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Abstract— This paper presents an consistent decentralized
data fusion approach for robust multi-robot SLAM in dan-
gerous, unknown environments. The DDF-SAM 2.0 approach
extends our previous work by combining local and neigh-
borhood information in a single, consistent augmented local
map, without the overly conservative approach to avoiding
information double-counting in the previous DDF-SAM algo-
rithm. We introduce the anti-factor as a means to subtract
information in graphical SLAM systems, and illustrate its use
to both replace information in an incremental solver and to
cancel out neighborhood information from shared summarized
maps. This paper presents and compares three summarization
techniques, with two exact approaches and an approximation.
We evaluated the proposed system in a synthetic example
and show the augmented local system and the associated
summarization technique do not double-count information,
while keeping performance tractable.

I. INTRODUCTION

A key enabling technology for robust multi-robot teams
capable of operation in challenging environments is a percep-
tion system capable of fusing information in a decentralized
manner. The SLAM community has produced substantial
improvements in the quality of robot mapping techniques,
enabling efficient, real-time mapping using a variety of
sensors in single-robot cases. This paper addresses the appli-
cation of these state-of-the-art SLAM techniques to fleets of
small, cheap robots to enable robust multi-robot perception,
extending the sensor horizon of any individual robot. Fig. 1
shows a simple three-robot mapping scenario with commonly
observed map landmarks motivating this approach.

In our previous work on decentralized robot perception
[1], [2], we introduced DDF-SAM (denoted as DDF-SAM
1.0 in this paper), a SLAM paradigm extending Smoothing
and Mapping (SAM) [3] techniques to the Decentralized
Data Fusion (DDF) problem [4] by robots performing local
SLAM and sharing a subset of map variables with neighbors
in the form of summarized maps. The key component of
the approach is the sharing of summarized densities between
robots, allowing for application-specific choices of transmit-
ted information that users can throttle to match the available
communication bandwidth between platforms.

However, DDF-SAM 1.0 has two key shortcomings: 1)
an overly conservative approach for avoiding information
double-counting, and 2) reliance on a batch marginalization
approach for map summarization. The method employed
for avoiding information double-counting enforced a strict
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Fig. 1. Example multi-robot SLAM scenario, showing three robots observ-
ing landmarks (stars), with some landmarks in common. Also illustrated is
factor graph with measurements (edges with filled black circles) and the
trajectory for each platform.

separation between a robot’s local map and it’s neighbor-
hood map comprised of data from neighboring robots -
an approach that avoids double-counting at the expense of
each robot maintaining two separate, but incomplete maps
of its environment. Furthermore, the batch summarization
technique used to marginalize non-shared variables from the
local map performs a computationally expensive and separate
factorization of the entire local system, which increases in
complexity over time and limits scalability. We examine
alternate approaches for summarization, as well as the impact
these approaches have on performance in the full system.

To address these shortcomings, we introduce DDF-SAM
2.0 with the following contributions towards effective de-
centralized perception: 1) the augmented local system as a
replacement for the separate local and neighborhood maps
maintained in DDF-SAM 1.0 to provide a single, consistent
map on each robot blending local and neighborhood informa-
tion, 2) the anti-factor as a tool to avoid double-counting of
neighborhood information by down-dating estimates, and 3)
the derivation and evaluation of three summarization tech-
niques applicable to incremental solving techniques, using
both exact marginalization and approximations.

II. RELATED WORK

While this paper focuses on a graphical-model formulation
of the multi-robot SLAM problem, there is a long history of
related work in distributed inference. As is common through-
out much of the mapping and estimation community, many
techniques employ filtering approaches to perform inference.
Roumeliotis et al. [5] consider an extended Kalman filter
(EKF) framework and perform a decentralized calculation
of the augmented covariance matrix between all the robots
in the group assuming relative pose measurements. Nerurkar



et al. [6] develop a MAP estimator with a distributed data-
allocation scheme to simultaneously process and update local
data while incorporating inter-robot relative measurements.
Bahr et al. [7] introduced a method for consistent cooperative
localization with a bank of filters for tracking the origins of
measurements to prevent double-counting. Indelman et al.
[8] used a graph-based approach to calculate the correlation
terms for consistent information fusion in the EKF frame-
work. Another method for consistent information fusion is
covariance intersection [9], previously applied to single-
robot SLAM [10] with straightforward extensions to multi-
robot SLAM. Thrun et. al, presented an extension of the
sparse extended information filter for multi-robot scenarios
[11], [12], which actively removed information to ensure
sparseness at the cost of approximation.

