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Introduction

• Numerous applications
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Introduction

Autonomous navigation and perception in uncertain/unknown environments:
• Perception and Inference: Where am I? What is the surrounding environment?
• Planning Under Uncertainty & Active Perception: Decide next action(s) given partial, noisy data
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The “Big” Picture

• Objective: 
• Estimate platform state and observed environment (e.g. 3D points)
• Environment is unknown, uncertain or dynamic

Image from [Kim et al. 2005]
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The “Big” Picture

• How?
• Many images (sensor measurements)
• Interest points (features) in each image
• Track features from image to image, data association
• Probabilistic inference over robot state and environment (e.g. 

3D points)

• Additional sensors
• Online performance?

Image from [Kim et al. 2005]

Front-end

Back-end
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Outline

• Introduction
• Camera projective geometry
• Bundle Adjustment
• Incremental Smoothing and Mapping (iSAM) algorithms
• Visual-inertial SLAM and IMU pre-integration concept
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Projection Matrix & Operator
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Re-Projection Error

• Re-projection error:
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• In practice: 
– Image observations    are noisy
– Incorrect/imprecise camera pose and 3D point

z

z � ⇡ (x, l)

(u, v) = ⇡ (x, l)• Ideally:
z

Image observation 
(pixel, feature)

Predicted 
measurement
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• Assuming Gaussian image noise, measurement likelihood:

v ⇠ N (0,⌃v)p (z|x, l) = 1p
|2⇡⌃v|

exp

✓
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kz � ⇡ (x, l)k2⌃v
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Re-projection error 



IAAC Workshop on Vision Aided Navigation, January 2019

Outline

• Introduction
• Camera projective geometry
• Bundle Adjustment
• Incremental Smoothing and Mapping (iSAM) algorithms
• Visual-inertial SLAM and IMU pre-integration concept
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Visual SLAM and Bundle Adjustment
• Assume we are given a sequence of images

• Objective: Would like to infer camera poses and observed 3D points
• Using only images as input (no additional sensors, for now)
• Assume data association is given (very challenging by itself!)

• Problem known as
• Computer vision: Structure from motion (SfM), Bundle adjustment (BA)
• Robotics: Simultaneous localization and mapping (SLAM)

10
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Bundle Adjustment

xi

lj
3D point

zi,j

⇡(xi, lj)zi,j = ⇡ (xi, lj) + v p (zi,j |xi, lj)

Consider the  -th image:
• A single image observation of a 3D point lj

• Notations
– : indices of 3D points observed in image
– : all image observations from image 

Mi i

i

iZi

• The joint pdf over camera pose and observed 3D points:

p (xi, {lj |j 2 Mi} |Zi) = ⌘
Y

j2Mi

p (zi,j |xi, lj)

All 3D points 
observed in image i

11



IAAC Workshop on Vision Aided Navigation, January 2019

Bundle Adjustment

• Consider now    imagesN

• Joint pdf for all image observations, in all camera frames:

p (X,L|Z) /
NY

i

Y

j2Mi

p (zi,j |xi, lj)

: all camera poses (or platform states)

: observed 3D points (in any of the images)

X

L

xi

lj
3D point

zi,j

⇡(xi, lj)

• Maximum a posteriori (MAP) estimate for X?, L? = argmax
X,L

p (X,L|Z)

• Assuming Gaussian measurement likelihood – equivalent to minimizing:

JBA (X,L)
.
=

NX

i=1

X

j2Mi

kzi,j � ⇡ (xi, lj)k2⌃

• Approaches: Gauss-Newton, Levenberg-Marquardt, … 
12
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Outline

• Introduction
• Camera projective geometry
• Bundle Adjustment
• Incremental Smoothing and Mapping (iSAM) algorithms
• Visual-inertial SLAM and IMU pre-integration concept

13



IAAC Workshop on Vision Aided Navigation, January 2019

Back to visual SLAM & Vision Aided Navigation

• SfM, BA
• Sensors: camera (monocular/stereo)
• Images can be unordered (e.g. downloaded from internet)
• Cameras are sometimes uncalibrated

• SLAM & VAN
• Variety of sensors: camera (monocular/stereo), laser scanner, odometry (IMU, wheel ..)
• Imagery typically arrives in order (sequential)
• Online operation is required

14
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Loop Closure Observations
• Loop closure observations: Re-observation of a scene

• Essential for reducing drift – resets estimation errors to prior levels

• Challenging to identify

The same scene!!

