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Abstract— Autonomous navigation missions require online
decision making abilities, in order to choose from a given set of
candidate actions an action that will lead to the best outcome.
In a partially observable setting, decision making under un-
certainty, also known as belief space planning (BSP), involves
reasoning about belief evolution considering realizations of
future observations. Yet, when candidate actions lead the robot
to an unknown environment the decision making mission
becomes a very challenging problem since without a map it
is hard to foresee future observations. In this paper we develop
a data-driven approach for predicting a distribution over an
unexplored map, generating future observations, and combining
these observations within BSP. We examine our approach and
compare it to existing BSP methods in a Gazebo simulation,
and demonstrate it often yields improved performance.

I. INTRODUCTION

Autonomous navigation in an unknown environment is a
challenging problem in robotics. In this situation the agent
starts from a point where it has no information about the
environment, and its mission is to reach a given goal. One of
the main approaches to address this challenge is simultaneous
localization and mapping (SLAM). Using SLAM, an agent
deals with two missions at the same time, first it perceives
the surrounding environment using its onboard sensors
(e.g. cameras and laser scans) and creates a representation of
the map. Second, the agent estimates its pose relative to this
map [1].

Another task in autonomous navigation is decision making.
The agent generates candidate actions (e.g. by PRM, RRT [2],
[3]) and it needs to choose which action will lead to the best
outcome. One method to address this problem is belief space
planning (BSP) [4], [5]. Using this method, the agent performs
belief propagation and evaluates the objective function for
each candidate action given a history of measurements and
actions that the agent has performed up to current time, and
determines the best action as the one that leads to the highest
value of the objective function.

However, despite the recent progress, state of the art BSP
approaches that address autonomous operation in unknown
environments have some limitations. First, these approaches
consider areas not yet mapped to be obstacle-free, causing
some of the generated candidate actions to be infeasible
in practice. Second, existing approaches perform belief
propagation within unexplored areas by only considering
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uncertainty due to motion model and without explicitly
modeling the expected sensor observations in those areas.

In contrast, when thinking about a human navigating in an
unknown environment, he/she most likely does not rely solely
on sensory inputs, but also on past knowledge and experience.
In particular, using past experience in similar areas and based
on only partial sensory information obtained thus far, one is
able to envision the expected map in unexplored nearby areas.
For example, when seeing 3 walls connected to each other, as
in a room entry, we can envision and complete the shape of the
room based our knowledge that rooms are usually rectangular.
Similarly, we are able to leverage experience to predict high-
level semantics (e.g. doors, elevator) in unexplored nearby
environments.

One method by which a robot can learn from experience
is deep learning (DL). Specifically relevant to this map
prediction task is the inpainting problem - the task of
completing partial images [6]. The DL architectures popular
to solve the inpainting problem are generative adversarial
network (GAN) [7] and variational autoencoders (VAE) [8].

In this work we develop an approach to incorporate relevant
prior experience to predict a distribution over unexplored
environments within belief space planning framework. Our
data-driven approach approximately predicts a distribution
over unexplored areas along with each candidate action using
a conditional generative model. This distribution enables
to perform belief propagation while accounting for future
sensor observations, and we show empirically our approach
predicts posterior uncertainty over robot trajectory that is
typically close to the actual uncertainty that will be obtained
upon mapping the corresponding environment. This, in turn,
enables to choose most informative actions by evaluating
information-theoretic rewards.

Experience-based navigation or planning is usually linked
to reinforcement learning (RL). RL and BSP both share
the same goal of finding the optimal action, but there are
differences in approaches. In RL the policy is mostly learned
offline based on experience from similar missions; numerous
model-free and model-based approaches have been developed
in recent years due to rise of DL. However, the vast majority
of these approaches consider a Markov decision process
(MDP) problem, i.e. the state is fully observable. Contrarily,
BSP is calculated online based on the history of information
in the current mission and it is an instantiation of a partially
observable MDP (POMDP) problem.

Recently several works addressed (deep) RL under POMDP
setting, considering different levels of end-to-end planning
under uncertainty in order to deal with the active localization



problem [9]–[11], assuming environment is known. More
closely related to us are learning approaches that consider
autonomous navigation in unknown environments [12], [13].
These approaches focused on the goal to find the shortest
feasible action in unknown environments without considering
the uncertainty that propagated due to future observations.

However, end-to-end approaches have limitations in terms
of interpretability. Therefore, another approach is a hybrid
between classic planning methods and experience based
methods. In other words, most of the planning process is
based on models and incorporates experience just for specific
hard problems when there is no sufficient model. For example,
Richter et al. [14] added a neural network (NN) to visual
navigation for predicting future collisions in an unknown
environment, and Katyal et al. [15] used a NN for map
prediction that assisted an efficient exploration of unknown
environments. Our approach belongs to this category as well,
as we utilize classic model based BSP while reasoning about
previously mapped environments and incorporate experience-
based map prediction only for the unexplored environments.