In addition to filtering approaches for multi-robot SLAM,
there are a variety of centralized graph-SLAM techniques,
such as C-SAM [13], which combines observations from
multiple robots in a single factor graph. Centralized graph-
SLAM techniques allow for easier extension of single-robot
SLAM algorithms, such as iSAM [14] applied to multi-robot
mapping via pose-graphs [15], but centralizing inference
makes scalability to large robot systems with unreliable com-
munication difficult, especially when performing inference
online. Bailey et al. [16] proposed a cooperative localiza-
tion technique using relative range-bearing measurements
between the robots, extending previous work in the context
of airborne SLAM [17]. Several works fuse information from
multiple local maps into a global map without updating the
local maps with the global solution [18], [19].

III. PROBLEM FORMULATION

The goal for decentralized SLAM is to extend the sensor
horizon of individual robots in a decentralized robot team
with the inclusion of neighborhood information. The primary
characteristic of a decentralized system is that individual
nodes communicate with only those nodes in their local area,
or neighborhood. In a SLAM context, this means there is no
global map at a central server, only neighborhood estimates
on each robot. Let Nr be the set of robots that communicate
with r, such that r /∈ Nr, and let N ′r be an augmented
neighborhood N ′r , {Nr, r}. In practical scenarios, this is a
time-varying set due to intermittent communication, resulting
in a dynamic network. Robust system operation within this
dynamic network topology and under limited computation
comprise the key requirements for a DDF algorithm.

One key challenge in DDF systems is avoiding overconfi-
dence due to double-counting measurements as information
propagates through the network. Consider the following
example with three robots A, B, and C: robot A shares local
information with robot B, then robot B incorporates this
information into its own estimate and shares information with
robot C. Robot C incorporates the information from robot B
(which contains information from robot A), and finally shares
its new estimate with robot A. By completing this cycle in
the network, robot A has now received information derived
from both its own local estimates (as was shared with B),

and from local measurements by robots B and C. If robot A
treats the message from robot C as independent of its own
measurements, it will double-count its local measurements,
leading to overconfidence in its estimate. It is possible to
avoid this problem by enforcing non-cyclic constraints on
network topology [20], but this reduces the resilience of the
system to communication and node failures.

In addition to the typical poses X and landmarks L of a
typical SLAM formulation, we additionally denote each set
to include the observing robot r. Let Xr denote poses {xri },
Lr be the set of observed fixed environmental landmarks{
lrj
}

by the robot r. For convenience, let Θr ∆
= {Xr, Lr}.

As an extension of this superscript notation for the associated
robot, we denote multi-robot quantities replacing a single
robot r with a set, such as N ′r, such that ΘN ′

r represents the
union of all θ within r and in neighboring maps. Denote
the set {zrm} of sensor observations by robot by as Zr,
where for each zrm there exists a sparse generative prediction
model h (Θr

m) = z̄rm , where Θr
m is exactly the subset

of involved involved variables (such as a single pose and
landmark for a single landmark sighting) and z̄rm is the
predicted measurement. As is typical in SLAM formula-
tions, we assume measurements are corrupted by zero-mean
Gaussian noise. This paper assumes known data associations
between measurements and landmarks are for both single
robot platforms and between robot platforms; for a treatments
of data associations between platforms, see [2], [21].

Individually, each robot r in a team of robots is capable
of performing full SLAM locally, which we can augment
with map information from robots in the neighborhood Nr
of r to a) improve the certainty on the landmarks Lrdirectly
observed by r and b) incorporate neighborhood landmarks
LNr into the map of r.