Estimation error

15
Images from: Chli09thesis – “Applying Information Theory to Efficient SLAM”, 2009
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Loop Closure Observations

Images from: Chli09thesis – “Applying Information Theory to Efficient SLAM”, 2009

zk,j = h (xk, lj) + v

3D point that has been observed 
some time in the past

• Measurement equation:

• Loop closure observations: Re-observation of a scene
• Essential for reducing drift – resets estimation errors to prior levels
• Challenging to identify

16
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SLAM – Main Approaches

• Approaches differ in

• Inference/Filtering techniques

• Definition of what is estimated (state vector)

• EKF

• EIF (information form)

• Sparsity-aware optimization

• Particle filters

• Current state (e.g. pose) + 

landmarks

• Current state + past poses + 

landmarks

• Current state + past poses

Common Inference Approaches Latent Variables (State vector)

• Deep learning …

Full SLAM

Pose SLAM

17
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Square Root Smoothing and 
Mapping (SAM)

Dellaert IJRR 2006
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Smoothing and Mapping (SAM)
• Camera (or laser) observation model and likelihood

zk,j = h (xk, lj) + v p (zk,j |xk, lj)

• 3D points    are random variables (unknown/uncertain environment)
• Need to be estimated, part of the inference process (similarly to SfM)

lj

• Joint pdf: p (x0:k, Lk|u0:k�1, z0:k) = ⌘p (x0)
Y

i

2

4p (xi|xi�1, ui�1)
Y

j2Mi

p (zi,j |xi, lj)
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Smoothing and Mapping (SAM)

• Maximum a posteriori (MAP) inference:

• Full joint pdf:

x?
0:k, L

?
k = argmax

x0:k,Lk

p (x0:k, Lk|u0:k�1, z0:k)

p (x0:k, Lk|u0:k�1, z0:k) = ⌘p (x0)
Y

i

2

4p (xi|xi�1, ui�1)
Y

j2Mi

p (zi,j |xi, lj)

3

5

• For Gaussian distributions, involves solving a nonlinear least-squares problem:

x?
0:k, L

?
k = argmin

x0:k,Lk

8
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:kx0 � x̂0k2⌃0
+

X

i

2

4kxi � f (xi�1, ui�1)k2⌃w
+

X

j2Mi

kzi,j � h (xi, lj)k2⌃v

3

5

9
=

;

Similarity to BA?
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Smoothing and Mapping (SAM)

x?
0:k, L

?
k = argmin

x0:k,Lk
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+

X
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9
=

;

• Define                       , linearize and collect terms⇥
.
= {x0:k, Lk}

�⇥ = argmin
�⇥

���A�⇥� b̆
���
2

• Jacobian    is a big & sparse matrixA
A

• Example (camera-only, no motion model):
– 3 cameras
– 4 landmarks (3D points)

21
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Smoothing and Mapping (SAM)

x?
0:k, L
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• Define                       , linearize and collect terms⇥
.
= {x0:k, Lk}

�⇥ = argmin
�⇥

���A�⇥� b̆
���
2

• Jacobian    is a big & sparse matrixA

• How to recover MAP estimate efficiently, online?

• Sparsity-aware (incremental) optimization:
• Solve via factorization (e.g. QR) and back-substitution
• Update linearization point and repeat process until convergence

22
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Solution via QR factorization

QTA =


R
0

�
QT b̆

.
=


d
e

�
- Upper triangular (sparse) matrixR

- Orthogonal matrixQ

���A�⇥� b̆
���
2

2
= kR�⇥� dk22 + kek22

�⇥ = argmin
�⇥

���A�⇥� b̆
���
2• Least squares problem:

A

R 2 Rn⇥n

• QR factorization:

• It can be shown that:
Least-squares residual

23
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Solution via QR factorization

QTA =


R
0

�
QT b̆

.
=


d
e

�
- Upper triangular (sparse) matrixR

- Orthogonal matrixQ

�⇥ = argmin
�⇥

���A�⇥� b̆
���
2• Least squares problem:

• QR factorization:

• Least squares (LS) solution         is obtained via back-substitution:�⇥?