Contributions: Our contribution is the improvement of ex-
isting BSP approaches by the incorporation of relevant aspects
from experience. In particular, we (i) develop an algorithm to
calculate a predicted distribution over an unexplored area; (ii)
we leverage this distribution to predict future observations
and incorporate these within BSP; (iii) we suggest an online
novelty detection method to avoid using irrelevant experience;
(iv) we study our approach in a realistic simulation in Gazebo.

II. NOTATIONS AND PROBLEM FORMULATION

A. SLAM

The SLAM problem involves inferring states of the robot
(e.g. pose and velocity) and of the map (e.g. occupancy
grid, landmarks). Let x1:k

.
= {xi}ki=1 denote the robot’s

states until current time. We denote by Mk the map observed
by time k, any by mi ⊆ Mi the sub-map that is within
the field of view of the sensor located at state (pose) xi.
Let y1:k

.
= {y1, .., yk} and a0:k−1

.
= {a0, ..., ak−1} denote,

respectively, the obtained measurements and the actions up
to time k. In the current case we will be basing on motion
and observation models with additive Gaussian noise. The
motion model for a given action ai−1 and robot state xi−1 is

xi = f(xi−1, ai−1) + wi, wi ∼ N (0,Σw). (1)

The formulation of an observation model is dependent on
the kind of sensor and measurement algorithm we are using.
Some sensors measure directly the robot state, e.g. GPS,
while others like cameras or laser sensors measure the robot
state in relation to the environment. For the latter case, the
generative/measurement model for the raw measurements
(e.g images, point clouds) thus depends both on the robot
state and the environment, i.e.

yi = g(xi,mi) + ui, ui ∼ N (0,Σu). (2)

Using two raw measurements, yi and yj , we can create a
relative pose measurement yrelij between two robot poses xi

and xj . When the raw measurements are pointclouds, the al-
gorithm could be e.g. ICP, and with raw images measurement
it could be Visual Odometry (VO). The observation model
of a relative-pose measurement is (see e.g. [16], [17])

yrelij (yi, yj) = h(xi, xj)+vij , vij ∼ N (0,Σv(yi, yj)). (3)

Note that the measurements yrelij depend on the raw mea-
surements yi and yj , and therefore also on the map (see
Eq. (2)). Importantly, while the covariance Σv is assumed
constant in most previous works, in practice, similarly to the
measurements yrelij , it is a function of the raw measurements
and thus the map [16], [17].

In the current work we consider a pose-SLAM framework,
hence the conditional probability density function (pdf) over
the the belief at time instant k is bk

.
= P(x1:k|Hk), where

Hk
.
= {y1:k, a0:k−1} denotes history. Using Bayes rule and

standard assumptions it can be rewritten as

bk = ηP(x0)

k∏
i=1

[P(xi|xi−1, ai−1)
∏
j

P(yrelij |xi, xj)], (4)

where η includes all terms that do not involve the states,
P(x0) is the prior on x0, P(xi|xi−1, ai−1) and P(yrelij |xi, xj)
denote, respectively, the motion model (1) and measurement
likelihood (3) terms. The belief is represented by a Gaussian
distribution bk = N (x̂1:k,Σk), parametrized by mean x̂1:k,
and covariance Σk. Computationally efficient inference ap-
proaches, such as ISAM2 [18], can be used to calculate these
parameters.

The posterior over the map Mk, an occupancy map in our
case, can be calculated via marginalization over robot states,
as in P(Mk|Hk) =

∫
P(Mk|x1:k, Hk)P(x1:k|Hk)dx1:k.

However, in practice, these calculations are computationally
expensive, and therefore a common alternative in pose-SLAM
is to approximate it using only the mean of the belief:

P(Mk|Hk) ≈ P(Mk|x̂1:k, y1:k). (5)

B. Belief Space Planning (BSP)

In the planning stage the robot gets a set of (non-myopic)
actions A .

= {aik:k+L}ni=1 and has to choose the best action
according to an objective function given by.

J(bk, ak:k+L−1) =

L∑
l=1

E
yk+1:k+l

{c(bk+l, ak+l−1)}, (6)

where the cost c(.) is a function of the posterior future belief

bk+l
.
= P(x1:k+l | Hk, ak:k+l−1, yk+1:k+l), (7)

which by itself depends on future observations. The expecta-
tion operator accounts for all possible realizations of these
future observations. Generally, each action could have a
different planning horizon.

