Vision Aided Navigation and SLAM: Overview II

Vadim Indelman

Introduction

Autonomous navigation and perception in uncertain/unknown environments:

- Perception and Inference: Where am I? What is the surrounding environment? This talk
- Planning Under Uncertainty & Active Perception: Decide next action(s) given partial, noisy data

The "Big" Picture

- Objective:
 - Estimate platform state and observed environment (e.g. 3D points)
 - Environment is unknown, uncertain or dynamic

The "Big" Picture

- How?
 - Many images (sensor measurements)
 - Interest points (features) in each image
- **Front-end** Track features from image to image, data association

Autonomous Navigation

and Perception Lab

- Probabilistic inference over robot state and environment (e.g.
- Back-end 3D points)
 - Additional sensors
 - Online performance?

Outline

- Introduction
- Camera projective geometry
- Bundle Adjustment
- Incremental Smoothing and Mapping (iSAM) algorithms
- Visual-inertial SLAM and IMU pre-integration concept

Projection Matrix & Operator

• Projection of a 3D point $\mathbf{X}^w = (X_w, Y_w, Z_w)$:

• To recover the pixel
$$(u, v)$$
: $\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \frac{\tilde{u}}{\tilde{w}} & \frac{\tilde{v}}{\tilde{w}} \end{pmatrix}^T$

ECHNION

• Projection of a 3D point (notation): $\pi(x, l) \doteq K \begin{bmatrix} R & t \end{bmatrix} l$

Autonomous Navigation and Perception Lab Known as projection operator

Image

3D point

Re-Projection Error

Ideally: •

$$\frac{(u,v)}{z} = \pi \left(x,l\right)$$

- In practice:
 - Image observations z are noisy
 - Incorrect/imprecise camera pose and 3D point
- Re-projection error:

Autonomous Navigation

and Perception Lab

$$p(z|x,l) = \frac{1}{\sqrt{|2\pi\Sigma_v|}} \exp\left(-\frac{1}{2} \left\|\frac{z-\pi(x,l)}{|\Sigma_v|}\right\|_{\Sigma_v}\right) \qquad v \sim N(0,\Sigma_v)$$

Re-projection error

Outline

- Introduction
- Camera projective geometry
- Bundle Adjustment
- Incremental Smoothing and Mapping (iSAM) algorithms
- Visual-inertial SLAM and IMU pre-integration concept

Visual SLAM and Bundle Adjustment

- Assume we are given a sequence of images
- **<u>Objective</u>**: Would like to infer camera poses and observed 3D points
 - Using **only** images as input (no additional sensors, for now)
 - Assume data association is given (very challenging by itself!)
- Problem known as
 - Computer vision: Structure from motion (SfM), Bundle adjustment (BA)
 - Robotics: Simultaneous localization and mapping (SLAM)

orresponding

moving camer

Bundle Adjustment

Consider the *i*-th image:

A single image observation of a 3D point l_j •

 $z_{i,j} = \pi \left(x_i, l_j \right) + v \quad \longrightarrow \quad p\left(z_{i,j} | x_i, l_j \right)$

- Notations ullet
 - \mathcal{M}_i : indices of 3D points observed in image *i*
 - Z_i : all image observations from image i
- The joint pdf over camera pose and observed 3D points: ۲

$$p(x_i, \{l_j | j \in \mathcal{M}_i\} | Z_i) = \eta \prod_{j \in \mathcal{M}_i} p(z_{i,j} | x_i, l_j)$$
All 3D points
observed in image i

Autonomous Naviaation

Bundle Adjustment

X: all camera poses (or platform states)L: observed 3D points (in any of the images)

moving camer

- Consider now *N* images
- Joint pdf for all image observations, in all camera frames:

$$p(X, L|Z) \propto \prod_{i=1}^{N} \prod_{j \in \mathcal{M}_{i}} p(z_{i,j}|x_{i}, l_{j})$$

- Maximum a posteriori (MAP) estimate for $X^{\star}, L^{\star} = \underset{X,L}{\operatorname{arg max}} p\left(X, L|Z\right)$
- Assuming Gaussian measurement likelihood equivalent to minimizing:

$$J_{BA}(X,L) \doteq \sum_{i=1}^{N} \sum_{j \in \mathcal{M}_{i}} \left\| z_{i,j} - \pi \left(x_{i}, l_{j} \right) \right\|_{\Sigma}^{2}$$

Approaches: Gauss-Newton, Levenberg-Marquardt, ...

