Experience-Based Prediction of Unknown Environments for Enhanced Belief Space Planning

OMRI ASRAF

UNDER THE SUPERVISION OF ASST. PROF. VADIM INDELMAN

DEPARTMENT OF

EROSPACE ENGINEERING

SEMINAR

Autonomous Navigation and Perception Lab

Introduction – SLAM

Introduction – Decision Making

Belief Space Planning (BSP)

Planning in Unknown Environments

S. Prentice et al., IJRR 2009

Introduction – Inpainting

- Image completion task
- Addressed by DL based generative models:
 - Variational Autoencoders (VAE)
 - Generative Adversarial Network (GAN)

Extended map task

(c) Context Encoder (L2 loss) (d) Context Encoder (L2 + Adversarial loss) D. Pathak et al., CVPR 2016

Related Works

Belief Space Planning in unknown environments

A. Kim et al.: "Active visual SLAM for robotic area coverage: Theory and experiment", IJRR 2015.

V. Indelman et al.: "Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown environments", IJRR 2015.

V. Indelman: "Cooperative multi-robot belief space planning for autonomous navigation in unknown environments", ARJ 2017.

V. Indelman, ARJ 2017

Related Works

Reinforcement Learning (RL) in POMDP setting

P. Karkus et al.: "Qmdp-net: Deep learning for planning under partial observability", NIPS 2017.

G. J. Stein et al.: "Learning over subgoals for efficient navigation of structured, unknown environments", CORL 2018.

G.J.Stein et al., CORL 2018

Related Works

Experience for Planning in unknown environment

C. Richter and N. Roy: "Safe visual navigation via deep learning and novelty detection", RSS 2017.

K. Katyal et al.: "Uncertainty-aware occupancy map prediction using generative networks for robot navigation", ICRA 2019.

K. Katyal et al., ICRA 2019

Problem Statement

 Current BSP methods lack the information necessary to predict future measurements in unknown environments.

- Contributions:
- I. predict distribution over an unexplored area for future measurements generation
- II. incorporate experience-based prediction within BSP. In particular, with information-theoretic costs.

Problem Formulation - SLAM

Motion model

$$x_i = f(x_{i-1}, a_{i-1}) + w_i, \qquad w_i \sim \mathcal{N}(0, \Sigma_w)$$

Observation model of a raw measurement

$$y_i = g(x_i, m_i) + u_i, \qquad u_i \sim \mathcal{N}(0, \Sigma_u)$$

Observation model of a relative-pose measurement

$$y_{ij}^{rel}(y_i, y_j) = h(x_i, x_j) + v_{ij}, \quad v_{ij} \sim \mathcal{N}(0, \Sigma_v(y_i, y_j))$$

Notations:

 x_i - robot state at time i a_i - action at time i m_i - environment state(map/landmarks) y_i - raw measurement at time i y_{ij}^{rel} - relative pose measurement

Problem Formulation - SLAM

Robot's state belief

 $b_k \doteq \mathbb{P}(x_{1:k} | y_{1:k}, a_{0:k-1})$

Map belief

 $\mathbb{P}(M_k|y_{1:k}, a_{0:k-1})$

Notations:

 $x_{1:k}$ - robot states until current time M_k - the map observed up to time k $y_{1:k}$ - measurements up to time k $a_{0:k-1}$ - actions up to time k

Problem Formulation - BSP

Future belief

 $b_{k+l} \doteq \mathbb{P}(x_{1:k+l} \mid H_k, a_{k:k+l-1}, y_{k+1:k+l})$

Objective function
 $J(b_k, a_{k:k+L-1}) = \sum_{l=1}^{L} \mathop{\mathbb{E}}_{y_{k+1:k+l}} \{c(b_{k+l}, a_{k+l-1})\}$ Optimal action

$$a_{k:k+L-1}^* = \arg\min_{a_{k:k+L-1}} J(b_k, a_{k:k+L-1})$$

Notations:

 $\begin{array}{l} x_{1:k} \text{ - robot states until current time} \\ M_k \text{ - the map observed up to time } k \\ y_{1:k} \text{ - measurements up to time } k \\ a_{0:k-1} \text{ - actions up to time } k \\ H_k = \{y_{1:k}, a_{0:k-1}\} \text{ - history} \end{array}$