The following sections describe the core representations of
probabilistic inference for SLAM, introducing factor graphs,
the variable elimination algorithm, and the Bayes tree as a
partially solved form of a factor graph after elimination. For
a more detailed treatment, see [3], [22].

A. Inference in SLAM

As in a single-robot SLAM scenario, we use a factor
graph to represent the inference problem. Let φ(Θ) be a non-
negative, real-valued function of these variables that factors
over subsets Θi ⊆ Θ, as in

φ(Θr) =
∏
i

φri (Θ
r
i )

then a factor graph is a bipartite graph that expresses this
factorization [24]. Formally, the factor graph G ∆

= (Φ,Θ, E)
has two types of nodes: factors φi ∈ Φ and variables θj ∈ Θ.
An edge eij ∈ E signifies that a variable θj ∈ Θi.

For single robot we calculate the maximum a posteri-
ori estimate over the full likelihood p (Θr|Zr) using the
factorization, which each factor is parameterized on its
corresponding measurement φri (Θ

r
i ; z

r
i ) ∝ p (Θr

i |zri ). We



cast inference as the optimization problem

Θr∗ ∆
= arg max

Θr

∏
i

φri (Θ
r
i ; z

r
i )

and then reformulate the cost function in negative log-
likelihood form to generate an additive cost function, which
allows us to treat the problem as a large scale minimization
problem with loss function

L (Θr)
∆
=
∑
i

φri (Θ
r
i ; z

r
i ) ∝ − log

∏
i

p (Θr
i |zri ) .

With this loss function we can solve for the full solution
Θr in batch using non-linear optimization techniques, such
as Levenberg–Marquardt, by successively linearizing and
applying the delta computed from solving a linear system.
Each iteration of the non-linear solver involves linearization
of the original system about the current estimate Θ̂r, solving
for the delta vector ∆ which is then used for updating the
linearization point Θ̂r.

In order to make online inference tractable, we will more
closely examine the linear solver

B. Variable Elimination

The elimination algorithm is a way to factorize a factor
graph into a Bayes net of the form

p (Θ) = p (θ1|S1) p (θ2|S2) . . . p (θn) (1)

where Sj denotes an assignment to the separator S(θj) of
variable θj , defined as the set of variables on which θj
is conditioned, after elimination. The elimination algorithm
closely follows the notation in [25], although using a dif-
ferent narrative where the end-result is a Bayes net. Let
Φj:n

∆
= φ(θj , . . . , θn) denote a partially eliminated factor

graph. The algorithm proceeds by eliminating one variable
θj at a time, starting with the complete factor graph Φ1:n.
Eliminating a single variable θj yields a single conditional
p (θj |Sj), as well as a reduced factor graph Φj+1:n on the
remaining variables. After all variables have been eliminated,
we obtain a Bayes net with the factorization in (1). The
computational cost of this algorithm depends strongly on the
order in which we eliminate variables, in which orderings
yielding small separator set sizes reduce the cost of each
elimination operation.

We use partial elimination, in which we create a factor
graph Φj:n on a smaller set of variables, as a means to create
a joint density over a specific set of variables. To create a
factor graph on a set of variables ΘA, choose an ordering
such that Θ \ΘA appear first.

C. Incremental Solving with the Bayes Tree

With a linear system factorized through elimination, we
can exploit the structure of the resulting Bayes net to allow
for incremental solving [14] of a single solver, in which we
update only sections of an existing Bayes net as we add new
factors to the system. In this paper, much of the focus will
be on using this solver efficiently in a multi-robot context to
avoid expensive batch elimination steps.

Fig. 2. Small example Bayes tree, showing a root clique with two variables,
and two leaf cliques.