Outline

- Introduction
- Camera projective geometry
- Bundle Adjustment
- Incremental Smoothing and Mapping (iSAM) algorithms
- Visual-inertial SLAM and IMU pre-integration concept

Back to visual SLAM & Vision Aided Navigation

- SfM, BA
 - Sensors: camera (monocular/stereo)
 - Images can be unordered (e.g. downloaded from internet)
 - Cameras are sometimes uncalibrated
- SLAM & VAN
 - Variety of sensors: camera (monocular/stereo), laser scanner, odometry (IMU, wheel ..)
 - Imagery typically arrives in order (sequential)
 - Online operation is required

Loop Closure Observations

- Loop closure observations: Re-observation of a scene ٠
- Essential for reducing drift resets estimation errors to prior levels ۲
- Challenging to identify ٠

(a) Robust local motion estimation

IAAC Workshop on Vision Aided Navigation, January 2019 Images from: Chli09thesis – "Applying Information Theory to Efficient SLAM", 2009

Loop Closure Observations

- Loop closure observations: Re-observation of a scene
- Essential for reducing drift resets estimation errors to prior levels
- Challenging to identify

$$z_{k,j} = h\left(x_k, l_j\right) + v$$

3D point that has been observed some time in the past

(a) Robust local motion estimation

IAAC Workshop on Vision Aided Navigation, January 2019

Images from: Chli09thesis – "Applying Information Theory to Efficient SLAM", 2009

SLAM – Main Approaches

- Approaches differ in
 - Inference/Filtering techniques
 - Definition of what is estimated (state vector)

Common Inference Approaches

- EKF
- EIF (information form)
- Sparsity-aware optimization

oviaation

• Particle filters

Latent Variables (State vector)

- Current state (e.g. pose) + landmarks
- Current state + past poses + landmarks
- Current state + past poses

Full SLAM

Pose SLAM

• Deep learning ...

IAAC Workshop on Vision Aided Navigation, January 2019

Square Root Smoothing and Mapping (SAM)

Dellaert IJRR 2006

IAAC Workshop on Vision Aided Navigation, January 2019

• Camera (or laser) observation model and likelihood

$$z_{k,j} = h(x_k, l_j) + v \qquad p(z_{k,j} | x_k, l_j)$$

- 3D points *l_j* are random variables (unknown/uncertain environment)
- Need to be estimated, part of the inference process (similarly to SfM)
- Joint pdf:

 $p(x_{0:k}, L_k | u_{0:k-1}, z_{0:k})$

• Full joint pdf:

$$p(x_{0:k}, L_k | u_{0:k-1}, z_{0:k}) = \eta p(x_0) \prod_i \left[p(x_i | x_{i-1}, u_{i-1}) \prod_{j \in \mathcal{M}_i} p(z_{i,j} | x_i, l_j) \right]$$

Similarity to BA?

• Maximum a posteriori (MAP) inference:

 $x_{0:k}^{\star}, L_{k}^{\star} = \underset{x_{0:k}, L_{k}}{\operatorname{arg\,max}} p\left(x_{0:k}, L_{k} | u_{0:k-1}, z_{0:k}\right)$

• For Gaussian distributions, involves solving a nonlinear least-squares problem:

vigation

$$x_{0:k}^{\star}, L_{k}^{\star} = \underset{x_{0:k}, L_{k}}{\operatorname{arg\,min}} \left\{ \|x_{0} - \hat{x}_{0}\|_{\Sigma_{0}}^{2} + \sum_{i} \left[\|x_{i} - f(x_{i-1}, u_{i-1})\|_{\Sigma_{w}}^{2} + \sum_{j \in \mathcal{M}_{i}} \|z_{i,j} - h(x_{i}, l_{j})\|_{\Sigma_{v}}^{2} \right] \right\}$$

