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Introduction – SLAM
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Introduction – Decision Making
§ Belief Space Planning (BSP)

§Planning  in Unknown Environments
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S. Prentice et al., IJRR 2009



Introduction – Inpainting
§ Image completion task
§ Addressed by DL based generative models: 
§ Variational Autoencoders (VAE) 
§ Generative Adversarial Network (GAN)

§ Extended map task 
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D. Pathak et al., CVPR 2016



Related Works 
§ Belief Space Planning in unknown environments
A. Kim et al.: “Active visual SLAM for robotic area coverage: Theory and experiment”, IJRR 2015.

V. Indelman et al.: “Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown 
environments”, IJRR 2015.

V. Indelman: “Cooperative multi-robot belief space planning for autonomous navigation in unknown environments”, ARJ 2017.
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V. Indelman, ARJ 2017V. Indelman et al., IJRR 2015



Related Works 
§ Reinforcement Learning (RL) in POMDP setting
P. Karkus et al.: “Qmdp-net: Deep learning for planning under partial observability”, NIPS 2017.

G. J. Stein et al.: “Learning over subgoals for efficient navigation of structured, unknown environments”, CORL 2018.
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G.J.Stein et al., CORL 2018



Related Works 
§Experience for Planning in unknown environment
C. Richter and N. Roy: “Safe visual navigation via deep learning and novelty detection”, RSS 2017.

K. Katyal et al.: “Uncertainty-aware occupancy map prediction using generative networks for robot navigation”, ICRA 2019.
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Problem Statement

§ Current BSP methods lack the information necessary to predict 
future measurements in unknown environments.

§ Contributions:
I. predict distribution over an unexplored area for future 

measurements generation
II. incorporate experience-based prediction within BSP. In particular, 

with information-theoretic costs. 
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Problem Formulation - SLAM
§ Motion model

§ Observation model of a raw measurement

§ Observation model of a relative-pose measurement
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Notations:
𝑥! - robot state at time 𝑖
𝑎! - action at time 𝑖
𝑚!- environment state(map/landmarks)
𝑦! - raw measurement at time 𝑖
𝑦!"#$% - relative pose measurement



Problem Formulation - SLAM
§ Robot’s state belief

§ Map belief
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Notations:
𝑥&:( - robot states until current time
𝑀( - the map observed up to time 𝑘
𝑦&:( - measurements up to time 𝑘
𝑎):(*& - actions up to time 𝑘



Problem Formulation - BSP
§ Future belief

§ Objective function

§ Optimal action
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Notations:
𝑥&:( - robot states until current time
𝑀( - the map observed up to time 𝑘
𝑦&:( - measurements up to time 𝑘
𝑎):(*& - actions up to time 𝑘
𝐻( = {𝑦&:( , 𝑎):(*&} - history



Problem Formulation
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Problem Formulation
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Inference (by SLAM) Planning (by BSP) in Unknown Environments 
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Approach
§ Incorporation of experience 𝐷 within BSP objective function

§ Future measurement generated given a map distribution
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Notations:
𝑥&:( - robot states until current time
𝑀( - the map observed up to time 𝑘
𝑚! ⊆ 𝑀! - sub map around 𝑥!
𝑦&:( - measurements up to time 𝑘
𝑎):(*& - actions up to time 𝑘
𝐻( = {𝑦&:( , 𝑎):(*&} – history
𝐷 - experience

Observation model ?



Approach
§ Future measurement generated given a map distribution

§ Experience-based prediction of map distribution
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Notations:
𝑥&:( - robot states until current time
𝑀( - the map observed up to time 𝑘
𝑚! ⊆ 𝑀! - sub map around 𝑥!
𝑦&:( - measurements up to time 𝑘
𝑎):(*& - actions up to time 𝑘
𝐻( = {𝑦&:( , 𝑎):(*&} – history
𝐷 - experience

Observation model ?