The optimal (non-myopic) action is defined as

a∗k:k+L−1 = arg min
ak:k+L−1

J(bk, ak:k+L−1). (8)



To calculate optimal action, one has to evaluate Eq. (6) for
each candidate action. To do so, we should be able to reliably
predict future observations, and appropriately approximate
the expectation in (6), typically via sampling.

C. Problem Statement

In this work we will develop a method to predict the
distribution of the future measurements. In order to predict this
distribution, based on Eq. (2), the future map and robot states
are required. If the action leads the robot to an environment
that it mapped before (e.g. for myopic case, mk+1 ⊆M1:k)
then we could generate future measurements based only on
history. In our case, we focus on a situation where the goal is
outside the map which the robot has seen and therefore there
is no access to future measurements. Hence, given that action
ak yields xk+1 outside of the current map Mk, without any
additional or prior knowledge, the distribution of mk+1 is
uninformative, i.e. uniform.

Current BSP methods lack the information necessary to
predict future measurements in unknown environments. To ad-
dress this problem we suggest incorporating experience within
BSP, aiming to improve prediction of future observations as
part of the expectation calculations in Eq. (6).

III. APPROACH

A. Incorporating Experience within BSP

For simplicity, in this section we present formulation for a
myopic setting, and extend later the discussion to the more
general, non-myopic case. Denoting the available experience
by D and H−k+1

.
= {Hk, ak}, we re-write Eq. (6) as

J(bk, ak) =

∫
P(yk+1|H−k+1, D)c(bk+1, ak)dyk+1. (9)

Further, we empirically approximate the expectation via
sampling. Considering N samples, we get

J(bk, ak) ≈ 1

N

∑
yk+1∼P(yk+1|Hk,ak,D)

c(bk+1, ak). (10)

To sample future observations yk+1, we first marginalize over
the robot state xk+1, and recalling the generative model (2),
also over the corresponding sub-map/scene mk+1. Applying
chain rule and recalling Markov assumption yields

P(yk+1|H−k+1, D) =

∫
xk+1,mk+1

P(yk+l | xk+1,mk+1) ·

P(xk+1 | mk+1, H
−
k+1, D)P(mk+1 | H−k+1, D)dmk+1dxk+1.

Recalling pose-SLAM framework we omit in the second
term above the dependency of the belief on the robot state on
the map, and furthermore, we omit the conditioning on the
experience since the probabilistic models are considered given,
i.e. P(xk+1 | mk+1, H

−
k+1, D) = P(xk+1 | H−k+1), which

can be calculated by propagating the belief from the pre-
vious time instant and marginalization: P(xk+1 | Hk, ak) =

∫
x1:k

P(x1:k | Hk)P(xk+1 | xk, ak)dx1:k. We note as the con-
sidered pdfs are Gaussian, this marginalziation can be per-
formed analytically and computationally efficiently, yielding
P(xk+1 | Hk, ak) = N(x̂−k+1,Σ

−
k+1).

In practice, we approximate the expectation over xk+1

with a single sample from P(xk+1 | H−k+1), the maximum
likelihood estimate x̂−k+1 (see line 15 in Algorithm 1). Thus,
we approximate P(yk+1|H−k+1, D) as∫

mk+1

P(yk+1|x̂−k+1,mk+1)P(mk+1|H−k+1, D)dmk+1. (11)

As seen, we get an intuitive result: to generate future
observations we need a distribution over sub-maps/scenes.
This is where we propose to leverage experience.

B. Experience-Based Prediction of Future Observations

In this section we consider the problem of approx-
imately representing the distribution over future maps,
i.e. P(mk+1|H−k+1, D), utilizing available experience. While
there are different approaches to address this problem, herein,
we present our proposed method which uses generative
models within a deep learning framework.

We start by marginalizing over the current map Mk,

P(mk+1|H−k+1, D)=

∫
Mk

P(mk+1|Mk, ak, D)P(Mk|Hk)dMk,

where the posterior over the map, P(Mk|Hk), is already
available (see Eq. (5)).

Further, we approximate the above equation with a single
sample from P(Mk|Hk), the maximum likelihood estimate
M̂k (see line 9 in Algorithm 1). With this approximation
the future map distribution becomes P(mk+1|Hk, ak, D) ≈
P(mk+1|M̂k, ak, D). As mentioned above, in SLAM setting,
the constructed map Mk grows over time. Yet, memory-free
DL architectures expect input from a pre-defined dimension-
ality. For this reason, in this work we introduce another
approximation, and use only the current sub-map m̂k ⊆ M̂k,
i.e.

P(mk+1 | M̂k, ak, D) ≈ P(mk+1 | m̂k, ak, D). (12)

As seen from (12), our task now is to utilize experience D to
approximate the predictive distribution over future sub-map
mk+1, given current (estimated) sub-map m̂k and action ak.
Recalling that we focus on a setting where the action takes
us to an unobserved area, our hypothesis is that experience-
based map predictions can particularly be beneficial. Thus, we
aim to learn offline the conditional distribution P(mk+1|C,D)
given training data D and conditional C, and query it online
with the actual conditioned data {m̂k, ak}.