Problem Formulation

Problem Formulation

Approach

Incorporation of experience D within BSP objective function $J(b_k, a_k) = \int \mathbb{P}(y_{k+1} | H_k, a_k, D) c(b_{k+1}, a_k) dy_{k+1}$ Future measurement generated given a map distribution $\mathbb{P}(y_{k+1}|H_k, a_k, D) \approx \int_{m_{k+1}} \mathbb{P}(y_{k+1}|\hat{x}_{k+1}, m_{k+1}) \mathbb{P}(m_{k+1}|H_{k+1}, D) dm_{k+1}$ Notations: **Observation model** $x_{1:k}$ - robot states until current time M_k - the map observed up to time k $m_i \subseteq M_i$ - sub map around x_i $y_{1:k}$ - measurements up to time k $a_{0:k-1}$ - actions up to time k $H_k = \{y_{1:k}, a_{0:k-1}\}$ – history D - experience

Approach

Future measurement generated given a map distribution

 $\mathbb{P}(y_{k+1}|H_k, a_k, D) \approx \int_{m_{k+1}} \mathbb{P}(y_{k+1}|\hat{x}_{k+1}^-, m_{k+1}) \mathbb{P}(m_{k+1}|H_{k+1}^-, D) dm_{k+1}$ $Observation \ model$?

Experience-based prediction of map distribution

$$\mathbb{P}(m_{k+1}|H_k, a_k, D) \approx \mathbb{P}(m_{k+1}|\hat{M}_k, a_k, D)$$
$$\approx \mathbb{P}(m_{k+1} \mid \hat{m}_k, a_k, D)$$

Notations:

 $x_{1:k}$ - robot states until current time M_k - the map observed up to time k $m_i \subseteq M_i$ - sub map around x_i $y_{1:k}$ - measurements up to time k $a_{0:k-1}$ - actions up to time k $H_k = \{y_{1:k}, a_{0:k-1}\}$ - history D - experience

Approach – Map Prediction

- Purpose learn the future map distribution offline $\mathbb{P}(m'|m,a)$
- Data Set floor plans (KTH)

Approach – Map Prediction

- CVAE architecture
- Encoder

 $\mathbb{Q}(z \mid m', C; \phi) = \mathcal{N}(\mu(m', C; \phi), \Sigma(m', C; \phi))$

Decoder

 $\mathbb{P}(m'|z,C;\theta) = \mathcal{N}(f(z,C;\theta),\sigma^2 * I)$

Loss function

 $\|\boldsymbol{m}' - f(\boldsymbol{z}, \boldsymbol{C}; \boldsymbol{\theta})\|^2 + \mathrm{KL}[\mathcal{N}(\boldsymbol{\mu}(\boldsymbol{m}', \boldsymbol{C}; \boldsymbol{\phi}), \boldsymbol{\Sigma}(\boldsymbol{m}', \boldsymbol{C}; \boldsymbol{\phi})) \mid| \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})]$

Approach (Reminder)

 $\mathbb{P}(m_{k+1}|H_k, a_k, D) \approx \mathbb{P}(m_{k+1}|\hat{M}_k, a_k, D)$

- Incorporation of experience D within BSP objective function $J(b_k, a_k) = \int \mathbb{P}(y_{k+1}|H_k, a_k, D)c(b_{k+1}, a_k)dy_{k+1}$
- Future measurement generated given a map distribution $\mathbb{P}(y_{k+1}|H_k, a_k, D) \approx \int_{m_{k+1}} \mathbb{P}(y_{k+1}|\hat{x}_{k+1}^-, m_{k+1}) \mathbb{P}(m_{k+1}|H_{k+1}^-, D) dm_{k+1}$
- Experience-based prediction of map distribution

 $x_{1:k}$ - robot states until current time M_k - the map observed up to time k $m_i \subseteq M_i$ - sub map around x_i $y_{1:k}$ - measurements up to time k $a_{0:k-1}$ - actions up to time k $H_k = \{y_{1:k}, a_{0:k-1}\}$ - history D - experience

 $\approx \mathbb{P}(m_{k+1} \mid \hat{m}_k, a_k, D)$

Approach – Novelty detection

- Is the experience relevant and reliable for the current task?
- In our method we measure the reconstruction error (RE) in the copy operation of the overlap area (OA) between the conditional input and the map prediction:

$$RE(m_k) = \|\{m_k\}^{OA} - \{f(z, m_k, a_k; \theta^*)\}^{OA}\|^2$$

• If $RE(m_k)$ > threshold, a standard BSP method will be used instead.

