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The “Big” Picture

Image from [Kim et al. 2005]

* Objective:
* Estimate platform state and observed environment (e.g. 3D points)
* Environment is unknown, uncertain or dynamic

3D-Model*, " *\
~ \
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The “Big” Picture

Image from [Kim et al. 2005]

* How?

* Many images (sensor measurements)
* Interest points (features) in each image |
Front-end | * Track features from image to image, data association o,
Probabilistic inference over robot state and environment (e.g. DK
Back-end 3D points)

Additional sensors
Online performance?
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Outline

Introduction

Camera projective geometry

Bundle Adjustment

Incremental Smoothing and Mapping (iSAM) algorithms
Visual-inertial SLAM and IMU pre-integration concept
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Projection Matrix & Operator

* Projection of a3D point X" = (Xwa Yw,Zw): U Image .
’Ul\A observation 3D point
~ ' Projection matrix | X,
e Y,
U — w
o |=K[R | t]| .
: 1 3D point

Camera pose 3D point, landmark

)T

i
81|dz

* To recover the pixel (u,v): ( z ) = (

(@) =K[R t]I Known as
projection operator

* Projection of a 3D point (notation):
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Re-Projection Error

* |deally: (u,v) = m (1) . mage 3D boi
> fUl\A observation point
* |n practice:
— Image observations z are NOISY Projected
— Incorrect/imprecise camera pose and 3D point 3D point
* Re-projection error: z—7(x,1)
Image observation Predicted
(pixel, feature) measurement
* Assuming Gaussian image noise, measurement likelihood:
1 1 9
p(z|az,l) — ’271'2 ’ exp _QHZ_W(:UJ)HEU UNN(OaEU)
v
Re-projection error
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Outline

e |ntroduction

* Camera projective geometry

* Bundle Adjustment

* Incremental Smoothing and Mapping (iISAM) algorithms

 Visual-inertial SLAM and IMU pre-integration concept
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Visual SLAM and Bundle Adjustment

e Assume we are given a sequence of images

* Objective: Would like to infer camera poses and observed 3D points

e Using only images as input (no additional sensors, for now)

e Assume data association is given (very challenging by itself!)

* Problem known as

'

e Computer vision: Structure from motion (SfM), Bundle adjustment (Bi&"')"“’f'iz\,/f}_\ ;

\

e Robotics: Simultaneous localization and mapping (SLAM)
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Bundle Adjustment

Consider the i-th image: 3 ppit

* Asingle image observation of a 3D point /;

zijg =7 (2, l;) +v — pl(zigle,l;)
* Notations

— M;: indices of 3D points observed in image

— Z; :all image observations from image

* The joint pdf over camera pose and observed 3D points:

p(zi {lili € M} |Z) =n ] p(zijlely)

eEM,;
All 3D points J !
observed in image i
_~w
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Bu nd Ie AdJ UStment L : observed 3D points (in any of the images)g

. . 3D point

* Consider now N images i
* Joint pdf for all image observations, in all camera frames:

N

p(X,L1Z) o< [ 1] p(zislzily)

1 JEM;

* Maximum a posteriori (MAP) estimate for X*, L* = argmaxp (X, L|Z) RN
X,L e

* Assuming Gaussian measurement likelihood — equivalent to mini

corresponding

N ¥
Tpa (X,L) =" 3" |2y — 7 (@i, 1)]13 b X
i=1 jeM; o S
* Approaches: Gauss-Newton, Levenberg-Marquardt, ...
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Outline

Introduction

Bundle Adjustment

Camera projective geometry

Incremental Smoothing and Mapping (iSAM) algorithms
Visual-inertial SLAM and IMU pre-integration concept
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Back to visual SLAM & Vision Aided Navigation

e SfM, BA
* Sensors: camera (monocular/stereo)
* Images can be unordered (e.g. downloaded from internet)
 Cameras are sometimes uncalibrated

e SLAM & VAN
* Variety of sensors: camera (monocular/stereo), laser scanner, odometry (IMU, wheel ..)
* Imagery typically arrives in order (sequential)
* Online operation is required

Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019
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Loop Closure Observations

* Loop closure observations: Re-observation of a scene

* Essential for reducing drift — resets estimation errors to prior levels

bfind

* Challenging to identify

The same scene!!