C. Offline Training Phase

Given offline available environment maps MD
.
= {M i}

and action space A .
= {a}, and recalling Eq. (12), we define

experience as

D
.
= {(m, a,m′)|m,m′ ∈M i,∀M i ∈MD, a ∈ A}, (13)



where, each tuple (m, a,m′) corresponds to a submap m
observed from some robot pose, an executed action a which
transitions the robot to a different pose, from which submap
m′ is observed. The experience D is thus constructed by
randomizing these for different environment maps in MD.
Finally, we are interested in learning a function that maps
from the conditioning C .

= (m, a) to a distribution over m′,
i.e. P(m′|C,D), considering different realizations of C from
the dataset D. To reduce clutter, in the following we shall
omit the explicit conditioning on D.

In our work we use a CVAE to approximate the distribution
P(m′|C). We now briefly present this formulation for self-
containment (see, e.g., [19]). First, we marginalize over a
latent variable z and re-write P(m′|C) as

P(m′|C) =

∫
z

P(m′|z, C)P(z|C)dz. (14)

Then, as standard in CVAE, we set P(m′|z, C; θ) =
N (f(z, C; θ), σ2 ∗ I), and refer to it as the decoder, where
f(.; θ) is a deterministic function parametrized by θ and σ
is a typically small fixed hyperparameter. The integral (14)
can be approximately calculated by sampling z from P(z|C),
which is typically a very simple distribution (e.g. a Gaussian).
Yet, in practice, for many such samples of z, P(m′|z, C; θ)
will be practically zero. Hence, the key idea in VAE is to
sample z from another distribution, Q(z|m′, C;φ), such that
these samples are more likely to generate m′. This latter
distribution, denoted as the encoder, is modeled in practice
as a Gaussian N (µ(m′, C;φ),Σ(m′, C;φ)) where µ(.) and
Σ(.) are deterministic functions parameterized by φ. Based
on the definition of Kullback-Leiber divergence (KL) between
Qz

.
= Q(z | m′, C;φ) and P(z | m′, C) (see more details in

[8]), we get the main equation of VAE:

logP(m′ | C)− KL[Q(z | m′, C;φ) || P(z | m′, C)] =

E
z∼Qz

{logP(m′ | z, C; θ)} − KL[Q(z | m′, C;φ) || P(z | C)]

In order to minimize KL[Q(z | m′, C) || P(z | m′, C)],
since it is non-negative by definition and logP(m′ | C)
is independent of θ and φ parameters, we can maximize
just the right hand side, which is known as the Evidence
Lower Bound (ELBO). A common assumption in VAE is
that the approximation of the expectation over z ∼ Q(z |
m′, C;φ) is done only by a single sample. Also, to make
the above equation tractable via backpropagation, the re-
parameterization trick is used [8]. Next, we will isolate the
ELBO and substitute the explicit Gaussian models in place
of P(m′|z, C; θ) and Q(z|m′, C;φ). Maximizing the ELBO
is equivalent to minimizing the loss function for a given
sampled tuple (m′, C) ∼ D, defined as

l(θ, φ;m′, C)
.
= ‖m′ − f(z, C; θ)‖2

+ KL[N (µ(m′, C;φ),Σ(m′, C;φ)) || N (0, I)].
(15)

The first term is a measure of the ”reconstruction error”, the
error between the decoder output and the ground truth. The
second term is KL divergence, an operator that evaluates
the distance between the encoder output and the target

distribution. In our case the target distribution P(z | C) is a
normal distribution N (0, I) to allow easy sampling in the
online stage. The loss (15), considering the entire dataset D,
can be written as Loss(θ, φ;D) =

∑
m′,C∼D l(θ, φ;m′, C).

Finally, the encoder and decoder weights θ and φ, are
optimized as φ∗, θ∗ = arg minφ,θ Loss(θ, φ;D). In practice,
this optimization is done via standard stochastic gradient
methods, i.e over mini-batches which are subsets of D.

D. Online Deployment
Having described the offline learning of the conditional

distribution P(mk+1 | C,D), we now focus on the deploy-
ment stage, considering a planning session at time instant
k. Recalling Eq. (12), and the sub-map estimate m̂k, we
resort to a sampling-based approximate representation of
the distribution P(mk+1|m̂k, ak, D) for different candidate
actions ak. Observe that this distribution is conditioned on
data m̂k, ak that generally is different from the conditioning
C considered in the offline training phase. We shall come
back to this key point later on.