Prediction area

Results – Map Prediction

Example 1 - most predictions are correct (low prediction error (PE))

Results – Map Prediction

Example 2 - most predictions are wrong because of an unfamiliar input (high PE and high RE).

Conditioning

$$m' \sim \mathbb{P}(m'|z, m, a; \theta)$$

Results – Map Prediction

 Example 3 - most predictions are wrong because of uncommon ground truth map (high PE and low RE)

Conditioning $m' \sim \mathbb{P}(m'|z, m, a; \theta)$ Ground truthMapActionWorst sampleBest sampleGround truthImage: the state of the s

Results – Map Prediction

Reconstruction and prediction error of the test set

Algorithm 1 BSP with Experience-Based Prediction 1: Inputs: 2: b_k : state belief at current time 3: $\mathbb{P}(M_k|H_k)$: map belief at current time 4: $a_{k:k+L-1}$: a candidate L look-ahead steps action sequence 5: $f(.; \theta^*)$: trained decoder 6: Outputs: 7: $J(b_k, a_{k:k+L-1})$: computed objective function for a given action sequence $a_{k:k+L-1}$ 8: 9: $\hat{M}_k \leftarrow \mathbb{P}(M_k | H_k)$ ▷ Get maximum likelihood estimate of map belief 10: $\hat{m}_k \subseteq M_k$ \triangleright Get current sub-map estimate from M_k 11: for i = 1 : N do $m_k^i = \hat{m}_k$ 12:for j = 1 : L do 13: $\hat{x}_{k+j}^{-} \leftarrow \mathbb{P}(x_{k+j}|H_k, a_{k:k+j-1}) \mathrel{\triangleright} \text{Get ML estimate without future observations}$ 14: $z^i \sim \mathcal{N}(0, I)$ 15: $m_{k+j}^i \sim \mathcal{N}(f(z^i, m_{k+j-1}^i, a_{k+j-1}; \theta^*), \sigma^2 * I)$ \triangleright Predict sub-map (Eq. (29)) 16: $y_{k+j}^i \sim \mathbb{P}(y_{k+j} \mid m_{k+j}^i, \hat{x}_{k+j}^-)$ \triangleright Generate future observation (Eq. (18)) 17: \triangleright Calculate future belief using y_{k+i}^i (Eq. (9)) Calculate b_{k+i}^i 18:Calculate cost/reward $c(b_{k+i}^i)$ 19: $J(b_k, a_{k:k+L-1}) = J(b_k, a_{k:k+L-1}) + c(b_{k+i}^i)$ \triangleright Accumulate costs 20:end for 21:22: end for 23: $J(b_k, a_{k:k+L-1}) = \frac{1}{N}J(b_k, a_{k:k+L-1})$ \triangleright Normalize to get empirical expectation 24: return $J(b_k, a_{k:k+L-1})$

Inputs:

State belief Map belief Candidate action Trained decoder

Output:

computed objective function

 $J(b_k, a_{k:k+L-1}) = \sum_{l=1}^{L} \mathbb{E}_{y_{k+1:k+l}} \{ c(b_{k+l}, a_{k+l-1}) \}$

Algorithm 1 BSP with Experience-Based Prediction 1: Inputs: 2: b_k : state belief at current time 3: $\mathbb{P}(M_k|H_k)$: map belief at current time 4: $a_{k:k+L-1}$: a candidate L look-ahead steps action sequence 5: $f(.; \theta^*)$: trained decoder 6: Outputs: 7: $J(b_k, a_{k:k+L-1})$: computed objective function for a given action sequence $a_{k:k+L-1}$ 8: 9: $\hat{M}_k \leftarrow \mathbb{P}(M_k | H_k)$ ▷ Get maximum likelihood estimate of map belief 10: $\hat{m}_k \subseteq \hat{M}_k$ \triangleright Get current sub-map estimate from M_k 11: for i = 1 : N do $m_k^i = \hat{m}_k$ 12:for j = 1 : L do 13: $\hat{x}_{k+j}^{-} \leftarrow \mathbb{P}(x_{k+j}|H_k, a_{k:k+j-1}) \mathrel{\triangleright} \text{Get ML estimate without future observations}$ 14: $z^i \sim \mathcal{N}(0, I)$ 15: $m_{k+j}^i \sim \mathcal{N}(f(z^i, m_{k+j-1}^i, a_{k+j-1}; \theta^*), \sigma^2 * I)$ \triangleright Predict sub-map (Eq. (29)) 16: $y_{k+j}^i \sim \mathbb{P}(y_{k+j} \mid m_{k+j}^i, \hat{x}_{k+j}^-)$ \triangleright Generate future observation (Eq. (18)) 17: \triangleright Calculate future belief using y_{k+i}^i (Eq. (9)) Calculate b_{k+i}^i 18:Calculate cost/reward $c(b_{k+i}^i)$ 19: $J(b_k, a_{k:k+L-1}) = J(b_k, a_{k:k+L-1}) + c(b_{k+i}^i)$ \triangleright Accumulate costs 20:end for 21:22: end for 23: $J(b_k, a_{k:k+L-1}) = \frac{1}{N}J(b_k, a_{k:k+L-1})$ \triangleright Normalize to get empirical expectation 24: return $J(b_k, a_{k:k+L-1})$