Estimation error

(b) Mapping and loop-closure detection

Audtonomousl. Navigation IAAC Workshop on Vision Aided Navigation, January 2019 15
and Perception Lab Images from: Chli09thesis — “Applying Information Theory to Efficient SLAM”, 2009
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Loop Closure Observations

Loop closure observations: Re-observation of a scene

Essential for reducing drift — resets estimation errors to prior levels

Challenging to identify

Measurement equation:

2k = h(xg, 1)+

!

3D point that has been observed
some time in the past

(b) Mapping and loop-closure detection (c) Global optimisation

AUdtUanDU$ Navigation IAAC Workshop on Vision Aided Navigation, January 2019 16
and Perception Lab Images from: Chli09thesis — “Applying Information Theory to Efficient SLAM”, 2009
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SLAM — Main Approaches

* Approaches differ in

* Inference/Filtering techniques
e Definition of what is estimated (state vector)

Common Inference Approaches Latent Variables (State vector)

e EKE e Current state (e.g. pose) +
* EIF (information form) landmarks Eull SLAM
. .. . ° + +
| Sparsity-aware optimization Current state + past poses
. . landmarks
e Particle filters
* Current state + past poses Pose SLAM
* Deep learning ...
Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019 17
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Square Root Smoothing and
Mapping (SAM)

Dellaert IJRR 2006

_~w
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Smoothing and Mapping (SAM)

 Camera (or laser) observation model and likelihood

2 = h(xp, lj) +v p (2k,j|Tk, 15)

3D points /; are random variables (unknown/uncertain environment)

Need to be estimated, part of the inference process (similarly to SfM)

e Joint pdf:

p (o, Lk |wo:k—1, 20:k)
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Smoothing and Mapping (SAM)

* Full joint pdf:

P (To.k, Li|uo:k—1, 2z0:x) = np (20) H {p (xi]wio1,ui—1) H p(zi,j|xi,lj)] Similarity to BA?
JEM,;

%

 Maximum a posteriori (MAP) inference:

* *
Zo.p, Ly = arg maxp (5’70:k, Lkz\uo:k—l, Zo:k)
Zo:k,Lk

* For Gaussian distributions, involves solving a nonlinear least-squares problem:

To:k, Lk

ok, Ly, = argmin {leo —dollg, + )
i

|z = f (@i wim)lls, + ) 2y — h(%lj)lévl }

JjeEM;
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Smoothing and Mapping (SAM)

|zs — f(%;—h%‘—l)”zzw + Z 21,5 — h(xi7lj)|22U] }

JjeEM;

4.k, Lf, = arg min { lzo = Zolly, + D

To.k, Lk i

* Define © = {z¢.,, Li}, linearize and collect terms

AO = argmin || AAO — BH2
AO
 JacobianAis a big & sparse matrix
 Example (camera-only, no motion model):
— 3 cameras -
— 4 landmarks (3D points) ::
Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019 21
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Smoothing and Mapping (SAM)

|zs — f(xi—laui—l)”;w + Z [2i,5 — h(xi7lj)|2zU] }

JjeEM;

x5, Ly, = arg min { |xo — IL'0HEO + Z

To.k, Lk i

* Define © = {z¢.,, Li}, linearize and collect terms

AO = arg mm

]AA@—Q]

Jacobian A is a big & sparse matrix

* How to recover MAP estimate efficiently, online?

e Sparsity-aware (incremental) optimization:
 Solve via factorization (e.g. QR) and back-substitution
* Update linearization point and repeat process until convergence

_~w
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Solution via QR factorization

2

* Least squares problem: A6 = arg min [ AA6 — |

e QR factorization: OT A = [ R ] QT = [ d ] R - Upper triangular (sparse) matrix
0 € () - Orthogonal matrix

o2
|t can be shown that: HAA@ — ng — ||[RAG —d||; + ||e|3

Least-squares residual

li 2 Ia la X1 X2 Xa

Z1
Z2
23

24 . RERTLXTL

Zs
Zs
‘/4 Z7
Zs8
Z9
Z10

Z11
Z12

Autonomous_. Navigation IAAC Workshop on Vision Aided Navigation, January 2019 23
and Perception Lab

_~
W Isen (750 ANPL

of Technology




Solution via QR factorization

2

* Least squares problem: A6 = arg min [ AA6 — |

e QR factorization: OT A = [ R ] QT = [ d ] R - Upper triangular (sparse) matrix
0 € () - Orthogonal matrix