The structure of the Bayes net in an incremental solver has
as a more general structure that we can exploit: the Bayes tree
[22], [23] is a tree-structured graphical model that defines a
factored density over cliques of variables. Each node in the
tree defines a conditional density conditioned on its parent, in
the much same way as a Bayes net. However, unlike Bayes
nets, a Bayes tree is always acyclic, and its nodes can have
variables in common. The formal definition of the Bayes
tree is given below. Given a set of variables Θ, a Bayes tree
T = (C, E) is a rooted tree whose nodes represents cliques
Ci ⊂ Θ, while its structure defines the following joint density
P (Θ) on the variables Θ:

P (Θ) =
∏
i

P (Fi|Si) (2)

Here the separator Si is defined as the intersection Ci ∩Πi

of a clique Ci and its parent clique Πi, the frontal variables
Fi are the remaining variables in Ci, i.e., Fi

∆
= Ci \ Si,

and P (Fi|Si) is a conditional density on Fi given Si. An
example is shown in Figure 2, where we write Ci = Fi : Si
for a clique Ci.

IV. DDF-SAM 1.0

The DDF-SAM 1.0 architecture [1] has three main parts:
a) Each robot r updates its own local map with incoming
measurements Zr from onboard sensors, b) summarizes the
local map to form a density Φ̃r (Θr) on exactly the variables
to share (usually chosen to be locally observed Lr), and
then distributes this density its neighbors; and c) maintains a
neighborhood map by fusing all available summarized maps,
including the local summarized map, into a single estimate
over variables shared between robots.

In this approach, we avoid double-counting by maintain-
ing two separate maps on each robot r: the local map
p (Xr, Lr|Zr) containing all locally available measurements,
and the neighborhood map p

(
LN

′
r |ZN ′

r

)
, which is the

fusion center for received summarized maps. The only con-
nection between these maps occurs as we summarize the
local map into p (Lr|Zr) and add this summarization to
the neighborhood map. At no point does any information
propagate from the neighborhood map back to the local map,
which ensures that summarized information is completely in-
dependent of any neighboring robots, and that no information
is double-counted.

To summarize the local map, we use the partial elimina-
tion approach described in Sec. III-B to eliminate Xrfrom



Fig. 3. The augmented local system corresponding to the scenario in
Fig. 1, focusing on the center robot receiving summarized maps from the
two neighboring robots. Note the expanded region of coverage through the
addition of summarized neighborhood information.

p (Xr, Lr|Zr), yielding a summarized map Φ̃r (Θr)
∆
=

p (Lr|Zr). To compute this summarization, DDF-SAM 1.0
uses batch summarization, in which we eliminate the entire
local system with a new ordering, which is expensive, and
occurs at every summarization interval.

We construct the neighborhood map for each robot r by
caching all received summarized maps from neighboring
robots and the local robot, such that the neighborhood map

p
(
LN

′
r |ZN

′
r

)
=

N ′
r∏
i

p
(
Li|Zi

)
(3)

treats each received summarized map (including the summa-
rization of the local robot’s map) identically. Upon receiving
new summarized maps, we rebuild the entire graph and solve
in batch, which becomes increasingly expensive as the robots
explore more area.

While this two-map structure succeeds in avoiding infor-
mation double-counting by means of preventing any neigh-
borhood information from being incorporated with the local
system, this approach is overly conservative and inefficient.
In addition, we cannot use neighborhood information to
improve the trajectory estimate Xr, and are left with possibly
inconsistent maps of landmarks Lr and LN

′
r .

V. DDF-SAM 2.0

This paper contributes DDF-SAM 2.0, an approach to
preventing the double-counting of information, even while
combining both local and neighborhood information into a
single incremental Bayes tree solver, resulting in an Aug-
mented Local Graph, as shown in Fig. 3. This approach
enables each robot to maintain a consistent SLAM solution
with an extended effective sensor horizon provided by map
information from neighboring robots.

It is a simple extension of DDF-SAM 1.0 to assemble a
single graph containing both the local density and summa-
rized maps from neighboring robots, and maintain a single
incremental solver, but difficulty arises when summarizing
this augmented local system to share with other robots.

The key insight enabling the augmented local system comes
from additive nature of information when incorporating new
measurements: not only is it possible to add information to
a system, but to subtract information as well.

In the following we present an approach for consistent
information fusion, i.e. without double-counting, while sum-
marizing information and incorporating the new summarized
information into augmented local maps. To that end we
introduce the anti-factor to down-date factorized estimates.
In addition, we can reduce the number of redundant solving
operations on each platform by reusing the Bayes tree
computed during local updates.

