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Vision-based dynamic target trajectory
and ego-motion estimation using
incremental light bundle adjustment

Michael Chojnacki1 and Vadim Indelman2

Abstract

This paper presents a vision-based, computationally efficient method for simultaneous robot motion estimation and

dynamic target tracking while operating in GPS-denied unknown or uncertain environments. While numerous vision-

based approaches are able to achieve simultaneous ego-motion estimation along with detection and tracking of moving

objects, many of them require performing a bundle adjustment optimization, which involves the estimation of the 3D

points observed in the process. One of the main concerns in robotics applications is the computational effort required

to sustain extended operation. Considering applications for which the primary interest is highly accurate online nav-

igation rather than mapping, the number of involved variables can be considerably reduced by avoiding the explicit 3D

structure reconstruction and consequently save processing time. We take advantage of the light bundle adjustment

method, which allows for ego-motion calculation without the need for 3D points online reconstruction, and thus, to

significantly reduce computational time compared to bundle adjustment. The proposed method integrates the target

tracking problem into the light bundle adjustment framework, yielding a simultaneous ego-motion estimation and

tracking process, in which the target is the only explicitly online reconstructed 3D point. Our approach is compared

to bundle adjustment with target tracking in terms of accuracy and computational complexity, using simulated aerial

scenarios and real-imagery experiments.
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Introduction

Ego-motion estimation and target tracking are core

capabilities required in a wide range of applications.

While motion estimation is essential to numerous

robotics tasks such as autonomous navigation1,2,3,4

and augmented reality,5,6 target tracking has been

essential, amongst others, for video surveillance7 and

for military purposes.8 Although researched for deca-

des, target tracking methods have mostly assumed a

known or highly predictable sensor location. Recent

robotics applications such as autonomous aerial

urban surveillance9 or indoor navigation require the

ability to track dynamic objects from platforms while

moving in unknown or uncertain environments. The

ability to simultaneously solve the ego-motion and

target tracking problems becomes therefore an impor-

tant task. Furthermore, attention has grown for cases

in which external localization systems (e.g. GPS) are
unavailable and the estimation process must be per-
formed using on-board sensors only. In particular,
the capability to perform those tasks based on vision
sensors has become of great interest in the past two
decades, mostly thanks to the ever-growing advantages
these sensors present.10

Vision-based ego-motion estimation is typically per-
formed as part of a process known as bundle adjust-
ment (BA) in computer vision, or simultaneous
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localization and mapping (SLAM) in robotics, where
the differences between the actual and the predicted
image observations are minimized. Therefore, the com-
bined process of SLAM and tracking of a moving
object usually involves an optimization over the cam-
era’s motion states, the target’s navigation states, and
the observed structure (3D landmarks). This optimiza-
tion is performed incrementally as new information
and variables are added to the process, constantly
increasing the computational complexity of the prob-
lem. One of the main challenges in extended operation
is thus keeping computational efforts to a minimum
despite the growing number of variables. However,
many robotics applications do not require actual
online mapping of the environment. Avoiding this
expensive task would therefore be beneficial in terms
of processing time.

This work presents a computationally efficient
approach for simultaneous camera ego-motion estima-
tion and target tracking, while operating in unknown
or uncertain GPS-deprived environments. Our focus
lies on robotic applications for which online 3D struc-
ture reconstruction is of no interest, although recover-
ing the latter offline from optimized camera poses is
always possible.11 We propose to take advantage of
the recently developed incremental light bundle adjust-
ment (iLBA)11–13 framework, which uses multi-view
constraints to algebraically eliminate the (static) 3D
points from the optimization, therefore allowing the
dynamic target to become the only explicitly recon-
structed 3D point in the process. The reduced
number of variables involved in the optimization
allows therefore for substantial savings in computa-
tional efforts. Incremental smoothing and mapping
(iSAM)14 technique is applied to re-use calculations,
allowing to further reduce running time, in a similar
fashion to the static-scene-oriented iLBA approach.
We demonstrate, using simulations on synthetic data-
sets and real-imagery experiments, that while our meth-
ods provide similar levels of accuracy to full BA with
target tracking, they compare favorably in terms of
computational complexity.

The simultaneous ego-motion and dynamic object
tracking relate to numerous works on SLAM and
target tracking, both individually and combined.
Early approaches used the extended Kalman filter
(EKF) to solve the SLAM problem15,16 but were even-
tually overtaken by other techniques due to their qua-
dratic computational complexity, which limits them to
relatively small environments or to relatively small
state vectors. Numerous SLAM methods have been
proposed to overcome computational complexity, for
example, by exploiting the sparsity of the involved
matrices,17,18 or by approximating the full problem
with a reduced non-linear system.19 A more recent