* Least squares (LS) solution Ae* is obtained via back-substitution:

R AO d
RA@ — d =
_~w
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Graphical Model Perspective

Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019
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Factor Graph

* Bipartite undirected graph G (F, 0, &) with two node types
— 6, € ©: Variable nodes (correspond to states to be inferred)
— f;, € F: Factor nodes (associated with process and measurement models)

— e;; € £: Edges always connect between variable and factor nodes

e Factor graph describes a factorization of the joint pdf in terms of process
and measurement models

p (zo:k, L|uo:k—1, z0:k) = 1p (QJO)H p(zilwio1,ui—1) H p (zijlzi, 1) ‘+
i JEMy————————
@ \/

factors f;(©;)
Varlable node
e p 0) o [] fi (6))
. Factor node
o~
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Factor Graph Representation for BA

N
p(X,L‘Z) X H H p(zlj|xz7l])
1 JeEM;
" . 1 2
foroj (i, ;) = exp <—§ 25 —m (ﬂfi,lj)|\z>

projection

factors
Landmarks:
o~ . .
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Factor Graph — SLAM Problem

17, Vs

I’l [——
—

i
T 7%
7
7

/)
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o >
Z\

N
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o
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Factor Graph — Multi-Robot SLAM

Robot r

P (O Zo:k, wo:k—1)
Trajectories and mapped
areas by planning time t,  Robot 7’

¢ goal 2

_~
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Inference and Variable Elimination

Key insight: Inference == Converting a factor graph to a Bayes net using the elimination alg.

Factor graph: f(©)= Hfj (0;) = f(x1) f (z1,22) f (22, 23) f (I, 21) f (1, 22) f(l2,23)

Represents the joint pdf (e.g.)  »(@is hizluie, 218) = 0 (21) p (z2le1,un) p (x3]22, u2) p (2121, 1) p (22] 22, 1) p (23]23, o)

Final result — Bayes net, corresponds to the factorization:  »(iilz1,22) p (lofas) p (21]22) p (w2]23) p (23)

p(li|wy, 22) p(l2|x3)

o Elimination order

l17l27x17$27x3
| ,\

p (w1]w2) p (w2|xs) p(x3)

TECHNION Autonomous Navigation IAAC Worksho ision Ai igati
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Factor graph

x1 @ i) ©® X3

Linearization and elimination

Elimination order =z, %2, x3
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Bayes net
P(xifx2)  P(x2|x3) P(x3)

Autonomous Navigation
and Perception Lab

Jacobian matrix

Linearization X

Factorization

Factorized Jacobian matrix

 CE— R=

IAAC Workshop on Vision Aided Navigation, January 2019

A* = arg mAin (AA — )
A=QR d=QTh
A* = arg mAin (RA —d)

R A d

U
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Thus Far: Smoothing and Mapping (SAM)

* Efficient, sparisity-aware nonlinear optimization

* Inference in graphical models
 Joint pdf can be represented by a factor graph

* Factorization (calculating the R matrix) is equivalent to variable elimination,
represented by a Bayes net
 Still, batch algorithm:

— Each time, solves the entire NLS problem
— Online performance?

Autonomous Navigation
and Perception Lab
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Incremental Smoothing & Mapping (iSAM)

Each time new data is obtained (e.g. measurement):

* Previous approach (SAM): performs factorization from scratch

* |s this really required?

* Typically, only a very small subset of entries is updated
* Key idea — identify and update only these entries, i.e. update factorization (e.g. QR update)

Jacobian matrix

Factor graph Factorized Jacobian matrix
X X
Linearization X X Factorization % %
Previous time T f—e— T2 }—e—{ T3 E—— A= X% —> R X x
X X %
. X1 X2 X3
X1 X2 X3

New variable and factors
Factor graph Jacobian matrix Factorized Jacobian

/ _ ) matrix
X

X
X X % %
. Linearization X X Factorization -—- -
Current time x 5 XX e
1 ® Z2 4 z3 o T4 — _
A X X ‘ R I v Modified
X X I < | ornew
X X X T=-=
% x new X1 X9 X3 X4

33
X1 X2 X3 X4



Incremental Smoothing & Mapping (iSAM)