We separate the key operations in this approach into an
update step, in which we add new factors from either local
measurements or from a new summarized map from another
robot, and a summarization step, in which we produce
density on a subset of available variables for sharing with
neighboring robots. First, we will derive the anti-factor for
linear systems.

A. Anti-factor Down-dating

Assume a robot has a factor graph that corresponds to the
following system, linearized about the current estimate Θ:

A1,n∆ = b1,n (4)

where A1,n and b1,n are defined as

A1,n
.
=

[
AT1 . . . ATr . . . ATn

]T
b1,n

.
=

[
bT1 . . . bTr . . . bTn

]T
with Ai and bi being the Jacobian and the right-hand-side
term of the ith factor. The system (4) can be re-written as

n∑
i=1

ATi Ai∆ =

n∑
i=1

ATi bi.

In practice, we apply factorization techniques to exploit
the system sparseness and factorize the Hessian Hn

.
=∑n

i=1A
T
i Ai as Hn = AT1,nA1,n = RTnRn, with Rn being

an upper triangular matrix. The system (4) can therefore be
written as

Rn∆ = dn

where dn
.
=
(
RTn
)−1

AT1,nb1,n.
Assume the factor that corresponds to the measurement

Jacobian Ar and the right-hand-side vector br represents
information that was obtained from some other robot. This
factor should be canceled out before the current robot shares
information with that robot. One can readily observe that the
factor (Ar, br) is canceled out by introducing an anti-factor
that corresponds to the following operations

Hn+1 = RTn+1Rn+1 = Hn −ATr Ar

dn+1 =
(
RTn+1

)−1 (
RTndn −ATr br

)
Another way to look at it is to consider the term
‖Ar∆− br‖2 that the factor (Ar, br) contributes to the cost
function. This term can also be written as ∆TATr Ar∆ −



2∆TATr br + bTr br and adding the same expression with a
negative sign to the cost function will cancel out the factor
(Ar, br).

In further descriptions, we will denote an anti-factor
using inverse notation, such that for a set of factors Φ, the
corresponding anti-factor will be denoted Φ−1.

B. Local and Neighborhood Updates

Updating the solver with local factors remains essentially
the same as in a single-robot iSAM case, in which we simply
add new factors to the existing graph and update the Bayes
tree solution.

While adding a new neighborhood system is an operation
that consists of adding a new set of factors to the underlying
linear solver on a robot, because summarized maps actually
replace information from previous timesteps, we use anti-
factors to cancel the previously added information. Let a be
a neighboring robot, sending a summarized graph Φ̃ak (Lak) at
time k, and we wist to integrate this graph into the existing
augmented local graph of robot r. Let Φ

N ′
r

k

(
LNr

k

⋃
Θr
k

)
denote an augmented local system, operating on the union
of neighborhood variables LNr

k with the set of all locally
observed variables Θr

k. If we were to eliminate this system
to form a Bayes tree in an incremental solver, we can
incorporate a summarized map Φ̃ak (Lak) from robot a into the
augmented local graph exactly as if it were a set of new local
measurements. However, when r receives a new summarized
map Φ̃ak+1

(
Lak+1

)
, there is substantial shared information

with the summarized map previously incorporated. In DDF-
SAM 1.0, we solved this problem by reconstructing the entire
graph from only the latest cached summarized maps, but this
results in a large batch optimization procedure to integrate a
new summarized map.

With a down-dating procedure, however, we can sub-
tract out the information from the old summarized map
from time k and then add the new summarized map
from k + 1. In order to add a new summarized graph
while removing double-counted information, we instead add(

Φ̃ak (Lak)
)−1⋃

Φ̃ak+1

(
Lak+1

)
, in which we add the anti-

factor opposite of the summarized map from time k and
the new map from time k + 1 simultaneously. From the
perspective of updating an incremental solver, this is no
different an operation than adding new local factors.