Navigation

$$x_{0:k}^{\star}, L_{k}^{\star} = \underset{x_{0:k}, L_{k}}{\operatorname{arg\,min}} \left\{ \left\| x_{0} - \hat{x}_{0} \right\|_{\Sigma_{0}}^{2} + \sum_{i} \left[\left\| x_{i} - f\left(x_{i-1}, u_{i-1} \right) \right\|_{\Sigma_{w}}^{2} + \sum_{j \in \mathcal{M}_{i}} \left\| z_{i,j} - h\left(x_{i}, l_{j} \right) \right\|_{\Sigma_{v}}^{2} \right] \right\}$$

• Define $\Theta \doteq \{x_{0:k}, L_k\}$, linearize and collect terms

$$\Delta \Theta = \operatorname*{arg\,min}_{\Delta \Theta} \left\| \mathcal{A} \Delta \Theta - \breve{b} \right\|^2$$

- Jacobian *A* is a **big** & **sparse** matrix
- Example (camera-only, no motion model):
 - 3 cameras
 - 4 landmarks (3D points)

$$x_{0:k}^{\star}, L_{k}^{\star} = \underset{x_{0:k}, L_{k}}{\operatorname{arg\,min}} \left\{ \|x_{0} - \hat{x}_{0}\|_{\Sigma_{0}}^{2} + \sum_{i} \left[\|x_{i} - f(x_{i-1}, u_{i-1})\|_{\Sigma_{w}}^{2} + \sum_{j \in \mathcal{M}_{i}} \|z_{i,j} - h(x_{i}, l_{j})\|_{\Sigma_{v}}^{2} \right] \right\}$$

• Define $\Theta \doteq \{x_{0:k}, L_k\}$, linearize and collect terms

$$\Delta \Theta = \operatorname*{arg\,min}_{\Delta \Theta} \left\| \mathcal{A} \Delta \Theta - \breve{b} \right\|^2$$

- Jacobian A is a **<u>big</u>** & <u>sparse</u> matrix
- How to recover MAP estimate efficiently, online?
- Sparsity-aware (incremental) optimization:
 - Solve via factorization (e.g. QR) and back-substitution
 - Update linearization point and repeat process until convergence

Solution via QR factorization

- Least squares problem: $\Delta \Theta = \underset{\Delta \Theta}{\operatorname{arg\,min}} \left\| \mathcal{A} \Delta \Theta \breve{b} \right\|^2$
- QR factorization: $Q^T \mathcal{A} = \begin{bmatrix} R \\ 0 \end{bmatrix}$

$$= \left[\begin{array}{c} R \\ 0 \end{array} \right] \qquad Q^T \breve{b} \doteq \left[\begin{array}{c} d \\ e \end{array} \right]$$

 $R\,$ - Upper triangular (sparse) matrix $Q\,$ - Orthogonal matrix

• It can be shown that:

ECHNION

at: $\left\| \mathcal{A}\Delta\Theta - \breve{b} \right\|_2^2 = \|R\Delta\Theta - d\|_2^2 + \|e\|_2^2$

Least-squares residual

Solution via QR factorization

- Least squares problem: $\Delta \Theta = \underset{\Delta \Theta}{\operatorname{arg min}} \left\| \mathcal{A} \Delta \Theta \breve{b} \right\|^2$
- QR factorization: $Q^T \mathcal{A} = \begin{bmatrix} R \\ 0 \end{bmatrix}$ $Q^T \breve{b} \doteq \begin{bmatrix} d \\ e \end{bmatrix}$ R Upper triangular (sparse) matrix Q Orthogonal matrix
- Least squares (LS) solution $\Delta \Theta^*$ is obtained via **back-substitution**:

Graphical Model Perspective

Factor Graph

- Bipartite undirected graph $G(\mathcal{F},\Theta,\mathcal{E})$ with two node types
 - $\theta_j \in \Theta$: Variable nodes (correspond to states to be inferred)
 - $f_i \in \mathcal{F}$: Factor nodes (associated with process and measurement models)
 - $e_{ij} \in \mathcal{E}$: Edges always connect between variable and factor nodes
- Factor graph describes a factorization of the joint pdf in terms of process and measurement models