The conditional distribution can be
expressed as P(mk+1 | m̂k, ak, D) =∫
z
P(mk+1 | z, m̂k, ak, D)P(z | m̂k, ak, D)dz, which can

be approximated via sampling as P(mk+1 | m̂k, ak, D) ≈
1
nz

∑
z∼Pz

P(mk+1 | z, m̂k, ak, D), where nz is the number
of samples, and Pz

.
= P(z | m̂k, ak, D).

Given a trained decoder P(m′|z, C; θ) =
N (f(z, C; θ), σ2 ∗ I), see Section III-C, the distribution
P(mk+1|m̂k, ak, D) can be approximately represented by a
Gaussian mixture model

1

nz

∑
z∼N (0,I)

N (f(z, m̂k, ak; θ∗), σ2 ∗ I), (16)

where, as standard in VAE, we consider P(z | m̂k, ak, D) =
P(z) = N (0, I). As the decoder is learned, i.e. function
f(; θ∗) is deterministic at this point, sampling z corresponds
to choosing one of the components in the GMM representation
(16), from which we can easily sample a realization of the
future sub-map i.e. mk+1 ∼ N (f(z, m̂k, ak; θ∗), σ2 ∗ I).

The obtained predicted maps mk+1 are then used for
generating future raw observations yk+1, see Eq. (11). These
raw measurements, along with an appropriate measurement
likelihood model are used to update the future posterior belief
bk+1, followed by calculation of the cost function. In the
non-myopic case, we repeat for L look-ahead steps the above
mentioned process, when the map prediction from previous
time, mk+j−1 is used as conditioning for the next prediction
mk+j . Recalling the empirical expectation from Eq. (10), this
entire process is repeated N times for each candidate action
sequence, each time with a different sampled sequence of
future raw observations. The entire process is summarized in
Algorithm 1.

E. Novelty Detection
Clearly, the environments considered in the offline training

should be representative and similar to the environment



Algorithm 1 BSP with Experience-Based Prediction
1: Inputs:
2: bk: state belief at current time
3: P(Mk|Hk): map belief at current time
4: ak:k+L−1: a candidate L look-ahead steps action sequence
5: f(.; θ∗): trained decoder
6: Outputs:
7: J(bk, ak:k+L−1): computed objective function for a given action sequence
8:
9: M̂k ⇐ P(Mk|Hk) . Get maximum likelihood estimate of map belief

10: m̂k ⊆ M̂k . Get current sub-map estimate from M̂k (Eq. (12))
11: for i = 1 : N do
12: mi

k = m̂k

13: for j = 1 : L do
14: . Get ML estimate without future observations
15: x̂−k+j ⇐ P(xk+j |Hk, ak:k+j−1)

16: zi ∼ N (0, I)
17: . Predict sub-map (Eq. (16))
18: mi

k+j ∼ N (f(zi,mi
k+j−1, ak+j−1; θ

∗), σ2 ∗ I)
19: . Generate future observation (Eq. (11))
20: yik+j ∼ P(yk+j | mi

k+j , x̂
−
k+j)

21: Calculate bik+j . Calculate future belief using yik+j (Eq. (7))
22: Calculate cost/reward c(bik+j)
23: . Accumulate costs
24: J(bk, ak:k+L−1) = J(bk, ak:k+L−1) + c(bik+j)
25: end for
26: end for
27: . Normalize to get empirical expectation
28: J(bk, ak:k+L−1) = 1

N J(bk, ak:k+L−1)
29: return J(bk, ak:k+L−1)

where the robot is actually deployed. More specifically, these
environments can be implicitly characterized by a distribution
P(M), that could correspond to, e.g., typical apartments,
office environments, underground mines, etc. In practice,
however, we do not have access to such a distribution;
instead, the environment mapsMD

.
= {M i} used for training

should (at least) approximately represent P(M). The actual
environment map Monline is assumed to be of a similar
nature, i.e. Monline ∼ P(M). Note that this assumption
does not imply Monline ∈ MD. For example, this would
correspond to the setting where the robot is deployed in a
previously unseen office environment, while training data
captures typical office environments.

Moreover, in the considered SLAM setting, M .
= Monline

is not available to the robot; rather, at time k, the robot
observed with its (noisy) sensors only part of the environment,
Mk ⊆ M , and maintains a belief over it, i.e. P(Mk | Hk).
Therefore, when using algorithms based on experience we
need to determine how much the experience is relevant and
reliable for the current task. While this is a very active
research area on its own (see e.g. [20]–[22]) and is outside
the scope of this paper, in this work we consider the simpler
problem of novelty detection, aiming to decide whether to
use the experience-based map prediction or not.