technique, used in the frame of this work, performs
incremental smoothing14 to recover the solution while
recalculating only part of the variables at each optimi-
zation step and allows for a significant reduction of the
computational cost. Still, full BA methods involve the
reconstruction of the 3D observed structure, increasing
unnecessarily the number of estimated variables in
cases online mapping is of no interest. Several
“structure-less” BA approaches have been developed,
where the optimization satisfies constraints which do
not involve 3D structure reconstruction. Rodrı́guez
et al.20 use epipolar constraints between pairs of
views, while Steffen et al.21 utilize trifocal tensor con-
straints. The recently developed LBA method,12 used in
this work, applies two kinds of multi-view constraints:
the two-view and three-view constraints. Pose-SLAM
techniques22,23 avoid explicit mapping by maintaining
the camera trajectory as a sparse graph of relative pose
constraints, which are calculated using the landmarks
in a separate process. In contrast to standard Pose-
SLAM, LBA formulates multi-view geometry con-
straints for each feature match, thereby avoiding to
rely on the uncertainty of the abovementioned separate
process.

The target tracking problem, referred more general-
ly as detection and tracking of moving objects
(DTMO)24 in the robotics literature, has been exten-
sively studied for several decades.25,26 The combined
SLAM and DTMO problem, which is assessed in our
work, has attracted considerable attention in the recent
years, mostly in order to improve SLAM accuracy,
which can be greatly degraded by the presence of
dynamic objects in the environment, if the latter is con-
sidered as static.27 The first mathematical framework to
the combined process of simultaneous localization,
mapping, and moving object tracking (SLAMMOT)
was presented by Wang,28 where the problem is decom-
posed into two separate estimators, one for the SLAM
problem given the static landmarks and another for the
tracking problem. Occupancy grid-based approaches
were proposed later by Vu et al.29 and Vu,1 where
SLAM was solved by calculating the maximum likeli-
hood of occupancy grid maps. Ortega30 introduced a
geometric and probabilistic approach to the vision-
based SLAMMOT problem, providing a comparison
between the different kinds of optimization methods,
while Hahnel et al.31 used sampled-based joint proba-
bilistic data association filter to track people and occu-
pancy grids for static landmarks. An extensive
overview of the literature concerning SLAM and
DTMO is presented in Pancham et al.32

The rest of this paper is structured as follows: First,
we formulate the simultaneous ego-motion estimation
and moving object tracking problem. Next, we review
the LBA method, which is extended to address the
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mentioned problem. Then, we present experimental

results, comparing our method with full BA in terms

of computation time and accuracy. Finally, we con-

clude and share thoughts about further possible

developments.

Problem formulation and notations

We consider a scenario where a monocular camera

mounted on a mobile robot is tracking a dynamic

target while operating in a GPS-deprived unknown

environment.

The BA problem

The process of determining the camera poses and the

stationary 3D structure given measurements is called

BA or SLAM. Let xk represent the camera pose (i.e.

6DOF position and orientation) at time step tk, and

denote all such states up to that time by

Xk ¼: x0 . . . xkf g. We also use Lk¼: l1 . . . lnf g
and Zk¼: z0 . . . zkf g to represent, respectively,

all the n landmarks observed by time tk, and the

corresponding sensor observations. Here, for each

time index i 2 0; k½ �, zi corresponds to all image obser-

vations obtained at time ti. In particular, we use the

notation zji to denote an observation of the jth land-

mark at time ti.
Using probabilistic representation, the BA problem

can be expressed by the joint pdf

P Xk;LkjZkð Þ (1)

Using Bayes’ rule, the general recursive Bayesian

formula for BA can be derived as33

P Xk;LkjZkð Þ / priors �
Yk
i¼1

Y
j2Mi

p zjijxi; lj
� �

(2)

where Mi is the set of landmarks observed at time

index i and priors represent prior information on the

estimated variables.
Considering a standard pinhole camera, the corre-

sponding observation model can be defined as34

zji ¼ proj xi; lj
� �þ vij (3)

where proj �ð Þ is the projection operator34 and vij �N
0;Rvð Þ is a zero-mean white noise with measurement

covariance Rv. Under Gaussian distribution assump-

tion, the likelihood of the perception measurement

can be expressed as

p zjx; lð Þ ¼: 1ffiffiffiffiffiffiffiffiffiffiffiffiffij2pRvj
p exp � 1

2
jjz� proj x; lð Þjj2Rv

� �
(4)

where kak2R ¼: aTR�1a is the squared Mahalanobis dis-

tance with the measurement covariance matrix R. We

assume camera calibration is known; otherwise, the

uncertain calibration parameters could be incorporated

into the optimization framework as well.
Solving the BA problem would therefore consist in

calculating the maximum a posteriori estimate over the

joint pdf, defined as

X�
k;L

�
k ¼ argmax

Xk;Lk

P Xk;LkjZkð Þ (5)

Due to the monotonic characteristics of the logarith-

mic function, calculating the MAP estimate X�
k;L

�
k

becomes equivalent to minimizing the negative log-

likelihood of the BA pdf 1

X�
k;L

�
k ¼ argmin

Xk;Lk

�logP Xk;LkjZkð Þ (6)

This leads to a non-linear least-squares optimiza-

tion, where the cost function

JBA Xk;Lkð Þ ¼
X
i

X
j2Mi

jjzji � proj xi; lj
� �jj2R (7)

is to be minimized. Note that, to avoid clutter, the prior

terms are not explicitly shown in equation (7).