R�⇥ = d =

dR �⇥
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Graphical Model Perspective
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Factor Graph

xi ...xi+1xi�1...

lj

x0p (x0:k, L|u0:k�1, z0:k) = ⌘p (x0)
Y

i

2

4p (xi|xi�1, ui�1)
Y

j2Mi

p (zi,j |xi, lj)

3

5

• Bipartite undirected graph                    with two node types
– : Variable nodes (correspond to states to be inferred)

– : Factor nodes (associated with process and measurement models)

– : Edges always connect between variable and factor nodes

G (F ,⇥, E)

fi 2 F

✓j 2 ⇥

eij 2 E

• Factor graph describes a factorization of the joint pdf in terms of process 
and measurement models

p (⇥) / f (⇥) /
Y

fi (⇥i)

⇥

factors fi(⇥i)

Factor node

Variable node

26



IAAC Workshop on Vision Aided Navigation, January 2019

Factor Graph Representation for BA

x1 x2 x3 x4

projection
factors

Views:

Landmarks: l1

fproj (xi, lj)
.
= exp

✓
�1

2
kzi,j � ⇡ (xi, lj)k2⌃

◆

p (X,L|Z) /
NY

i

Y

j2Mi

p (zi,j |xi, lj)

Right image from Indelman15ras: “Incremental Light Bundle Adjustment for Structure From Motion and Robotics “
27
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Factor Graph – SLAM Problem

Image from Dellaert06ijrr: “Square Root SAM”
28
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Factor Graph – Multi-Robot SLAM
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vertices in Vinv

G = (V,E)

29
Images from Indelman17arj and Regev17arj
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Inference and Variable Elimination
• Key insight: Inference == Converting a factor graph to a Bayes net using the elimination alg.

Image from Kaess12ijrr: “iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree”
30

f (⇥) =
Y

j

fj (✓j) = f (x1) f (x1, x2) f (x2, x3) f (l1, x1) f (l1, x2) f (l2, x3)• Factor graph:

p (l1|x1, x2) p (l2|x3) p (x1|x2) p (x2|x3) p (x3)

p (x1:3, l1:2|u1:2, z1:3) = ⌘p (x1) p (x2|x1, u1) p (x3|x2, u2) p (z1|x1, l1) p (z2|x2, l1) p (z3|x3, l2)• Represents the joint pdf (e.g.)

• Final result – Bayes net, corresponds to the factorization:

p(l2|x3)p(l1|x1, x2)

p (x1|x2) p (x2|x3) p (x3)

Elimination order 
l1, l2, x1, x2, x3

=

R � d
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Example

x1 x2 x3

Factor graph

A =

2

66664

⇥ ⇥
⇥ ⇥

⇥ ⇥
⇥ ⇥
⇥ ⇥

3

77775

x1 x2 x3

Jacobian matrix

R =

2

4
⇥ ⇥

⇥ ⇥
⇥

3

5

x1 x2 x3

Factorized Jacobian matrix

Linearization

Factorization

?x1 x2 x3

P (x3)P (x2|x3)P (x1|x2)

Bayes net

Elimination order x1, x2, x3

Linearization and elimination

=

R � d

A = QR d
.
= QT b

�⇤ = argmin
�

(R�� d)

�⇤ = argmin
�

(A�� b)
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Thus Far: Smoothing and Mapping (SAM)

• Efficient, sparisity-aware nonlinear optimization
• Inference in graphical models
• Joint pdf can be represented by a factor graph
• Factorization (calculating the R matrix) is equivalent to variable elimination, 

represented by a Bayes net

• Still, batch algorithm: 
– Each time, solves the entire NLS problem
– Online performance?