One option for novelty detection is the autoencoder-based
approach that was first proposed by Japkowicz et al. [23]
and used recently in the navigation domain by Richter et
al. [14]. With this approach we would need to train a separate
autoencoder using the same training set D, and calculate the
reconstruction error RE(m) = ‖m−Dec(Enc(m))‖2 for
m ∈M ∈MD. At the deployment stage we would calculate
RE(mk) based on the actual sub-map mk we have at the
current time k and compare it to the typical RE obtained

with training set. In case RE(mk) is significantly higher
(e.g. compared to a manually determined threshold), we would
decide the available experience is less relevant for the current
planning session and use a standard BSP method instead
(i.e. without predicting unexplored maps). See more details,
e.g. in [14].

Noting the above approach requires training separate NNs
for map prediction and novelty detection, we suggest a
simple method that does these missions concurrently. In our
method we assume there is an overlap area (OA) between the
conditional input mk and the map prediction f(z,mk, ak; θ∗),
which the NN should learn to copy shifted according to the
action. We therefore suggest to measure the error in the
copy operation of this overlapping area, i.e. for sub-map mk

calculate RE(mk) = ‖{mk}OA − {f(z,mk, ak; θ∗)}OA‖2,
where {m}OA denotes the corresponding overlapping area
in sub-map m. Finally, we can use a threshold over this re-
defined RE, similarly to the above-mentioned autoencoder-
based novelty detection approach.

IV. RESULTS

We evaluate the performance of our approach in two steps.
First, we examine the map prediction algorithm using a
dataset of real floor-plans. Then, we study the performance
of our experience-enhanced BSP in a realistic simulation of
autonomous navigation in an unknown environment.

A. Map Distribution Prediction With CVAE

In this section we show the implementation for map
distribution prediction as described in Section III-C, while
discussing success and failure cases.

The dataset that was used is KTH dataset [24] which
includes 182 floor-plans and nearly 38,000 real-world rooms.
The XML files of floor-plans were converted to 2D occupancy
grid maps with fixed scale (four pixels for one meter). Next,
each map was cut into sub-maps with fixed size (32/32 pixels).
Finally, we created N tuples of sub-maps, action (direction
and length of stride) and the ground truth map post action i.e
(m, a,m′). The actions between the sub-maps were defined
by one-hot vector that represents the four possible stride
directions (up, down, left, right).

We examined the prediction performance on testset maps
that were not part of the training process. Fig. 1 demonstrates
three examples of prediction results (For statistical results
see [25]). For each prediction we calculate the reconstruction
error (RE) on the overlap area by novelty detection method
that was presented in Section III-E, and additionally the
prediction error (PE) on the unknown area against the ground
truth. Examples in (I) show successful prediction results even
in the worst case, while in example (II) most predictions
had mistakes, since they mostly did not predict the wall that
closed the room. It is possible that since the trivial solution is
that the same wall continues further as in Fig. 1c.I, and does
not close into a room as in Fig. 1c.II, the NN predictions will
mostly present the solution that appeared a greater amount of
times in the training dataset. Yet, our results are probabilistic



Fig. 1: Examples of the prediction algorithm. (a) Inputs – sub-map and action; (b)
Outputs – two samples of prediction with reconstruction error (RE) and prediction
error (PE). On the left worst prediction result and on the right best prediction result;
(c) Ground truth. See statistical results in [25].

and therefore the non-trivial cases (right sample in example
II) are still represented. Example (III) shows a conditioning
with an uncommon wall shape (circular or diagonal). In this
case most predictions have failed, since the training dataset
included only very few to not at all cases of such walls.

These examples represent three families of experience-
based prediction results: (I) most predictions are correct (low
PE); (II) most predictions are wrong because of uncommon
ground truth map (high PE and low RE); (III) most predictions
are wrong because of an unfamiliar input (high PE and high
RE). Using the novelty detection method from Section III-E
we can identify online cases with unfamiliar input, and hence,
avoid using DL-based predictions. In contrast, the second
family type is problematic for our method, as identifying it
online is impossible; thus, in such setting, wrong DL-based
predictions could disturb rather than improve the decision
making. Yet, statistically we assume that in most cases the
online map will be of a similar nature as the dataset maps (as
discussed in Section III-E), and therefore, most cases will be
from the first family above and, thus, improve the decision
making process.

B. BSP in Unknown Environments Simulation Results

In this section we examine our experience-enhanced BSP
approach and compare it to an existing BSP approach,
in a realistic Gazebo simulation, considering autonomous
navigation in an unknown environment. The simulation setting
is a Pioneer robot that navigates autonomously in a 3D
Gazebo world (see Fig. 2a) using odometry and Lidar sensors.
The odometry sensor provides relative measurements with a
constant motion model. The Lidar sensor provides laser scans
that are used to build a map and for relative measurements
via ICP with an environment-dependent model [16]. The
ICP measurement model function needs as input raw (Lidar)
measurements and provides covariance that represents the
uncertainty of the ICP measurement (calculated relative
pose based on two laser scans). In our setting the ICP
measurements are more accurate than the odometry and

(a) (b) (c)

Fig. 2: (a) 3D Gazebo simulation world; (b) Planning session with three candidate
actions; (c) Occupancy grid of the partial map that was used for prediction.