BA and target tracking

We investigate scenarios in which a dynamic target is

tracked by the camera. Based on the camera’s observa-

tions of the target, we seek to estimate its trajectory and

velocity over time. We assume the target moves ran-

domly; however, its motion is assumed to follow a

known stochastic kinematic model (e.g. constant veloc-

ity or constant acceleration).
Let yk represent the target state at time step tk,

defined generally as

yk ¼: yTk
dTk

½ �T ¼ xTk
; yTk

; zTk
; _xTk

; _yTk
; _zTk

; . . .
� �T

(8)

where yTk
denotes the target’s tri-dimensional position

and dTk
its higher order time derivatives required to

accommodate the assumed motion model. In the

frame of this work, we focus on the target’s position
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and velocity. yk is therefore a six element vector
defined as

yk ¼
� yTk

_yTk

	
2 R

6�1 (9)

We denote Yk ¼: y0 . . . ykf g the set of all target’s
states up to time step tk.

Assuming a known Markovian motion model for
the target, which likelihood is represented by
p yijyi�1ð Þ, we define a joint pdf for the random varia-
bles involved in the considered problem, given all infor-
mation thus far, as

P Xk;Yk;LkjZkð Þ / priors�Yk
i¼1

p yijyi�1ð Þp z
yi
i jxi; yið Þ

Y
j2Mi

p zjijxi; lj
� � !

(10)

where zyii denotes the observation of the target by the
ith camera and p zyii jxi; yið Þ refers to the observation
model described in equation (3). Mi is the set of land-
marks observed at time index i and we consider
priors ¼ p x0ð Þp y0ð Þ as given information.

In this work, as in many robotics applications, we
consider a constant velocity model,35 characterized by
the equation

€y tð Þ ¼ ~w tð Þ (11)

where ~w tð Þ is a continuous time zero-mean white noise
representing the slight velocity changes from its actual
value.

The target state linear continuous propagation
is generally noted as _y tð Þ ¼ Ay tð Þ þDw tð Þ, where

A ¼
0 1

0 0

" #
and D ¼

0

1

" #
, or under its discrete form

ykþ1 ¼ Ukyk þ Gkwk (12)

where Gk is the process noise Jacobian defined as

Gk ¼
0

1

" #
2 R

6�3 and Uk is the state transition

matrix and is defined as Uk ¼
1 �t

0 1

" #
2 R

6�6 with

�t¼: tkþ1 � tk. The discrete-time process noise wk �N
0;Rwð Þ relates to the continuous-time one as wk

¼ R Dt0 eA Dt�sð Þ D~w kDtþ sð Þds. Under Gaussian distri-
bution assumption, the motion model likelihood is
therefore expressed

p ykþ1jykð Þ¼: 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2pRmmj
p exp � 1

2
jjykþ1 � Ukykjj2Rmm

� �
(13)

where Rmm ¼: GRwG
T.

Finally, solving the combined BA and target state

estimation process consists in calculating the MAP esti-

mate over the joint pdf from equation (10)

X�
k;Y

�
k;L

�
k ¼ argmax

Xk;Yk;Lk

P Xk;Yk;LkjZkð Þ (14)

Factor graph representation

As mentioned earlier, the factorization of the joint pdf

described in equation (10) can be represented using a

factor graph,36 which will be used later to efficiently

solve the optimization problem using incremental infer-

ence. Using the same observation (equation (3)) and

motion (equation (12)) models, this pdf is expressed

in factor graph notation as

P Xk;Yk;LkjZkð Þ / priors

�
Yk
i¼1

 fmm yi; yi�1ð Þfproj xi; yið Þ
Y
j2Mi

fproj xi; lj
� � !

(15)

An illustration expressing the above factorization

for a small example is shown in Figure 1. The corre-

sponding factors in equation (15) are straightforwardly

defined as follows: The factor fmm yi; yi�1ð Þ corresponds
to the target motion model and, referring to equations

(12) and (13), is defined as

fmm yi; yi�1ð Þ¼: exp � 1

2
jjyi � Ui�1yi�1jj2Rmm

� �
(16)

The projection factors fproj xi; lj
� �

and fproj xi; yið Þ cor-
respond to the landmarks and target observation

models; these factors are defined, respectively, as

fproj xi; lj
� �¼: exp � 1

2
jjzji � proj xi; lj

� �jj2Rv

� �
(17)

Figure 1. Factor graph representing a factorization of the joint
pdf for bundle adjustment with single target tracking.
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fproj xi; yið Þ¼: exp � 1

2
jjzyii � proj xi; yið Þjj2Rv

� �
(18)

Similarly to the previous section, the MAP estimate

is defined as

X�
k;Y

�
k;L

�
k ¼ argmax

Xk;Yk;Lk

P Xk;Yk;LkjZkð Þ (19)

and can be efficiently calculated by exploiting the

inherent sparse structure of the problem while re-using

calculations.
This corresponds to the state of the art where infer-

ence is performed over camera poses, landmarks, and

target states. Yet, when the primary focus is navigation

rather than mapping, explicit estimation of the

observed landmarks in an online process is not actually

required. Conceptually, estimating only the camera

poses and the dynamic target (but not the landmarks)

involves less variables to optimize and could be attrac-

tive from a computational point of view. In this work,

we develop an approach based on this idea.