C. Summarization

A key component of the DDF-SAM approach is the use
of summarization, in which each robot shares information on
only a subset of variables with its neighbors. Choosing this
set of variables to share with neighboring robots allows for
throttling the amount of data transmitted between robots to
those variables most likely to be useful. As previously, for
clarity of description, we will assume only locally observed
landmarks are to be shared.

While DDF-SAM 1.0 used batch elimination approach to
create an exact joint density on the shared variables, other
summarization approaches exist, both through exact algo-
rithms and approximations. In addition to batch, we introduce

an alternative approach for computing an exact summarized
map through reordering of the Bayes tree, and an approach
for efficiently computing a naive Bayes approximation from
the Bayes tree.

1) Schur Complement Reordering: We can address the
problem of summarizing the augmented local system without
recomputing the entire system by periodically reordering the
system to place exactly Lr at the root of the Bayes tree,
which allows us to extract the summarized map directly from
the Bayes tree without computation. In this case, we factorize
the system into p (Θr) = p

(
Xr, LNr |Lr

)
p (Lr), such that

we can extract p (Lr) directly from the root of the tree. It
should be noted that this approach, like batch summarization,
is an exact marginalization operation, so no information is
lost in the process.

For this approach, we assume that the Bayes tree solver
for a robot r executes reordering at every summarization
interval, and during local and neighborhood updates uses
the standard Bayes tree incremental procedure. The compu-
tational efficacy of this approach will depend on the density
of the graph.

2) Naive Bayes Approximate: Because exact marginal-
ization can become expensive, particularly in a densely
connected graph, we consider an approximate summarization
technique. In using approximate techniques, in order to
maintain consistent solutions throughout the robot network,
we must ensure that any approximation is more conservative.
For its interesting implications on the structure of the result-
ing Bayes tree, we examine the so-called “Naive Bayes,”
which approximates an arbitrary distribution p(x, y, z) as
independent marginals p(x)p(y)p(z). Thrun et al [12], shows
informally that the naive Bayes approximation is always
conservative

p(x, y, z) � p(x)p(y)p(z)

since
p(x, y, z) = p(x|y, z)p(y|z)p(z)

and conditioning on a variable can only increase information,
p(y|z) is more informative than p(y), and p(x|y, z) is more
informative than p(x). As such, we can construct a summa-
rized map out of the marginals of each saved variable.

The default approach for computing variable marginals in
a graphical system is to linearize and reorder, such that the
target variable θj is at the end of the ordering, and then elim-
inate the entire system. This is an expensive operation for
a single marginal, as it amounts to the same computational
process as batch summarization, but must also be repeated
for each variable. However, we can exploit the structure of
the Bayes tree to cache intermediate computations, which
allows us to only eliminate small portions of the tree. We
can compute a marginal p(Ci), in which Ci contains θj , and
then eliminate p(Ci) to yield the marginal θj .

The key is using the recursive structure of the tree to
compute only the marginals p(Si) on the separator sets Si,
via



p(Si) =

ˆ
¬Si

p(Fπ|Sπ)p(Sπ) (5)

where we informally used Πi = Fπ : Sπ . To avoid redundant
computation, we cache the separator marginals p(Sπ) so each
is only computed once. We can then compute the clique
marginals p(Ci) by

p(Ci) = p(Fi|Si)p(Si)

Fine-grained marginals on an individual variable θj can
always be computed by

p(θj) =

ˆ
¬θj

p(Fi)

for the (unique) clique Ci where θj is a frontal variable θj ∈
Fi, and where the frontal marginals p(Fi) can be computed
using with clique or separator marginals:

p(Fi) =

ˆ
Si

p(Ci) = p(Fi|Si)
ˆ
Si

p(Si)

If the marginal for more than one variable in Fi is required,
it is beneficial to cache the calculation of p(Fi).

A key characteristic of the resulting summarized map is
that rather than being a densely connected joint, as results
from exact approaches, the naive Bayes summarized map
is completely disconnected. While this has more obvious
implications on the size of messages between robots, the
neighborhood update step for robots receiving this summa-
rized map will be much sparser, such that updating the Bayes
tree will be less computationally expensive.