Fig. 3: Map prediction results for three actions from Figure 2b: action 1 - top row;
action 2 - middle row; action 3 - bottom row. Ground truth maps in relevant regions
are shown in left column. On the right we show five samples of map predictions for
each of the actions. Conditional map in light green, predicted map in dark green.

therefore preferable by default, but when ICP fails (un-
matching two scans) the odometry will be used instead.
Our pose-SLAM implementation uses GTSAM [26] and the
mapping process uses OctoMap [27].

In the planning stage the robot starts from a defined point
and gets a set of actions randomly by PRM method or
manually by the user. The robot’s mission is to choose the
best action by calculating the objective function for each
action. The main question in this work is how we can do this
calculation when the action places the robot in an unknown
area? The solution by a standard BSP method, denoted
baseline, is to ignore the unknown future measurements
(in our case point clouds) and take into consideration only the
motion model. The non-realistic solution, denoted GT-map,
is to use the ground truth maps to generate the expected
future measurements and take them into consideration in
the objective function calculation. Our approach suggests
to leverage experience to predict the unknown area around
the candidate actions given the partial map observed in the
inference stage. In our evaluation below, we compare our
approach to the baseline BSP method and investigate
which one is closer to the GT-map BSP method.

We implemented our approach based on Algorithm 1, and
used the DL-based prediction from section IV-A, i.e. using
the KTH dataset for training while being deployed in a
previously unseen Gazebo environment. In order to get a
binary map from the DL-based prediction function we used
a constant threshold of 0.3 that was determined offline. As
described, the prediction was done for an action sequence
of L steps, where each step contains one sample. In this
example this prediction was done five times (N = 5). For
each map prediction we generated a laser scan that was
used to generate relative pose measurements via ICP. Also
leveraging the approach from [16] we used two laser scans to
get the measurement likelihood model, i.e the measurement



(a) GT-map (b) Our approach (c) Baseline (d) Comparison

Fig. 4: Comparison between three methods of uncertainty evolution on three different
actions from Figure 2b: Action 1 - top row; action 2 - middle row; action 3 - bottom
row. Uncertainty evolution using (a) ground truth map (GT-map), (b) using one sample
of prediction map (our approach), and (c) using motion model only (baseline).
Column (d) presents a comparison between all three methods. In column (b), results
are shown for one sample from Figure 3 for each action: action 1 - first sample in
row 1, action 2 - fifth sample in row 2, action 3 - forth sample in row 3. Results
for all samples are summarized in Figure 5a. For convenient visualization covariance
resolution was multiplied by 100.

(a) (b)

Fig. 5: (a) Cost function results of all the samples from Fig. 3 compared to cost function
calculated with the GT-map method. (b) Objective function (17) values for the three
methods. In contrast to baseline BSP, our approach preserves action-ordering with
respect to GT-map.

uncertainty covariance. These relative measurements, along
with an appropriate measurement likelihood model are used
to perform belief propagation and calculate the cost function.

The cost function that we defined in our simulation is
a function of the uncertainty at the end of the trajectory,
i.e

√
Trace(Σk+L). For objective function calculation we

average the cost function of all samples, i.e

J(bk, ak:k+L−1)
.
=

1

N

N∑
i=1

√
Trace(Σik+L). (17)

Since the measurement uncertainty covariance is environment-
dependent, the decision making process in our setting depends
on the DL-predicted map.

We present an example of a planing mission when there
are three candidate actions (see Fig. 2b) and a partial map
presented by an occupancy grid with equal scale of the dataset
(Fig. 2c). All three candidate trajectories (non-myopic actions)
lead to the pre-defined goal. Note that the partial map used
is a ground truth sub-map and not from the belief. This was
done for reasons of simplification since in the current work
our focus was the planning stage.

In Fig. 3 we show for each action the ground truth map (top
row) against five samples of map predictions (map predictions
are shown by dark green color). The first row shows five

predictions for action 1; all samples predicted a long corridor
similar to the ground truth. On the other hand neither of the
samples predicted the opening on the right. The second and
third show prediction results for action 2 and 3, where we
can see more open space and kind of rooms similar to the
real environment around these actions.