LBA and dynamic target tracking

BA is a non-linear iterative optimization framework

typically applied for estimating camera poses and

observed landmarks. In this section, we integrate

target tracking to a structure-less BA technique called

light bundle adjustment (LBA).13 First, we formulate

the LBA equations while considering a static scene.

These equations are then extended to incorporate the

dynamic target tracking problem.
Using factor graph notations, the joint pdf

P Xk;LkjZkð Þ, which corresponds to the static problem,

can be factorized similarly to equation (15) as

P Xk;LkjZkð Þ / priors �
Yk
i¼1

Y
j2Mi

fproj xi; lj
� � !

(20)

where priors ¼ p x0ð Þp y0ð Þ represents the prior informa-

tion on the camera and target states.
As mentioned, this works considers robotics appli-

cations in which the online reconstruction of the 3D

structure is of no interest. One way to avoid explicit

estimation of the landmarks in the solution is by mar-

ginalizing out the latter from the joint pdf as in

P XkjZkð Þ ¼
Z

P Xk;LkjZkð ÞdLk (21)

However, this involves a series of calculations

which, in the case of online operation, could be

penalizing: First, performing the exact marginalization

would initially require to solve the full BA problem,

including landmarks, before applying a Gaussian

approximation to compute the marginal. Secondly,

marginalization in the information form involves the

expensive calculation of the Schur complement over

the variables we wish to keep.22 Moreover, marginali-

zation introduces fill-in, destroying the sparsity of the

information matrix.
In contrast, structure-less BA methods approximate

the BA cost function, allowing for estimation of the

camera poses without involving the reconstruction of

the 3D structure.20,21 In this work, we use the recently

developed LBA approach,11,12 which algebraically

eliminates the landmarks from the optimization,

using multi-view constraints and in particular, three-

view constraints.

LBA

LBA allows for reduction of the number of variables

involved in the optimization compared to standard BA.

By algebraically eliminating the landmarks from the

problem, the optimization can be performed over the

camera poses only. The key idea is to use geometrical

constraints relating three views from which the same

landmark is observed.
Considering a set of three overlapping poses k, l and

m from which a common landmark is observed, it is

possible to derive constraints that relate the three poses

while eliminating the landmark.37 These constraints

can be formulated as two two-view constraints g2v
between two pairs of poses (e.g. (k, l) and (l, m)) and

one three-view constraint g3v between the three

involved poses.37,38 Conceptually, the two-view con-

straint is equivalent to the epipolar constraint,34 while

the three-view constraint relates between the scales of

the two translations tk!l and tl!m. Writing down the

appropriate projection equations, we get

g2v xk; xl; zk; zlð Þ ¼ qk � ðtk!l � qlÞ (22)

g2v xl; xm; zl; zmð Þ ¼ ql � ðtl!m � qmÞ (23)

g3v xk; xl; xm; zk; zl; zmð Þ
¼ ðql � qkÞ � ðqm � tl!mÞ � ðqk � tk!lÞ � ðqm � qlÞ

(24)

qi ¼: RT
i K

�1
i z for the ith view and image observation z,

where Ki is the calibration matrix, Ri represents the

rotation matrix from some reference frame to the ith

view, and ti!j denotes the translation vector from view i

to view j, expressed in the global frame.
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The resulting probability distribution PLBA XjZð Þ
can thus be factorized as

PLBA XjZð Þ /
YNh

i¼1

f2v=3v Xið Þ (25)

where f2v=3v represents the involved two- and three-

view factors and Xi is the relevant subset of camera

poses. Referring to equations (22) to (24), under

Gaussian distribution assumption, f2v and f3v are

defined as

f2v xk; xlð Þ¼: exp � 1

2
jjg2v xk; xl; zk; zlð Þjj2R2v

� �
(26)

and

f3v xk; xl; xmð Þ

¼: exp � 1

2
jjg3v xk; xl; xm; zk; zl; zmð Þjj2R3v

� �
(27)

which correspond to the likelihoods of the two- and

three-views constraints involving xk and xl in equation

(26) and involving xk, xl and xm in equation (27). The

covariances R2v and R3v are defined as

R2v¼: rzk;zlg2v
� �

R rzk;zlg2v
� �T

;