Get current sub-map

9: $\hat{M}_k \Leftarrow \mathbb{P}(M_k | H_k)$ 10: $\hat{m}_k \subseteq \hat{M}_k$

Double loop and initialization

11: for
$$i = 1 : N$$
 do
12: $m_k^i = \hat{m}_k$
13: for $j = 1 : L$ do

2: b_k : state belief at current time 3: $\mathbb{P}(M_k|H_k)$: map belief at current time 4: $a_{k:k+L-1}$: a candidate L look-ahead steps action sequence 5: $f(.; \theta^*)$: trained decoder 6: Outputs: 7: $J(b_k, a_{k:k+L-1})$: computed objective function for a given action sequence $a_{k:k+L-1}$ 8: 9: $\hat{M}_k \leftarrow \mathbb{P}(M_k | H_k)$ ▷ Get maximum likelihood estimate of map belief 10: $\hat{m}_k \subseteq M_k$ \triangleright Get current sub-map estimate from M_k 11: for i = 1 : N do $m_k^i = \hat{m}_k$ 12:for j = 1 : L do 13: $\hat{x}_{k+j}^{-} \leftarrow \mathbb{P}(x_{k+j}|H_k, a_{k:k+j-1}) \mathrel{\triangleright} \text{Get ML estimate without future observations}$ 14: $z^i \sim \mathcal{N}(0, I)$ 15: $m_{k+j}^i \sim \mathcal{N}(f(z^i, m_{k+j-1}^i, a_{k+j-1}; \theta^*), \sigma^2 * I)$ \triangleright Predict sub-map (Eq. (29)) 16: $y_{k+i}^i \sim \mathbb{P}(y_{k+j} \mid m_{k+i}^i, \hat{x}_{k+i}^-)$ \triangleright Generate future observation (Eq. (18)) 17: \triangleright Calculate future belief using y_{k+i}^i (Eq. (9)) Calculate b_{k+i}^i 18:Calculate cost/reward $c(b_{k+i}^i)$ 19: $J(b_k, a_{k:k+L-1}) = J(b_k, a_{k:k+L-1}) + c(b_{k+i}^i)$ 20: \triangleright Accumulate costs end for 21:22: end for 23: $J(b_k, a_{k:k+L-1}) = \frac{1}{N}J(b_k, a_{k:k+L-1})$ \triangleright Normalize to get empirical expectation 24: return $J(b_k, a_{k:k+L-1})$

Algorithm 1 BSP with Experience-Based Prediction

Prediction of next sub-map

15: $z^{i} \sim \mathcal{N}(0, I)$ 16: $m_{k+j}^{i} \sim \mathcal{N}(f(z^{i}, m_{k+j-1}^{i}, a_{k+j-1}; \theta^{*}), \sigma^{2} * I)$

Conditional map in light green, predicted map in dark green.

1: Inputs:

1

Algorithm 1 BSP with Experience-Based Prediction 1: Inputs: 2: b_k : state belief at current time 3: $\mathbb{P}(M_k|H_k)$: map belief at current time 4: $a_{k:k+L-1}$: a candidate L look-ahead steps action sequence 5: $f(.; \theta^*)$: trained decoder 6: Outputs: 7: $J(b_k, a_{k:k+L-1})$: computed objective function for a given action sequence $a_{k:k+L-1}$ 8: 9: $\hat{M}_k \leftarrow \mathbb{P}(M_k | H_k)$ ▷ Get maximum likelihood estimate of map belief 10: $\hat{m}_k \subseteq M_k$ \triangleright Get current sub-map estimate from M_k 11: for i = 1 : N do $m_k^i = \hat{m}_k$ 12:for j = 1 : L do 13: $\hat{x}_{k+j}^{-} \leftarrow \mathbb{P}(x_{k+j}|H_k, a_{k:k+j-1}) \mathrel{\triangleright} \text{Get ML estimate without future observations}$ 14: $z^i \sim \mathcal{N}(0, I)$ 15: $\begin{array}{l} m_{k+j}^{i} \sim \mathcal{N}(f(z^{i}, m_{k+j-1}^{i}, a_{k+j-1}; \theta^{*}), \sigma^{2} * I) & \triangleright \text{ Predict sub-map (Eq. (29))} \\ y_{k+j}^{i} \sim \mathbb{P}(y_{k+j} \mid m_{k+j}^{i}, \hat{x}_{k+j}) & \triangleright \text{ Generate future observation (Eq. (18))} \end{array}$ 16:17:▷ Calculate future belief using y_{k+j}^i (Eq. (9)) Calculate b_{k+i}^i 18: Calculate cost/reward $c(b_{k+i}^i)$ 19: $J(b_k, a_{k:k+L-1}) = J(b_k, a_{k:k+L-1}) + c(b_{k+i}^i)$ \triangleright Accumulate costs 20:end for 21:22: end for 23: $J(b_k, a_{k:k+L-1}) = \frac{1}{N}J(b_k, a_{k:k+L-1})$ \triangleright Normalize to get empirical expectation 24: return $J(b_k, a_{k:k+L-1})$

Generation of future observation

4:
$$\hat{x}_{k+j}^- \Leftarrow \mathbb{P}(x_{k+j}|H_k, a_{k:k+j-1})$$

17:
$$y_{k+j}^i \sim \mathbb{P}(y_{k+j} \mid m_{k+j}^i, \hat{x}_{k+j}^-)$$

Algorithm 1 BSP with Experience-Based Prediction 1: Inputs: 2: b_k : state belief at current time 3: $\mathbb{P}(M_k|H_k)$: map belief at current time 4: $a_{k:k+L-1}$: a candidate L look-ahead steps action sequence 5: $f(.; \theta^*)$: trained decoder 6: Outputs: 7: $J(b_k, a_{k:k+L-1})$: computed objective function for a given action sequence $a_{k:k+L-1}$ 8: 9: $\hat{M}_k \leftarrow \mathbb{P}(M_k | H_k)$ ▷ Get maximum likelihood estimate of map belief 10: $\hat{m}_k \subseteq M_k$ \triangleright Get current sub-map estimate from M_k 11: for i = 1 : N do $m_k^i = \hat{m}_k$ 12:for i = 1 : L do 13: $\hat{x}_{k+j}^{-} \leftarrow \mathbb{P}(x_{k+j}|H_k, a_{k:k+j-1}) \mathrel{\triangleright} \text{Get ML estimate without future observations}$ 14: $z^i \sim \mathcal{N}(0, I)$ 15: $m_{k+j}^i \sim \mathcal{N}(f(z^i, m_{k+j-1}^i, a_{k+j-1}; \theta^*), \sigma^2 * I)$ \triangleright Predict sub-map (Eq. (29)) 16: $y_{k+j}^i \sim \mathbb{P}(y_{k+j} \mid m_{k+j}^i, \hat{x}_{k+j}^-)$ \triangleright Generate future observation (Eq. (18)) 17: \triangleright Calculate future belief using y_{k+i}^i (Eq. (9)) Calculate b_{k+i}^i 18:Calculate cost/reward $c(b_{k+i}^i)$ 19: $J(b_k, a_{k:k+L-1}) = J(b_k, a_{k:k+L-1}) + c(b_{k+i}^i)$ \triangleright Accumulate costs 20:end for 21:22: end for 23: $J(b_k, a_{k:k+L-1}) = \frac{1}{N}J(b_k, a_{k:k+L-1})$ \triangleright Normalize to get empirical expectation 24: return $J(b_k, a_{k:k+L-1})$