32
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Incremental Smoothing & Mapping (iSAM)

x1 x2 x3

Factor graph

A =

2

66664

⇥ ⇥
⇥ ⇥

⇥ ⇥
⇥ ⇥
⇥ ⇥

3

77775

x1 x2 x3

Jacobian matrix

Linearization Factorization
R =

2

4
⇥ ⇥

⇥ ⇥
⇥

3

5

x1 x2 x3

Factorized Jacobian matrix

Each time new data is obtained (e.g. measurement): 

• Previous approach (SAM): performs factorization from scratch 

• Is this really required? 
• Typically, only a very small subset of entries is updated
• Key idea – identify and update only these entries, i.e. update factorization (e.g. QR update)

x1 x2 x3 x4

Factor graph New variable and factors

x1 x2 x3 x4

A =

2

666666664

⇥ ⇥
⇥ ⇥

⇥ ⇥
⇥ ⇥
⇥ ⇥
⇥ ⇥ ⇥

⇥ ⇥

3

777777775

Jacobian matrix

new

Linearization Factorization
R =

2

664

⇥ ⇥
⇥ ⇥ ⇥

⇥ ⇥
⇥

3

775

x1 x2 x3 x4

Factorized Jacobian
matrix

Modified 
or new

Previous time

Current time
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Incremental Smoothing & Mapping (iSAM)

x1 x2 x3 x4

Factor graph New variable and factors

x1 x2 x3 x4

A =

2

666666664

⇥ ⇥
⇥ ⇥

⇥ ⇥
⇥ ⇥
⇥ ⇥
⇥ ⇥ ⇥

⇥ ⇥

3

777777775

Jacobian matrix

new

R =

2

664

⇥ ⇥
⇥ ⇥ ⇥

⇥ ⇥
⇥

3

775

x1 x2 x3 x4

Factorized Jacobian
matrix

Modified 
or new

Linearization Factorization

x1 x2 x3

P (x3)P (x2|x3)P (x1|x2)

Previous Bayes net

x1 x2 x3 x4

P (x1|x2) P (x4)P (x3|x4)P (x2|x3,x4)

Updated Bayes net

=

R � d

x⇤
k

A = QR d
.
= QT b

�⇤ = argmin
�

(R�� d)

�⇤ = argmin
�

(A�� b)

• Adding new variable (camera pose or navigation state) and factors

• What should be re-calculated? 

• Nodes in all paths that lead from the last-eliminated node to 
nodes involved in new factors

34

Only red parts 
are re-calculated
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Incremental Smoothing & Mapping (iSAM)

35

Image from Kaess12ijrr: “iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree”

time

Only red parts 
are re-calculated

Trajectory:

Bayes tree:
(calculated from Bayes net)
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Example: Incremental Light Bundle Adjustment

36
Indelman12bmvc: “Incremental Light Bundle Adjustment”, 2012
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Outline

• Introduction
• Camera projective geometry
• Bundle Adjustment
• Incremental Smoothing and Mapping (iSAM) algorithms
• Visual-inertial SLAM and IMU pre-integration concept
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Vision-Aided Navigation (VAN)
• Common approach:
• Integrate IMU measurements outside the filter (in real time)
• Use external sensors to correct solution 
• Does not support re-linearization (of past IMU measurements)

IMU 
(Xsens MTi-G)

zIMU
k

Z Z

xk

h(xk, z
IMU
k )

zIMU
k

X Z Z

b̂k

xk

FilterExternal 
sensors

X

estimated correction/error

INS / Strapdown
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Vision-Aided Navigation (VAN)
• Common approach:
• Integrate IMU measurements outside the filter (in real time)
• Use external sensors to correct solution 
• Does not support re-linearization (of past IMU measurements)

• An alternative – visual-inertial bundle adjustment
– Concept: one big optimization
– Better accuracy, improved estimation consistency
– Real time performance?

• Incremental factorization
• IMU Pre-Integration

39
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Information Fusion via Incremental 
Smoothing (iSAM algorithms)

Indelman et al. RAS 2013
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Information Fusion via iSAM2.0
• The same concept applies also to multiple sensors, possibly operating at different rates
• The joint pdf and the factor graph should be accordingly

• Conceptually, factor graph representing IMU and GPS measurements:

x1 x2 x3 x4

fGPS

x5

fGPS

x6
f IMUf IMUf IMU f IMU f IMU

• Information fusion from different sensors:
• Sensors introduce appropriate factors to the graph
• Calculate MAP estimate via incremental smoothing (iSAM)
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IMU Only – Inertial Navigation

Factor graph

x1 x2
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�
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.
= f IMU .