R3v¼: rzk;zl;zmg3v
� �

R rzk;zl;zmg3v
� �T (28)

Figure 2 shows a comparison between the factor

graph representation of LBA and standard BA for a

small example.
Therefore, rather than optimizing the cost function

7, that involves the camera and landmark states, the

optimization is performed on the cost function11

JLBAðXÞ¼:
XNh

i¼1

jjhiðXi;ZiÞjj2Ri
(29)

where hi 2 g2v; g3vf g represents a single two- or three-

view constraint involving the set of poses Xi and the set

of image observations Zi, Nh being the number of

resulting constraints.
Practically, when a landmark is observed by a new

view xk and some earlier views xl and xm, a single two-

view (between xk and one of the two other views) and a

single three-view constraint are added (between the

three views). The reason for not adding the second

two-view constraint (between views xl and xm) is that

this constraint was already added when processing

these past views. In case a landmark is observed by

only two views, we add a single two-view constraint.

LBA and dynamic target tracking

In this section, we integrate dynamic target tracking

into the LBA framework. As will be shown, the result-

ing approach provides comparable accuracy for both

target tracking and camera pose estimation while sig-

nificantly reducing running time, compared to an

equivalent BA approach.
The idea behind the proposed method is to incorpo-

rate the target tracking problem into the LBA frame-

work in order to yield a proxy for the joint pdf

P Xk;YkjZkð Þ which involves significantly less variables

than the joint pdf P Xk;Yk;LkjZkð Þ, while somewhat

avoiding the expensive calculations involved in the

marginalization process.11 Indeed, if Xk 2 R
Mk�1, Yk 2

R
Nk�1 and Lk 2 R

Ok�1, then the amount of variables

involved in the optimization is decreased form Mk þ
Nk þOk to Mk þNk only, which would reduce compu-

tational complexity (we note that Ok � Mk and

Ok � Nk).
We integrate the factors f2v=3v corresponding to the

camera poses described in equations (26) and (27) with

the target tracking-related factors fmm and fproj defined

in equations (16) and (18) to yield the joint pdf P

Xk;YkjZkð Þ over the relevant states only. The target

becomes, therefore, the only 3D point to be estimated

in the process

P Xk;YkjZkð Þ / priors

�
Yk�1

i¼1

fmm yi; yi�1ð Þfproj xi; yið Þ
YN
j¼1

f2v=3v Xj

� � !
(30)

Figure 2. Factor graph representation for a small example
including three views xk, xl, xm. (a) The BA problem, where the
three views are related to the landmark l with projection factors.
(b) The LBA problem, where the landmark l has been eliminated,
and the three views are related by two- and three-view
constraints.
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where, similar to equation (15), priors ¼ p x0ð Þp y0ð Þ
represents the prior information and Xj is the relevant
subset of views for the ith frame.

Solving the localization and target tracking problem
then corresponds to estimating the MAP

X�
k;Y

�
k ¼ argmax

Xk;Yk

P Xk;YkjZkð Þ (31)

which is equivalent to minimizing the cost function

J Xk;Ykð Þ ¼ jjx0 � bx0jj2Rx
þ jjy0 � by0jj2Ry

þ
Xk
i¼1

ðjjyi � Uiyi�1jj
2

Rmm
þ jjzyii

� proj xi; yið Þjj2Rv

þ
XNh

j

jjhjðXj;ZjÞjj2Rj
Þ

(32)

An illustration expressing the above factorization
for the same example as in Figure 1 is shown in
Figure 3.

LBA and multi-target tracking

The considered problem can be straightforwardly
extended to multi-target tracking by integrating the
additional targets into the formulation from equation
(30). Considering n targets, the corresponding joint pdf
can be written

P Xk; �YkjZkð Þ / priors

�
Yk�1

i¼1

Yn
l¼1

fmm yli; y
l
i�1

� �Y
p2Ti

fproj xi; y
p
ið Þ
YN
j¼1

f2v=3v Xj

� � !
(33)

where �Yk ¼ Y1
k;Y

2
k; . . .;Y

n
k


 �
is the set of all targets’

states up to time-step tk and Yn
k refers to the states of

the nth target up to time-step tk. We denote Ti the set of
targets observed at time-step ti. Here, we assume the
identification of the targets that leave and re-enter the
camera’s field of view as given. Solving this data-
association problem is a challenging task by itself and
is outside the scope of this work.

Incremental smoothing

Solving the abovementioned non-linear least square
problems is achievable using several optimization
methods. Online operation requires this task to be per-
formed efficiently, and therefore, cost-efficient techni-
ques were implemented in this work.