* Adding new variable (camera pose or navigation state) and factors

New variable and factors
Factor graph Jacobian matrix Factorized Jacobian

/ - . matrix
X

X
. . . X X
Linearization X X Factorization PR S
T T T T — XXX r
1 ® 2 ° 3 }—e 4 A= X X mmm)  =| 1 | Modified
X X
SR L % or new
« || new X1 X X3 X4

X1 X2 X3 X4

Updated Bayes net
Previous Bayes net

. . Only red parts
C ‘2/ 4 = @ @ @ @ are re-calculated

—

P(X1|X2) P(X2|X3) P(XB) P(X1|X2) P(XQ‘X3,X4) P(X3’X4) P(X4)

A* rgmAin(AA—b)
 What should be re-calculated? A=QR ~ 4=Q"b
A* = ar mm RA —d
* Nodes in all paths that lead from the last-eliminated node to s )
R A d

nodes involved in new factors
V o 4 —_
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Incremental Smoothing & Mapping (iSAM)

) time

XKDk Mhddonx2 XKD X2 4 w3 X
x5 x1 . k! x5 xl 5 xl
L B ) xfoxdox8x0 X BTk .. 0 BonTo B XD

Trajectory: \

rajectory: ; N - :
X20. 00 x1R... 340, xld x12 220kl BtR - Rk Ll 12 X209kl R . %10 xid x12 X200 x0 k1R, $0uxllx 12
xal X7 x13 = X7 x13 2l w 13 21 17 x13
2 o X223 R6xiS x14 Bx23 2. Rl6xiS X 14 2203230004 X6xlS X 14

o

Fheee

Only red parts
are re-calculated

Bayes tree:
(calculated from Bayes net)

Image from Kaess12ijrr: “iSAM2: Incfémental Smoothing and Mapping Using the Bayes Tree”



Example: Incremental Light Bundle Adjustment

Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019 36
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Outline

Introduction

Camera projective geometry

Bundle Adjustment

Incremental Smoothing and Mapping (iSAM) algorithms

 Visual-inertial SLAM and IMU pre-integration concept
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Vision-Aided Navigation (VAN)

e Common approach:
* Integrate IMU measurements outside the filter (in real time)
* Use external sensors to correct solution
* Does not support re-linearization (of past IMU measurements)

INS / Strapdown

4,®_. // :@—\—»xk

A

estimated correction/error

Filter

Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019
and Perception Lab
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Vision-Aided Navigation (VAN)

e Common approach:
* Integrate IMU measurements outside the filter (in real time)
* Use external sensors to correct solution
* Does not support re-linearization (of past IMU measurements)

* An alternative — visual-inertial bundle adjustment
— Concept: one big optimization
— Better accuracy, improved estimation consistency
— Real time performance?

* |ncremental factorization

* I[MU Pre-Integration

Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019
and Perception Lab
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Information Fusion via Incremental
Smoothing (iISAM algorithms)

Indelman et al. RAS 2013

Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019
and Perception Lab
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Information Fusion via iSAM?2.0

* The same concept applies also to multiple sensors, possibly operating at different rates

* The joint pdf and the factor graph should be accordingly

* Information fusion from different sensors:
* Sensors introduce appropriate factors to the graph
e Calculate MAP estimate via incremental smoothing (iISAM)

* Conceptually, factor graph representing IMU and GPS measurements:

Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019
and Perception Lab
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IMU Only — Inertial Navigation

 Joint pdf
* Formulated in terms of discrete inertial navigation equations (numerical integration)

* Considers a basic model for IMU calibration parameters (for simplicity)

K
p (Xp, Bl Zy) o< [ [ o (whsa|zn, i, ™Y ) p (brga [br)

1 - fIMU - fbias
fIMU fIMU fIMU
T T2 I3 { T4 )
Factor graph , ,

N L G G

1 2 3
o~
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IMU Only — Inertial Navigation

 Joint pdf
* Formulated in terms of discrete inertial navigation equations (numerical integration)

* Considers a basic model for IMU calibration parameters (for simplicity)

k

p (Xp, Bl Zy) o< [ [ o (whsa|zn, i, ™Y ) p (brga [br)
( - fIMU - fbias

— Assume MAP estimate at time ¢, has been calculated

— What involves recovering MAP estimate at time ¢, ?