Approach – Map Prediction
§ Purpose – learn the future map distribution offline

§Data Set - floor plans (KTH)
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Approach – Map Prediction
§ CVAE architecture
§ Encoder

§ Decoder

§ Loss function
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Approach (Reminder)
§ Incorporation of experience 𝐷 within BSP objective function

§ Future measurement generated given a map distribution

§ Experience-based prediction of map distribution

8 June 2020 SEMINAR 18

Notations:
𝑥&:( - robot states until current time
𝑀( - the map observed up to time 𝑘
𝑚! ⊆ 𝑀! - sub map around 𝑥!
𝑦&:( - measurements up to time 𝑘
𝑎):(*& - actions up to time 𝑘
𝐻( = {𝑦&:( , 𝑎):(*&} – history
𝐷 - experience



Approach – Novelty detection 
§ Is the experience relevant and reliable for the current task?
§ In our method we measure the reconstruction error (RE) in the 
copy operation of the overlap area (OA) between the conditional 
input and the map prediction:

§ If 𝑅𝐸 𝑚! > threshold, a standard BSP method will be used 
instead.
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Results – Map Prediction
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Conditioning

Map Action Worst sample Best sample Ground truth

§ Example 1 - most predictions are correct (low prediction error (PE))

𝑚!~ℙ(𝑚!|𝑧,𝑚, 𝑎; 𝜃)
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Conditioning

Map Action Worst sample Best sample Ground truth

§ Example 2 - most predictions are wrong because of an unfamiliar 
input (high PE and high RE). 

Results – Map Prediction

𝑚!~ℙ(𝑚!|𝑧,𝑚, 𝑎; 𝜃)



Results – Map Prediction
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Conditioning

Map Action Worst sample Best sample Ground truth

§ Example 3 - most predictions are wrong because of uncommon 
ground truth map (high PE and low RE)

𝑚!~ℙ(𝑚!|𝑧,𝑚, 𝑎; 𝜃)



Results – Map Prediction
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Reconstruction and prediction error of the test set

Reconstruction area

Prediction area



BSP with Experience-Based Prediction 
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Inputs: 
State belief
Map belief
Candidate action
Trained decoder

Output:
computed objective function



BSP with Experience-Based Prediction 
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Get current sub-map

Double loop and initialization



BSP with Experience-Based Prediction 
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Prediction of next sub-map

𝑚"#$
%𝑚"

% {𝑚":"#'($
% }

Conditional map in light green, predicted map in dark green.



BSP with Experience-Based Prediction 
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Generation of future observation

𝑚"#$
%

𝑦"#$%



BSP with Experience-Based Prediction 
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Calculation of future belief using the 
generated observation

Calculation of the cost function



BSP with Experience-Based Prediction 
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Calculation of the objective function



BSP Simulation Results
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BSP Simulation Results
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Action 1

Action 2

Action 3

Ground truth Samples

Conditional map in light green, predicted map in dark green.



BSP Simulation Results
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Action 1

Action 2

Action 3

Ground truth Samples Our approach baseline comparison 



BSP Simulation Results
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BSP Simulation Results
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§ The table reports for each method the 
number of action ordering mistakes with 
respect to BSP with ground truth map, and 
the uncertainty cost error.



BSP Simulation Results
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§ Using the novelty detection method we 
recognized unfamiliar environments and 
avoided using our approach in these cases 
(e.g. Sc. 15).

Sc. 15



Summary
§ Development of an algorithm that calculates a predicted 
distribution over an unexplored area using a deep learning method
§ Incorporation of this distribution within BSP (considering 
information-theoretic costs)
§ Novelty detection for map prediction
§ Gazebo simulation compared our approach to existing BSP 
approaches - results indicate the potential of our approach to 
improve decision making in unknown environments
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Conclusions and Future Work
§ Good interpretability
§ Low sensitivity to prediction mistakes

§ Evaluation of path feasibility; improvement of map prediction 
accuracy is needed.
§ Future work may extend our novelty detection method to cases 
with familiar inputs that still provide wrong predictions.
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Thank you for listening.
Questions?
ASROMRI@GMAIL.COM
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