Batch optimization performs factorization of the
Jacobian matrix A from scratch each time new varia-
bles are added to the problem. In contrast, incremental
smoothing updates the problem as new measurements
and variables arrive, by directly updating the square
root information matrix R and recalculating only the
matrix entries that actually change.39 Furthermore,
instead of performing batch re-ordering, eliminating
the corresponding factor graph into a Bayes tree14

allows for incremental variable ordering, which keeps
the R matrix sparsity at a relatively constant level.
Additionally, rather than fully re-linearizing the
whole set of variables at a determined point in time,
iSAM2 performs fluid re-linearization, which triggers
re-linearization of a variable only when the deviation
between its current estimate and the linearization point
is larger than a defined threshold, set heuristically or as
part of a “tuning” process.

Results

We demonstrate the benefits of the proposed method
with simulations performed on synthetic datasets and
with real-imagery experiments. Experiments were per-
formed considering a downward-facing camera
mounted on a flying vehicle, which tracks a single
target, for the sake of simplicity. For each scenario,
target tracking and ego-pose estimation using LBA
and full BA are compared in terms of accuracy and
processing time. All experiments were run on an Intel
i7-4720HQ quadcore processor with 2.6 GHz clock rate
and 8GB of RAM. The methods used for comparison
were implemented using the GTSAM library (https://
research.cc.gatech.edu/borg/download).

Experimental evaluation

with synthetic datasets

A series of simulations were performed on synthetic
datasets in order to compare our method with full
BA technique and to demonstrate its capability in

Figure 3. Factor graph representing a factorization of the joint
pdf for LBA and target tracking.
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terms of computational performance and estimation

accuracy for both camera and target states. We present

two types of studies: A statistical performance study on

an approximately 3-km long aerial scenario (Figure 4),

and a case study in a larger aerial scenario (Figure 6(a)).

In both cases, the downward-facing camera operates in

GPS-denied environments and occasionally re-visits pre-

viously explored locations, providing occasional loop-

closure measurements. The priors p x0ð Þ and p y0ð Þ are

Gaussians with means equal to their initial values, and

with r ¼ 2 m½ � standard deviation. The measurement

model assumes an image noise r ¼ 0:5 pix½ �. The

continuous-time system is discretized with time-step

�t ¼ 3 s½ �. Regarding target motion, we use the constant

velocity model and assume a zero-mean, white Gaussian

noise r ¼ 30; 30; 0:001½ �T m=s½ �. Here, we constrained

the noise on the z axis to prevent divergence, both

with LBA and BA, which use data only from a single

monocular camera. Addressing this issue would proba-

bly require additional information or constraints on the

target motion (multi-robot setup, additional sensors,

geometric constraints, etc.).

Statistical simulation results

A performance comparison between the proposed

method and BA with target tracking is presented in a

45-run Monte-Carlo study. The scenario used in this

simulation, shown in Figure 4, contains 52 frames,

gathered over �160 s. Loop-closures can be noticed

around views 20 and 38. The simulated target takes a

similar course on the ground and for the sake of sim-

plicity, stays in the camera’s field of view throughout

the process. The comparisons presented in Figure 5(a)

to (c) are given in terms of root-mean-square error
(RMSE), calculated over the norms of the error vec-
tors. All results refer to incremental estimations, i.e. at
each time tk performance is evaluated given Zk, which
is in particular important for online navigation.

Figure 5(a) and (b) describes the camera incremental
position and orientation errors and Figure 5(c) shows
the target position error. We observe similar levels of
accuracy with the two techniques. The camera pose and
target trajectory errors are bounded, with clear nega-
tive trend in both the camera and target position errors
around view 20, upon loop closure. We note that, in
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Figure 5. Monte-Carlo study results comparing between the
proposed method and full BA with target tracking (a) camera
position RMSE; (b) camera orientation RMSE (including close-
up); (c) target position RMSE; (d) running time average with
lower and upper boundaries.
LBA: light bundle adjustment; BA: bundle adjustment; RMSE:
root-mean-square error.

Figure 4. Scenario used for statistical study. Camera and target
trajectories are shown in red and blue, respectively. At this scale,
ground truth and estimated trajectories are indistinguishable (see
Figure 5).
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this case, the navigation is performed relatively to the

camera’s and target’s initial positions. Those were ini-

tialized from their ground truth values, causing initial

errors to be zero for all the estimated states.
Figure 5(d) shows statistics over running time

between the proposed method and full BA with target

tracking. For BA, a distinct increase in computational

time can be observed at view 38, where a loop closure

occurs. While one can already observe a significant dif-

ference in running time between the two methods in

favor of LBA, we confirm this observation further

in a larger scenario and with real imagery experiments

in the next sections.

Large scenario

The large scenario, shown in Figure 6(a), simulates an

approximately 14.5-km-long aerial path and involves a

series of loop closures, resulting in variables recalcula-

tion during optimization. The target takes a different

course on the ground (as shown in Figure 6(b)), which

causes losses of target sight for approximately a sev-

enth of the frames. In these cases, only the motion

model factor is taken into consideration.
The obtained average camera position incremental

errors for LBA and BA are 1.27 and 0.51 m, respec-

tively, with a maximum error of 5.11 and 2.33 m. While

the accuracy levels are similar, one can easily notice the

difference in running time. Loop closures have a high

impact on BA running time due to the landmark re-

elimination and re-linearization they trigger; this

process is avoided with LBA. It results in an average

processing time of 3.3 s for LBA with target tracking,

versus 22.2 s for BA method. The obtained overall

processing time for the same scenario is 809 s for the
proposed method, versus 5329 s with BA.