Calculation of future belief using the generated observation

$$b_{k+l} \doteq \mathbb{P}(x_{1:k+l} \mid H_k, a_{k:k+l-1}, y_{k+1:k+l})$$

Calculation of the cost function

$$c(b_{k+j}^i) = \sqrt{Trace(\Sigma_{k+L})}$$

Algorithm 1 BSP with Experience-Based Prediction 1: Inputs: 2: b_k : state belief at current time 3: $\mathbb{P}(M_k|H_k)$: map belief at current time 4: $a_{k:k+L-1}$: a candidate L look-ahead steps action sequence 5: $f(.; \theta^*)$: trained decoder 6: Outputs: 7: $J(b_k, a_{k:k+L-1})$: computed objective function for a given action sequence $a_{k:k+L-1}$ 8: 9: $\hat{M}_k \leftarrow \mathbb{P}(M_k | H_k)$ ▷ Get maximum likelihood estimate of map belief 10: $\hat{m}_k \subseteq M_k$ \triangleright Get current sub-map estimate from M_k 11: for i = 1 : N do $m_k^i = \hat{m}_k$ 12:for i = 1 : L do 13: $\hat{x}_{k+j}^{-} \leftarrow \mathbb{P}(x_{k+j}|H_k, a_{k:k+j-1}) \mathrel{\triangleright} \text{Get ML estimate without future observations}$ 14: $z^i \sim \mathcal{N}(0, I)$ 15: $m_{k+j}^i \sim \mathcal{N}(f(z^i, m_{k+j-1}^i, a_{k+j-1}; \theta^*), \sigma^2 * I)$ \triangleright Predict sub-map (Eq. (29)) 16: $y_{k+j}^i \sim \mathbb{P}(y_{k+j} \mid m_{k+j}^i, \hat{x}_{k+j}^-)$ \triangleright Generate future observation (Eq. (18)) 17: \triangleright Calculate future belief using y_{k+i}^i (Eq. (9)) Calculate b_{k+i}^i 18:Calculate cost/reward $c(b_{k+i}^i)$ 19: $J(b_k, a_{k:k+L-1}) = J(b_k, a_{k:k+L-1}) + c(b_{k+i}^i)$ \triangleright Accumulate costs 20:end for 21:22: end for 23: $J(b_k, a_{k:k+L-1}) = \frac{1}{N}J(b_k, a_{k:k+L-1})$ \triangleright Normalize to get empirical expectation 24: return $J(b_k, a_{k:k+L-1})$

Calculation of the objective function

$$J(b_k, a_{k:k+L-1}) \doteq \frac{1}{N} \sum_{i=1}^N \sqrt{Trace(\Sigma_{k+L}^i)}$$

Conditional map in light green, predicted map in dark green.

8 June 2020

 The table reports for each method the number of action ordering mistakes with respect to BSP with ground truth map, and the uncertainty cost error.

Scenarios	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Avg
Our approach																
Mistakes	0	2	0	1	0	0	0	0	0	2	0	0	1	0	-	0.43
Error[%]	0	40	0	0	0	0	0	0	0	4	0	0	0	0	-	2.9
RE	0.3	1.1	1.4	0.6	0.8	0.1	1.1	2.2	2	1.6	3.8	1.4	1	0	10.4	-
Baseline																
Mistakes	0	1	2	2	1	2	0	1	1	2	1	1	1	1	0	1.07
Error[%]	0	1	49	6	10	41	0	20	0	12	0	0	16	0	0	10.3

 Using the novelty detection method we recognized unfamiliar environments and avoided using our approach in these cases (e.g. Sc. 15).

Scenarios	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Avg
Our approach																
Mistakes	0	2	0	1	0	0	0	0	0	2	0	0	1	0	-	0.43
Error[%]	0	40	0	0	0	0	0	0	0	4	0	0	0	0	-	2.9
RE	0.3	1.1	1.4	0.6	0.8	0.1	1.1	2.2	2	1.6	3.8	1.4	1	0	10.4	-
Baseline																
Mistakes	0	1	2	2	1	2	0	1	1	2	1	1	1	1	0	1.07
Error[%]	0	1	49	6	10	41	0	20	0	12	0	0	16	0	0	10.3

Summary

- Development of an algorithm that calculates a predicted distribution over an unexplored area using a deep learning method
- Incorporation of this distribution within BSP (considering information-theoretic costs)
- Novelty detection for map prediction
- Gazebo simulation compared our approach to existing BSP approaches - results indicate the potential of our approach to improve decision making in unknown environments

Conclusions and Future Work

- Good interpretability
- Low sensitivity to prediction mistakes

- Evaluation of path feasibility; improvement of map prediction accuracy is needed.
- Future work may extend our novelty detection method to cases with familiar inputs that still provide wrong predictions.

Thank you for listening. Questions?

ASROMRI@GMAIL.COM