . c
Posterior belief b[Xk+L] oC b[Xk] I I I I flj (Xl]) @ 1 ° |j Xi-1 X
I=k+1 j=1 fy: B B
- fa fa: = B
Posterior info. matrix Ak+L = Ak +A4 -A 0

* A is a sparse Jacobian matrix of new factors, with dimension mx N

* Typically number of involved variables is very small
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Matrix Determinant Lemmma (MDL)

[Kopitkov and Indelman, IJRR’17]

 We use MDL to reduce calculations:
A+ AT A=A |1, + 45, 47| where Tp= At R AR

* Applying it to unfocused not-augmented BSP (see IJRR’17 paper):

1 I
Jjg(a) = 5 In ’Im + {,4 . E]kw’X ; (I}l)T| (Insteadof’Ak 4+ AT A’)
where: Factors Appropriate rows in Action Jacobian
fi
-54 is a partition of A with all non-zero columns @ ° ; Xi-1 X
M,’X . . . . . . f = =
Zk »“* is a prior marginal covariance of involved variables LY f, o W )|

l o 4
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Matrix Determinant Lemmma (MDL)

[Kopitkov and Indelman, IJRR’17]

1
Jig(a) = 5 In |[m 414 zfyaIX : ({4)T|

We can avoid posterior propagation and calc. of determinants of large matrices
: L i M,’X
Calculation of action impact does not depend on N, given %

Calculation complexity depends on m and dim (X)) , typically very cheap

We propose re-use of calculation:

* Only few entries from the prior covariance are actually required!
Different candidate actions often share many involved variables X
Combine variables involved in all candidate actions into set X 4;; C X,
Perform one-time calculation of EM Xau (depends on N)

Calculate J;¢(a) for each action, using 37+ au
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Extensions

[Kopitkov and Indelman, IJRR’17]

* Approach has been extended to support other BSP problem types (see JRR’17 paper)

S

Focused \/ ‘/

(reduce uncertainty only of
some states)

1 1
* Focused:  Jfg(a) = 5o |Im +IA.SMX (IA)T| — 5 |Im F AV XUIE gy

* For augmented case (e.g. active SLAM), Matrix Determinant Lemma (MDL) cannot be used!

* We extended MDL to an augmented case (AMDL), details in the paper
Ay A Apsr

e

=AM 4 4T 4

k+L k+L

A
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Results — Unfocused, Non-Augmented - Sensor Deployment

[Kopitkov and Indelman, IJRR’17]

* Significant time reduction in Unfocused case

Uncertainty field (dense prior information matrix)

600 :
—»From-Scratch Unfocused > 60 50
=
900+ ~6-rAMDL Unfocused £ 40 40
3
b [
4007 : > 20
2, <
5 300 :
E 200! | 50Uncertainty field after sensors’ deployment 40
599—90—6—0—6—900006—0000 g
. . s
100 / S 20
< 0
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Decision number
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Results — Focused, Augmented — SLAM — Viktoria Park

[Kopitkov and Indelman, IJRR’17]

* Significant time reduction in Focused case — focus on last robot pose

1000 1.5 |— From-Scratch Focused
——iISAM Focused
— 800 rAMDL Focused New
— 600 — — rAMDL-Extended Focused New| | |
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Results — Focused, Augmented — SLAM — Simulation

[Kopitkov and Indelman, IJRR’17]

* Significant time reduction in Focused case — focus on mapped landmarks

North [m]
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rAMDL - Summary

[Kopitkov and Indelman, IJRR’17]

 We address all 4 BSP problem types:

=N @
.. [

* No need for posterior belief propagation

 An exact solution

* Avoid calculating determinants of large matrices

e Calculation Re-use

* Per-action evaluation does not depend on state dimension, given marginal prior covariances

\-7 TECHNION

Israel Institute
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Agenda

Belief space planning in high-dimensional state spaces:

1. Computationally efficient information-theoretic BSP by re-using calculations and
avoiding explicit belief propagation

Action consistent and bounded BSP problem representations:

» Topological perspective (t-BSP)
 Sparsification perspective (s-BSP)

3. Active perception in ambiguous environments — data association aware BSP
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Action Consistent & Bounded Approximations

[Elimelech and Indelman, ICRA’17, IROS’17, ISRR’17]
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Action Consistent & Bounded Approximations

[Elimelech and Indelman, ISRR’17]

* Paradigm: generate and solve a simplified decision making problem, b5, J; , which has a
minimal impact on the best-action selection

* Key observations:
* In decision making, only need to sort actions from best to worst
 Changing reward values w/o changing order of actions does not change action selection

5555555555555555

* Action-consistent representation bs, J; :