Since we are interested to assess the similarity in
terms of accuracies between the two techniques, we
show in Figure 7(a) to 7(c) the relative errors between
LBA and BA methods, meaning the difference between
the estimation errors using both methods. Then, a com-
parison of the processing time is shown in Figure 7(d).

Experimental evaluation with

real-imagery datasets

Further evaluations were performed through real-
world experiments conducted at the Autonomous
Navigation and Perception Lab (ANPL). Similarly to
the synthetic dataset evaluation, these experiments
involve a downward-facing camera which performed
an aerial pattern while tracking a dynamic target
moving on the ground. Ground truth data were gath-
ered for the camera and the dynamic target using an
independent real-time 6DOF optical tracking system.
A scheme of the lab setup is presented in Figure 8 and
two samples of typical captured images are presented
in Figure 9. The recorded datasets are available
online and can be accessed at http://vindelman.net.
technion.ac.il.

Two different datasets were studied. In the first
dataset, ANPL1, the camera and the target perform
circular patterns, while in the second, ANPL2, they
move in a more complex and unsynchronized
manner, with occasional loss of target sight. Both
cover an area of approximately 10 m½ � � 6 m½ �. In
ANPL1, the camera and target travel 26.9 and 34.6
m, respectively, while in ANPL2, the distance traveled
is 19 and 21.1 m, respectively. Image sensing was
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ground truth and estimated trajectories are indistinguishable (see Figure 7).
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performed using a high definition, wide angle camera
and image distortion was corrected using calibration
data. Table 1 provides further details regarding the
number of views and observations, camera settings,
and dataset durations.

Data association is performed using an implementa-
tion of the RANSAC algorithm40 on the SIFT features
that were extracted from the images and stored for
potential loop closures. Since the experiments were
conducted in a relatively constrained area with a wide
field-of-view camera, numerous loop closures occur,
as locations are often re-visited. For LBA, a single

three-view constraint is added for each landmark

observed more than twice in the past. This three-view

constraint involves the current observation, the earliest

observation and the one in the middle. A similar con-

cept is used for 3D points triangulation, meaning the

current observation and the earliest observation are

taken into account. The target is detected by identifi-

cation of the most highly recurrent SIFT feature,

meaning we assumed that the SIFT feature which

was detected in the highest number of frames belongs

to the target. Although more advanced techniques

exist, they are outside the scope of this work.
We compare the pose estimation errors of the

camera and the position errors of the dynamic target

with respect to ground truth for both LBA with target

tracking and full BA cases. Incremental smoothing was

applied for both methods in ANPL1 dataset and stan-

dard batch optimization in ANPL2. QR factorization

was used in all cases. We assume priors p x0ð Þ and p y0ð Þ
on the initial camera and target states with means equal

to their respective ground truth values and a r ¼ 0:3
m½ � standard deviation. For the rest of the estimation

process, new camera states are initialized by composi-

tion of last estimated pose with the relative motion

from ground truth, corrupted with a white Gaussian

noise r ¼ 0:1 m½ � for position (i.e. the typical distance

traveled between two frames) and r� ¼ 5 deg½ �
(0:09 rad½ �) on each axis for orientation. A different

option, tested with the LBA method, consisted in com-

posing the previous estimate and the relative motion

extracted from the essential matrix calculated during

0 50 100 150 200 250
0

1

2

3

4

5
(a)

(b)

(c)

(d)

R
el

at
iv

e 
E

rr
or

s 
[m

]

Pose index

Camera Position

0 50 100 150 200 250
0

0.02

0.04

0.06

R
el

at
iv

e 
E

rr
or

s 
[d

eg
]

Pose index

Camera Orientation

0 50 100 150 200 250
0

1

2

3

4

5

R
el

at
iv

e 
E

rr
or

s 
[m

]

Pose index

Target Position

0 50 100 150 200 250
0

20

40

60

80

100

P
ro

ce
ss

in
g 

T
im

e 
[s

ec
]

Pose index

Processing Times

Dyn LBA

Dyn BA

Figure 7. Incremental relative errors of LBA method with
respect to BA method for the (a) camera position, (b) camera
orientation, (c) target position, in the large-scale synthetic sce-
nario. (d) a comparison of the processing times per frame.
LBA: light bundle adjustment; BA: bundle adjustment.