IMU IMU IMU IMU
f f f f

Ta { Ty )
Factor graph .
szas szas f ias
o—{ by —e by
_~w
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IMU Only — Inertial Navigation

* Corresponding factor graph and Bayes net:
Only 2 last variables should

be re-eliminated

plxy|by,xa) plrslbs,xa)  plzalby,zs) plry)  plxibi,ze) plralbe,xa) plzslbs.zs) plegby,xs) plxs)

plbilza,ba)  plbz|za,ba)  plbslzy)

.. but, what happens in presence of additional sensors?

Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019 44
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Visual-Inertial Bundle Adjustment (SLAM, VAN)

* IMU + single camera:

A* = arg mAin (AA — D)
A=QR d=QTh

k
A* = in (RA —d
P (X, Bi, Ll Z4) o [ [ o (s b, 287) p (b i) T 2 (2l 1) kS |
i - pIMU = phias JEM, - fproj R A d

Factor graph

_~
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Incorporating High Rate Sensors

* Challenges

* Many variables to re-eliminate each time new measurements from other sensors
(e.g. camera) come in

* Recover MAP estimate at IMU rate?
 How to avoid adding state variables to the optimization at IMU rate?

Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019 46
and Perception Lab
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IMU Pre-Integration

 How to avoid adding state variables to the optimization at IMU rate?
* Pre-integrate IMU observations in body frame of last keyframe [Lupton et al. 2012]
* Navigation states can be added at camera rate

_~
TECHNION A ) Autonomous Navigation IAAC Worksho isi i ioati
) - p on Vision Aided Navigation, January 2019
u Israel Institute % N L and Perception Lab

of Technology

47



IMU Pre-Integration

In navigation (global) frame:

t2
U?Q = v?l + /tl (Cbt(ft — bzas"bs) + g")dt Similar concept for position & orientation

* |nstead - in body frame of the last pose within optimization:

£2 £2
vl = v —i—/ g"dt + C’Z’}“/ ( bl (ft bzas"bs)) dt
¢ ¢

1 1

tl t2
Last keyframe New keyframe
_~
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Vi srelnsiure @ A N ) L g IAAC Workshop on Vision Aided Navigation, January 2019 48

and Pel-rce i EJ
of Technology es from Luptonl2tro: “Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions ”



IMU Pre-Integration

 How to avoid adding state variables to the optimization at IMU rate?
* Pre-integrate IMU observations in body frame of last keyframe [Lupton et al. 2012]
* Navigation states can be added at camera rate

 Real time performance — predict solution using pre-integrated IMU information and current
MAP estimate

— Without adding new variables to optimization

e Expressing in relative frame (i.e. body frame) allows to avoid re-playing all observations
when re-linearizing!

M Available as open source!
: () () (part of gtsam)
Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019 49
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Information Fusion via iSAM?2.0

* Any other sensors can be similarly incorporated
For example:

* IMU
* GPS

e Camera + explicit estimation of 3D points

_~
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Information Fusion via iSAM?2.0

* Aerial scenario (simulation, Monte-Carlo study)

* IMU, Monocular camera, Magnetometer
e Short-track features only

* Initial navigation errors

North [m]

o

East [m]

Height [m]

20

15

10

15

10

40

30

20

o

X, By, L, = argmin J (X, By, L)
XkaBkaLk:

Position — RMS difference w.r.t. Batch

T T
a
L 4 .
|, 1 =TT Tt e e e et e e, e, . e -
B 4 I~
’ . A sSE NSt E=ESSESS=SS=S=SSSE===S==n=-=
P
_;_':-’.;‘:"‘h ———————————— J
0 50 100 150
~d
gt
L I— \\,,_..L_“-_-‘__ —————— »~°“~______.;
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Information Fusion via iSAM?2.0

e KITTI Vision Benchmark
* IMU
e Stereo Camera (no loop closures)

(Simplified) Factor Graph
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Information Fusion via iSAM?2.0

* KITTI Vision Benchmark X2 BELL: = argmax p (X, Be. Lu|Z0)
* IMU KB L
e Stereo Camera (no loop closures)
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Summary

SLAM and VAN Overview:
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Front-end & Back-end

Projection operator, re-projection error
Bundle adjustment

Smoothing and Mapping (SAM)
Incremental SAM (iSAM)

Information fusion with iSAM

IMU Pre-Integration

Autonomous Navigation IAAC Workshop on Vision Aided Navigation, January 2019
and Perception Lab
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