Va,a' € A: J(b,a) < J(b,a") < J,(bs,a) < Js(bs,a) | s

J<b7 a’) — ‘]<b7 CL/) < JS<687 CL) — JS(bS7 CI/) 1 ™

6951.6 - E: --5303 .2

6951.4 L L L L L -5303.4
0 5 10 15 20 25 30

—~ actions
u TECHNION ‘KZ ; AN ) L Autonomous Navigation Image from Indelman RA-'16 2!
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Action Consistent & Bounded Approximations

[Elimelech and Indelman, ISRR’17]

e Action consistency cannot be always guaranteed

« Sacrifice in performance - definition: — J(b,a)

loss(b, bs, J, Js) = J(b,a*) — J(b,a)

with a* = argmax J (b, a)
acA
a, = argmax Jg(bs, a)
acA

actions

* Often possible to settle for a sub-optimal action, in order to reduce the solution complexity
* Need tight bounds on loss(b, bs, J, Js) |
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Perspectives

 Belief sparsification for BSP (s-BSP)

[Elimelech and Indelman, ICRA’17, IROS’17, ISRR’17]

_~
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* Topological BSP (t-BSP)

[Kitanov and Indelman, ICRA’18]
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Perspectives

 Belief sparsification for BSP (s-BSP) * Topological BSP (t-BSP)

[Elimelech and Indelman, ICRA’17, IROS’17, ISRR’17] [Kitanov and Indelman, ICRA’18]
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Topological Belief Space Planning (t-BSP)

[Kitanov and Indelman, ICRA’18]

* Topological properties of factor graphs dominantly determine estimation accuracy
[Khosoussi et al. IROS’14, IJRR’17]

* Key idea:
* Design a metric of factor graph topology that is strongly correlated with entropy
* Determine best action using that topological metric (instead of entropy)
* Does not require explicit inference, nor partial state covariance recovery

ol
o2 e9
o3 S topological
metric s(G)
o4 o7
L 15) L0} graph signature
Corresponding topology represented
by a graph G(T', )
Factor graph for a 2-robot scenario,
—~ considering some specific candidate actions
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Topological Belief Space Planning (t-BSP)

[Kitanov and Indelman, ICRA’18]

. . . . . A—J b,a
» Relation to action-consistent & bounded approximations framework: B T

loss(b, bs, J, Js)

e b, - Factor graph topology

* J, - Graph signature s(G)

 Two graph signatures currently considered in t-BSP:
 Von Neumann entropy of G (VN) which is further simplified with a function of graph node degrees d

S = Hy N = — n ~l— = — T3 , ,
ST IR A, d@dG)

Cheap to calculate, only a

* Signature based on the number of spanning trees of G (ST) function of node degrees!
3 T
S(G) = S7(G) + ' [In |9 — In(2me)

l o4
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Topological Belief Space Planning (t-BSP)

[Kitanov and Indelman, ICRA’18]

Metric Space

and Perception Lab

Topological space
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North [m]
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t-BSP: Application to Multi-Robot BSP

[Kitanov and Indelman, ICRA’18]

Candidate paths of two robots (red and green) generated
on top of PRM in a single planning session:
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-BSP: Gazebo Initial Results

15t planning session (exploration) 2"d planning session (exploitation, loop closures)

Metric space Topological space Metric space Topological space
15
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Perspectives

* Belief sparsification for BSP (s-BSP) » Topological BSP (t-BSP)

[Elimelech and Indelman, ICRA’17, IROS’17, ISRR’17] [Kitanov and Indelman, ICRA’18]
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Belief sparsification for BSP (s-BSP): Key Idea

[Elimelech and Indelman, ICRA’17, IROS’17, ISRR’17]

* Find an appropriate sparsified information space (more generally, belief)

* Perform decision making over that, rather the original, information space

A A,
m
—
E t:!i p N
. A\ _

J(b,a)
% .
= T - T >
J(b,a) = |A+ AT A] J(bs,a) = |Ag + AT A| actions
* Do we get the same performance (decisions), i.e. is it action consistent?
* |f not, can we bound the loss?
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s-BSP: Initial Results — Sensor Deployment

* Objective: deploy k sensors inan vV x Narea

* Motivating example: extreme sparsification — drop all off-diagonal terms ™

» Action consistency is guaranteed [Indelman RA-L'16] for a restricted problem
setting (myopic, single-row measurement Jacobians)
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s-BSP: Initial Results - Active SLAM

Results considering 3 sparsity levels:
(i) original, (ii) sparsification of uninvolved variables,

LIDAR sensor — range-bearing observations of surrounding landmarks

— Original
Uninvolved Var.
= = Uninvolved Var. - Sparsification Cost
All Var.