Figure 8. Conceptual scheme of the lab setup for the real-
imagery experiments. The camera was manually held facing
downwards and moved around the lab, in pre-defined patterns.
Trackers, represented by yellow dots, were installed on the
camera and on the target, allowing for detection by the ground
truth system and measurement of their 6DOF poses. Images
were scattered on the floor to densify the observed environ-
ment. Best seen in colour.
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the data association process.34 Results using the latter
initialization method indicate similar performance with
respect to the former initialization method. Here again,
we use the constant velocity model for the dynamic
target. This motion model becomes the only available
information for trajectory estimation when the target
moves out of the camera’s field of view, as it is the case
for �15% of the frames in ANPL2. Similarly to the
synthetic simulations, we assume the target moves on
the ground, and thus constrain the first vertical velocity
to zero. The measurement model assumes an image
noise r ¼ 0:5 pix½ �.

Figure 10 shows the estimated trajectories and
ground truth for the camera and the dynamic target
in both datasets, using LBA method. We calculate an
average error in position estimation of 22 and 38 cm for
the camera and the target, respectively, in ANPL1
dataset, and of 49 and 47 cm in the ANPL2 dataset.
The same level of position accuracy is calculated for the
BA method. These errors are due (at least partially) to
a specific practical data synchronization issue (ground
truth data vs. image sequence) during the experiment.
Similarly to the large-scale simulation case, we show in
Figures 11(a) to (c), the relative errors between LBA

Figure 9. Typical images from the ANPL1 real-imagery dataset.

Table 1. Dataset details.

Camera resolution (pix) Frames Duration (s) Landmarks Observations

ANPL1 1280� 960 80 40 2439 31,333

ANPL2 1920� 1080 40 117 3366 25,631

ANPL: Autonomous Navigation and Perception Lab.

Figure 10. Estimated vs. ground truth 3D trajectories with real-imagery datasets for LBA approach in (a) ANPL1 dataset (b) ANPL2
dataset. BA approach produces similar results in terms of estimation errors, as shown in Table 2.
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and BA methods and a comparison of the processing
time in Figure 11(d).

Tables 2 and 3 summarize the absolute values of the
relative errors and the processing times for the two
datasets. In both cases, the two methods show similar
levels of accuracy: The average values for target and
camera positions are 7 and 6 cm, respectively, for
ANPL1 dataset, and 14 and 8 cm for ANPL2 dataset.
In contrast, LBA with dynamic target tracking shows
consequently better computational performances.

The mean processing time per step is reduced by 61%
for ANPL1 and by 39% for ANPL2.

Conclusions and future work

We presented an efficient method for simultaneous ego-
motion estimation and target tracking using the LBA
framework. By algebraically eliminating the observed
landmarks from the optimization, we allow the target
to become the only reconstructed 3D point in the pro-
cess. This reduces significantly the number of variables
compared to full BA methods, and thus, allows for
processing time improvements. We presented the math-
ematical process involved in the integration of the
target tracking problem into the LBA framework, lead-
ing to a cost function that is formulated in terms of
multi-view constraints, target motion model, and
observations of the target. Computational efforts are
further reduced by applying incremental inference over
factor graphs representing the optimization problem,
thus performing partial calculations at each optimiza-
tion step.

We investigate the performance of the proposed
approach and compare it to the corresponding BA for-
mulation using synthetic and real-imagery datasets.
While the two approaches exhibit similar accuracy
levels, a significantly reduced running time was
obtained for the proposed approach with both experi-
mental methods. In particular, the presented method
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Figure 11. Incremental relative errors for the (a) camera
position, (b) camera orientation, (c) target position, in ANPL1
dataset, (d) a comparison of the processing times per frame.
LBA: light bundle adjustment; BA: bundle adjustment.

Table 2. Relative estimation errors summary of LBA method
with respect to BA method for the camera and target positions
in ANPL1 and ANPL2 datasets.

Target position

error (m)

Camera position

error (m)

Dataset Mean Max Mean Max

ANPL1 0.07 0.19 0.06 0.18

ANPL2 0.14 0.42 0.08 0.34

Note: The table entries are absolute values.

ANPL: Autonomous Navigation and Perception Lab.

Table 3. Summary of the processing times with LBA and BA
methods for the ANPL1 dataset.

Processing time (s)

Dataset Method Mean Total

ANPL1 BA 5.6 447.8

LBA 2.2 177.1

ANPL2 BA 3.1 222.9

LBA 1.9 139.4

LBA: light bundle adjustment; BA: bundle adjustment; ANPL:

Autonomous Navigation and Perception Lab.
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was up to seven times faster than full BA in the simu-
lations and up to two and a half times faster in the real-
imagery experiments. This difference, however, is
expected to vary with the number of landmarks
observed per frame. The created real-imagery datasets
have been made available to the research community
through the ANPL website. These datasets include
recorded images with synchronized ground truth for
both the camera and the target, and is seen as a con-
tribution by itself.

As for future work, aerial experiments including scale
estimation for both BA and LBA methods (potentially
using fusion with additional sensors such as IMU) could
further improve the realism of the scenario. Also, an
experimental implementation of our method to the
multi-target tracking problem seems a natural continu-
ation. In this case, the method used for targets detection
and data-association represents a real challenge.
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