IAAC Workshop on Vision Aided Navigation, January 2019

Factor Graph Representation for BA

IAAC Workshop on Vision Aided Navigation, January 2019

27

Right image from Indelman15ras: "Incremental Light Bundle Adjustment for Structure From Motion and Robotics '

Factor Graph – SLAM Problem

Factor Graph – Multi-Robot SLAM

Inference and Variable Elimination

- Key insight: Inference == Converting a factor graph to a Bayes net using the elimination alg.
- Factor graph: $f(\Theta) = \prod f_j(\theta_j) = f(x_1) f(x_1, x_2) f(x_2, x_3) f(l_1, x_1) f(l_1, x_2) f(l_2, x_3)$
- Represents the joint pdf (e.g.) $p(x_{1:3}, l_{1:2}|u_{1:2}, z_{1:3}) = \eta p(x_1) p(x_2|x_1, u_1) p(x_3|x_2, u_2) p(z_1|x_1, l_1) p(z_2|x_2, l_1) p(z_3|x_3, l_2)$
- Final result Bayes net, corresponds to the factorization: $p(l_1|x_1, x_2) p(l_2|x_3) p(x_1|x_2) p(x_2|x_3) p(x_3)$

IAAC Workshop on Vision Aided Navigation, January 2019

30

Image from Kaess12ijrr: "iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree"

 $d \doteq Q^T b$

d

=

Thus Far: Smoothing and Mapping (SAM)

- Efficient, sparisity-aware nonlinear optimization
- Inference in graphical models
 - Joint pdf can be represented by a factor graph
 - Factorization (calculating the R matrix) is equivalent to variable elimination, represented by a Bayes net
- Still, **batch** algorithm:
 - Each time, solves the entire NLS problem
 - Online performance?

Incremental Smoothing & Mapping (iSAM)

Each time new data is obtained (e.g. measurement):

- Previous approach (SAM): performs factorization from scratch
- Is this really required?
 - Typically, only a very small subset of entries is updated
 - Key idea identify and update only these entries, i.e. update factorization (e.g. QR update)

Incremental Smoothing & Mapping (iSAM)

• Adding new variable (camera pose or navigation state) and factors

 Nodes in all paths that lead from the last-eliminated node to nodes involved in new factors

Autonomous Navigation

and Perception Lab

•

IAAC Workshop on Vision Aided Navigation, January 2019

R

Δ

Incremental Smoothing & Mapping (iSAM)

Trajectory:

Bayes tree: (calculated from Bayes net)

Only red parts are re-calculated

Image from Kaess12ijrr: "iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree"

Example: Incremental Light Bundle Adjustment

IAAC Workshop on Vision Aided Navigation, January 2019

Indelman12bmvc: "Incremental Light Bundle Adjustment", 2012

Outline

- Introduction
- Camera projective geometry
- Bundle Adjustment
- Incremental Smoothing and Mapping (iSAM) algorithms
- Visual-inertial SLAM and IMU pre-integration concept

Vision-Aided Navigation (VAN)

- Common approach:
 - Integrate IMU measurements outside the filter (in real time)
 - Use external sensors to correct solution
 - Does not support re-linearization (of past IMU measurements)

Vision-Aided Navigation (VAN)

- Common approach:
 - Integrate IMU measurements outside the filter (in real time)
 - Use external sensors to correct solution
 - Does not support re-linearization (of past IMU measurements)
- An alternative visual-inertial bundle adjustment
 - Concept: one big optimization
 - Better accuracy, improved estimation consistency
 - Real time performance?
 - Incremental factorization
 - IMU Pre-Integration

Information Fusion via Incremental Smoothing (iSAM algorithms)

Indelman et al. RAS 2013

- The same concept applies also to multiple sensors, possibly operating at different rates
- The joint pdf and the factor graph should be accordingly
- Information fusion from different sensors:
 - Sensors introduce appropriate factors to the graph
 - Calculate MAP estimate via incremental smoothing (iSAM)
- Conceptually, factor graph representing IMU and GPS measurements:

IMU Only – Inertial Navigation

- Joint pdf
 - Formulated in terms of discrete inertial navigation equations (numerical integration)
 - Considers a basic model for IMU calibration parameters (for simplicity)

$$p(X_k, B_k | Z_k) \propto \prod_{i}^{k} p\left(x_{k+1} | x_k, b_k, z_k^{IMU}\right) p\left(b_{k+1} | b_k\right)$$
$$\stackrel{i}{=} f^{IMU} \stackrel{i}{=} f^{bias}$$

Factor graph

ANPL Autonomous Navigation

IAAC Workshop on Vision Aided Navigation, January 2019

IMU Only – Inertial Navigation

- Joint pdf
 - Formulated in terms of discrete inertial navigation equations (numerical integration)
 - Considers a basic model for IMU calibration parameters (for simplicity)

- Assume MAP estimate at time t_k has been calculated
- What involves recovering MAP estimate at time t_{k+1} ?

IMU Only – Inertial Navigation

• Corresponding factor graph and Bayes net:

Only 2 last variables should be re-eliminated

... but, what happens in presence of additional sensors?

Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019

Images from Indelman15chapter: "Incremental Light Bundle Adjustment: Probabilistic Analysis and Application to Robotic Navigation", 2015

Visual-Inertial Bundle Adjustment (SLAM, VAN)

• IMU + single camera:

Incorporating High Rate Sensors

- Challenges
 - Many variables to re-eliminate each time new measurements from other sensors (e.g. camera) come in
 - Recover MAP estimate at IMU rate?
 - How to avoid adding state variables to the optimization at IMU rate?

IMU Pre-Integration

- How to avoid adding state variables to the optimization at IMU rate?
 - <u>Pre-integrate</u> IMU observations in body frame of last keyframe [Lupton et al. 2012]
 - Navigation states can be added at camera rate

Autonomous Navigation l and Perception Lab

IMU Pre-Integration

• In navigation (global) frame:

$$v_{t2}^n = v_{t1}^n + \int_{t1}^{t2} (C_{bt}^n (f_t^b - bias_f^{obs}) + g^n) dt$$

Similar concept for position & orientation

Instead - in body frame of the last pose within optimization: ۲

Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019 48 and Perception Lab Images from Lupton12tro: "Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions"

IMU Pre-Integration

- How to avoid adding state variables to the optimization at IMU rate?
 - <u>Pre-integrate</u> IMU observations in body frame of last keyframe [Lupton et al. 2012]
 - Navigation states can be added at camera rate
- Real time performance predict solution using pre-integrated IMU information and current MAP estimate
 - Without adding new variables to optimization
- Expressing in relative frame (i.e. body frame) allows to avoid re-playing all observations when re-linearizing!

Available as open source! (part of gtsam)

s Navigation IAAC Wo

- Any other sensors can be similarly incorporated For example:
 - IMU
 - GPS
 - Camera + explicit estimation of 3D points

- Aerial scenario (simulation, Monte-Carlo study)
 - IMU, Monocular camera, Magnetometer
 - <u>Short-track</u> features only
 - Initial navigation errors

300

250

150

Height [m]

Ground truth Inertial

- KITTI Vision Benchmark
 - IMU
 - Stereo Camera (no loop closures)

Autonomous Navigation _I, and Perception Lab

• KITTI Vision Benchmark

Error [m]

- IMU
- Stereo Camera (no loop closures)
 - **Processing time** Batch Incr Smoothing 1 mlessester Lag 0.1s Lag 0.5s - Lag 1.0s Lag 2.0s 40 60 20 Time [sec Position difference w.r.t. Batch ac 00.1 ag 00.5 ag 02.0 60 80 100 120 140

Images from Indelman13ras: "Information Fusion in Navigation Systems via Factor Graph Based Incremental Smoothing"

Summary

SLAM and VAN Overview:

- Front-end & Back-end
- Projection operator, re-projection error
- Bundle adjustment
- Smoothing and Mapping (SAM)
- Incremental SAM (iSAM)
- Information fusion with iSAM
- IMU Pre-Integration