All Var. - Sparsification Cost

100
Pose Index

6025

6020 -

6015 -

nowalud>
D (2]
o o
o -
a o

6000 1

5995 -

5990

Active full SLAM scenario — navigation to a goal in an unknown environment

Primitive actions — star-pattern search of best progression angle (20 actions)

—o— Exact Rewards
— — Approximated Rewards - Uninvolved Sparsification
Approximated Rewards - All Var. Sparsification

2 4 6 8 10 12 14 16 18 20
Action



Agenda

Belief space planning in high-dimensional state spaces:

1. Computationally efficient information-theoretic BSP by re-using calculations and
avoiding explicit belief propagation

2. Action consistent and bounded BSP problem representations:
* Topological perspective (t-BSP)
» Sparsification perspective (s-BSP)

Active perception in ambiguous environments — data association aware BSP

[Pathak, Thomas, Indelman, JRR’18]
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Active Robust Perception

[Pathak, Thomas, Indelman, IJRR’18]

What happens if the environment is ambiguous, perceptually aliased?

BSP approaches typically assume data association is given and perfect! We relax this assumption

Our Data Association Aware BSP (DA-BSP) algorithm considers both
* Ambiguous data association (DA) due to perceptual aliasing, and
* Localization uncertainty due to stochastic control and imperfect sensing

Approach can be used for active disambiguation (for example)

‘4 "#ﬂ.

:“ '

—~ Angeli et al., TRO’08
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Approach Overview

[Pathak, Thomas, Indelman, IJRR’18]

* Belief is represented by a Gaussian Mixture Model (GMM)
b[Xp] = P(Xp|Hy) = Y EP(Xp|Hr,y = J)

j=1 —
Weight Conditional Gaussian,
represented by a factor graph

Pathak et al., IJRR’18

e Main idea: Reason how a GMM belief will evolve for different candidate actions

 Number of modes can go down, and go up (!)

\-7 TECHNION
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Approach Overview

[Pathak, Thomas, Indelman, IJRR’18]

T () = Ec(b[Xpei)} = [ p(zmmw)c(p(xmHk+1,zk+1>)

* Marginalize over possible data associations

* Maintain & track data association hypotheses

* Likelihood of a specific z; .1 to be captured
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* Posterior given a specific observation zj, 4
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Approach Overview

[Pathak, Thomas, Indelman, JRR’18]

J(up) = |

. p(ZkH]H;H)c p(XkJrl‘H;;H, Zht1)

* Posterior belief

{An}
b[Xk—l—l] — Z p(Xk+1’H];_|_17Zk—l—laAj)p(Aj’Hl;_|_1azk—|—l)
J

e |n other words

Observation is given, hence, must capture one (unknown) scene

Which one? Consider all possible scenes
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Approach Overview

[Pathak, Thomas, Indelman, JRR’18]

J(ug) = LkH p(zs1 My e | D(Xkra | Hiyr s 2041)

* Likelihood of a specific z;, 4 to be captured

* Marginalize over all scenes A; and viewpoints x 1

P(zr41|Hyyq) = 20 f:p P21, @, Aj My 1) = 2w
7 J
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Perceptual Aliasing Aspects

[Pathak, Thomas, Indelman, JRR’18]

) = [, (Cwy)e| Cub[XiL]

* No perceptual aliasing:
e Only one non-negligible weight W
* Reduces to state of the art belief space planning

* With perceptual aliasing:
* Multiple non-negligible weightsw;, correspond to aliased scenes (given zj 1)
* Posterior becomes a mixture of pdfs (GMM)
* |In practice, hypotheses pruning/merging is performed (see IJRR’18 paper)

* Approach can be used for active disambiguation (between DA hypotheses)
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Number of GMM Components Can Increase

[Pathak, Thomas, Indelman, IJRR’18]

e Gazebo simulation

posterior-1 “e

posteriofi2

propagated belief A

A

prior belief prior belief
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Real Experiment with April Tags

[Pathak, Thomas, Indelman, IJRR’18]

e QOctagonal world with a known map

* April Tags used to simulate aliasing environment and for localization

No object detected

An object detected

Elevators

Stairs

+ AprilTag-1

¥ AprilTag-2
42

Doors



Real Experiment with April Tags

[Pathak, Thomas, Indelman, IJRR’18]
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DA-BSP - Summary

[Pathak, Thomas, Indelman, JRR’18]

» Data association aware belief space planning (DA-BSP)

* Considers data association within BSP
* Relaxes typical assumption in BSP that DA is given and correct

* Approach in particular suitable to handle scenarios with perceptual aliasing and

localization uncertainty

e Unified framework for robust active and passive perception
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Experiments at ANPL — In Process

45

2nd Workshop on Multi-Robot Perception-Driven Control and Planning, IROS’18

Autonomous Navigation
and Perception Lab

50 ANPL

TECHNION
Israel Institute

of Technology

¥



Summary

Belief space planning (BSP) in high-dimensional state spaces:
* rAMDL: Computationally efficient BSP in high dim. state spaces

e Action consistency & bounded approximations
* 5-BSP: belief sparsification for BSP
* t-BSP: topological BSP

* Active perception in ambiguous environments: Data association aware BSP
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