In Fig. 4 we show uncertainty evolution for the three actions
and three BSP methods. For action 1 even though the map
prediction is not perfectly accurate, our approach predicts the
uncertainty shape better than the baseline method. In a
corridor environment we expect to get laser scans without
corners and correspondingly high uncertainty in the corridor
direction. Additionally, for action 2 the uncertainty evolution
by our approach was very similar to th GT-map method. In
contrast, action 3, for this particular map prediction sample,
predicts an open space at the end of the path, causing the
generated laser scans to be with insufficient points for ICP
matching; thus, in this part, our approach fallbacks to the
baseline method.

Fig. 5a summarizes the cost function results of all the
samples compared to the GT-map cost function calculation.
For action 1 the samples are spread, while in action 2 all five
samples were very close to the GT-map cost. In action 3,
three samples (see samples 1,2,3 in third row of Fig. 3) were
close and two other predicted higher uncertainty compared
to the GT-map cost (see samples 4,5 in third row of Fig. 3).
The density of the samples could be used as an indication of
the prediction confidence.

Fig. 5b shows the calculated objective function (17) for
the BSP methods, considering the three candidate actions
and N = 5 samples. The baseline approach, which only
considers a motion model, yields action ordering [1,2,3] i.e.,
action 1 is chosen. However, in our approach, action ordering
is [2,3,1] which is the same as the approach that has access
to the ground truth map, i.e., action 2 is chosen since our
algorithm predicted this action will give future measurements
that are more informative than action 1 and 3. Thus, in this
scenario our approach had no ordering mistakes, while the
baseline had two mistakes (without double counting).

Finally, fifteen scenarios of planning sessions are tested
and summarized in Table I. Each scenario includes a different
environment and three actions that lead to an unknown area,
where the first fourteen scenarios are from indoor environ-
ments and scenario 15 is very different from the dataset (for
more details see [25]). We calculated the reconstruction error
for all scenarios and showed that we recognized unfamiliar
environments and avoided using our approach in these cases.
We can see, that using the baseline BSP method in an
unknown environment is insufficient and could cause a lot of
decision mistakes compared to GT-map. On the other hand,
our approach showed a significant performance improvement,
in nine out of fifteen scenarios yielded fewer mistakes against
only one case when the baseline method was preferable.
Moreover we qualitatively compared the error that represents
the uncertainty cost of making mistakes in action ordering,
i.e., 100% · (JGT (b, a′)− JGT (b, a∗)/JGT (b, a∗). Here, a∗



Scenarios 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
Our approachOur approachOur approach

Mistakes 0 2 000 111 000 000 0 000 000 2 000 000 1 000 - 0.430.430.43
Error[%] 0 40 000 000 000 000 0 000 0 444 0 0 000 0 - 2.92.92.9

RE 0.3 1.1 1.4 0.6 0.8 0.1 1.1 2.2 2 1.6 3.8 1.4 1 0 10.4 -
BaselineBaselineBaseline
Mistakes 0 111 2 2 1 2 0 1 1 2 1 1 1 1 0 1.07
Error[%] 0 111 49 6 10 41 0 20 0 12 0 0 16 0 0 10.3

TABLE I: Performance of our and baseline approaches in 15 different scenarios.
Each scenario includes a different environment and three actions. Several examples
of planning settings are shown at the bottom. The table reports for each method
the number of action ordering mistakes with respect to BSP with ground truth map
(GT-map), and the uncertainty cost error. We also show the reconstruction error (RE)
calculated by our novelty detection approach. See further details in [25].

denotes the optimal action by GT-map and a′ the chosen
action by each approach. We can see that our approach yields
an improved uncertainty cost error.

V. CONCLUSIONS

We developed a novel approach for belief space planning
(BSP) in unknown environments. As a key contribution, we
developed an algorithm to calculate a predicted distribution
over an unexplored area using a deep learning method and
incorporated this distribution within BSP. The approach has
been examined in autonomous navigation scenarios in a
Gazebo simulation. Simulation results demonstrated that with
our approach the decision making in most cases was closer
to BSP using (the unavailable) ground truth map, against an
existing BSP approach. These findings indicate the potential
of our approach to improve decision making in unknown
environments.

In addition, we believe a benefit of our approach is in its
interpretability, since the use of experience in our method
is done only at the prediction level, as opposed to end-
to-end methods which involve experience all through the
decision making process. Moreover, as our work focused on
the uncertainty estimation of future observations, it depends
mostly on the type of unexplored area (e.g. corridor or room)
rather than the exact outline, and therefore is less sensitive
to prediction mistakes. One could also envision utilizing a
similar concept also for evaluating path feasibility; however,
to this end, further work is needed to improve map prediction
accuracy. Furthermore, we suggested a novelty detection
method to avoid using unfamiliar inputs in the prediction.
Future work may extend this solution to cases with familiar
inputs that still provide wrong predictions, in order to detect
which cases using experience could assist or disturb the
decision making process.
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