= f bias

• Joint pdf
• Formulated in terms of discrete inertial navigation equations (numerical integration)
• Considers a basic model for IMU calibration parameters (for simplicity)
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IMU Only – Inertial Navigation

Factor graph
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• Joint pdf
• Formulated in terms of discrete inertial navigation equations (numerical integration)
• Considers a basic model for IMU calibration parameters (for simplicity)
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– Assume MAP estimate at time     has been calculated

– What involves recovering MAP estimate at time          ?
tk

tk+1
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IMU Only – Inertial Navigation

Images from Indelman15chapter: “Incremental Light Bundle Adjustment: Probabilistic Analysis and Application to Robotic Navigation”, 2015

… but, what happens in presence of additional sensors?

44

• Corresponding factor graph and Bayes net:
Only 2 last variables should 

be re-eliminated
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Visual-Inertial Bundle Adjustment (SLAM, VAN) 

• IMU + single camera:
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Factor graph
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Incorporating High Rate Sensors
• Challenges
• Many variables to re-eliminate each time new measurements from other sensors 

(e.g. camera) come in
• Recover MAP estimate at IMU rate?
• How to avoid adding state variables to the optimization at IMU rate?

l1

x1 x2

b1 b2

x3

b3

f IMU f IMU

f bias f bias

f IMU

x4

f bias

f IMU

x5

b4
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IMU Pre-Integration

x1 x5

b1

fEquiv

l1
l1

x1 x2

b1 b2

x3

b3

f IMU f IMU

f bias f bias

f IMU

x4

f bias

f IMU

x5

b4

• How to avoid adding state variables to the optimization at IMU rate?
• Pre-integrate IMU observations in body frame of last keyframe [Lupton et al. 2012]
• Navigation states can be added at camera rate
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IMU Pre-Integration

Images from Lupton12tro: “Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions ”

• In navigation (global) frame:

• Instead - in body frame of the last pose within optimization:

t1

Last keyframe

t2

New keyframe

Similar concept for position & orientation
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IMU Pre-Integration
• How to avoid adding state variables to the optimization at IMU rate?

• Pre-integrate IMU observations in body frame of last keyframe [Lupton et al. 2012]

• Navigation states can be added at camera rate

x1 x5
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x1 x2

b1 b2

x3

b3

f IMU f IMU

f bias f bias

f IMU

x4

f bias

f IMU

x5

b4

• Real time performance – predict solution using pre-integrated IMU information and current 
MAP estimate

– Without adding new variables to optimization

• Expressing in relative frame (i.e. body frame) allows to avoid re-playing all observations 
when re-linearizing!

Available as open source! 
(part of gtsam)
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Information Fusion via iSAM2.0
• Any other sensors can be similarly incorporated

For example: 
• IMU
• GPS
• Camera + explicit estimation of 3D points
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b1 b2

x3

b3
f bias f bias
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f bias

x5

b4

fEquiv fEquiv fEquiv fEquiv

fGPS fGPSl1
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• Aerial scenario (simulation, Monte-Carlo study)
• IMU, Monocular camera, Magnetometer
• Short-track features only
• Initial navigation errors

Images from Indelman13ras: “Information Fusion in Navigation Systems via Factor Graph Based Incremental Smoothing”
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Information Fusion via iSAM2.0
• KITTI Vision Benchmark

• IMU
• Stereo Camera (no loop closures)
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fEquiv

b1 b2 b3
f bias

b4

l1

fStereo

fPrior

(Simplified) Factor Graph
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Information Fusion via iSAM2.0
• KITTI Vision Benchmark

• IMU
• Stereo Camera (no loop closures)

X⇤
k , B

⇤
k , L

⇤
k = argmax

Xk,Bk,Lk

p (Xk, Bk, Lk|Zk)

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

Time [sec]

Pr
oc

es
si

ng
 T

im
e 

[s
ec

]

 

 
Batch
Incr. Smoothing
Lag 0.1s
Lag 0.5s
Lag 1.0s
Lag 2.0s
Lag 10.0s

Processing time

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

Time [sec]

Er
ro

r [
m

]

Position difference w.r.t. Batch

Images from Indelman13ras: “Information Fusion in Navigation Systems via Factor Graph Based Incremental Smoothing”
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Summary

SLAM and VAN Overview:

• Front-end & Back-end

• Projection operator, re-projection error

• Bundle adjustment

• Smoothing and Mapping (SAM)

• Incremental SAM (iSAM)

• Information fusion with iSAM

• IMU Pre-Integration
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