D. Down-dating Summarizations

While it is possible to use the existing Bayes tree to
compute a summarization, the measurements from the neigh-
boring robots Nr are still present in the system, we can
cancel out this neighborhood information through the use of
anti-factors. The summarized graph Φ̃rk (Lrk) sent by robot r
becomes the union of factors from the joint p

(
Lrk|Z

N ′
r

k

)
on

Lrk, and the set of all antifactors from cached neighborhood

maps
⋃
a∈Nr

(
Φ̃ak (Lak)

)−1

. While this results in adding
additional factors to a summarized graph before transmission,
it should be noted that linear factors in Hessian form can
be combined additively, ensuring the size of summarized
maps does not necessarily increase with neighborhood size.
Because we have exactly canceled out the information contri-
butions from all neighboring robots Nr before transmission,
we ensure that no information will be double-counted as
these summarized maps propagate between robots.

VI. EVALUATION

In order to evaluate exact cancellation of information
during inference, we simplified the scenario to remove the
additional complexities induced by nonlinearities, resulting
in a nearly-linear system. In this case, we assume each robot
chooses the same linearization point for each newly observed
variable. The impact of the GPS measurements is more

Fig. 4. Evaluation scenario ground truth with three flying robots over a
field of randomly generated landmarks.

subtle, in that by constraining the position of each pose in an
absolute coordinate frame, we ensure that rotational drift on
each platform cannot result in large changes to the solution in
the event of a loop closure. The motivation for these simplifi-
cations in the simulated system is to focus on ensuring exact
removal of double-counted information, and will address the
more general case, incorporating re-linearization and separate
decentralized variable initialization, in future work.

The implementation of both DDF-SAM 2.0 and an DDF-
SAM 1.0 (used as a control) uses the GTSAM C++ library
for the underlying graphical inference algorithms, with sim-
ulation and visualization provided through a Matlab wrapper.
To compare summarization approaches, at each summariza-
tion interval, the system performs both the DDF-SAM 2.0
Bayes tree summarization, making use of anti-factors, and
the full batch summarization approach of DDF-SAM 1.0. To
evaluate the effect on map quality of using the augmented
local map of DDF-SAM 2.0 over the split map representation
of DDF-SAM 1.0, we examined the precision of estimates
for both local and neighborhood maps.

We evaluated this new DDF-SAM 2.0 approach in a
simulated scenario designed to represent a small team of
quadrotor helicopters flying outdoors over an area of interest.
In this system, we model three platforms, each equipped with
a downwards facing camera, an inertial measurement unit
and a GPS system. The camera runs an image-based feature
detector, which produces labeled landmark detections. As a
simplifying assumption, the simulation provides known data
associations, both at the local and neighborhood level, for
each landmark.

The scenario includes randomly generated terrain consist-
ing of a volume of landmarks 30m by 10m by 0.5m, with
150 landmarks uniformly distributed throughout. The robot
trajectories represented forward flight at an altitude of 6m
above the landmarks, at a simulated velocity of 1m/s over
an interval of 30 sec.

VII. RESULTS

Example plots comparing the augmented local system
appear in Fig. 5 and neighborhood-only solution in Fig. 6.
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Fig. 5. DDF-SAM 2.0 Augmented Local System plotted at 4 seconds into
simulation with landmark covariances plotted, with comparison to ground
truth (black), augmented local systems with batch summarization (red) and
naive Bayes summarization (green), and a pure local solution (blue). This
image shows only variables with both local and neighborhood information.

These plots were extracted after a small number of poses
to ensure covariance ellipses are readily visible, and are
projected into a 2D plane for clarity of presentation. In these
cases, we compare the effect of approximate summarization
with exact batch summarization and the pure local solution
on variables shared between robots.

Fig. 5 compares the effect of the exactness of summariza-
tion approach on augmented local map solution, with ground
truth and the pure local solution as control comparisons. In
this case, we show the result on a single robot with two
neighbors, with the augmented local system created from ex-
act batch summarization and with naive Bayes approximate
summarization. The solution and covariance ellipses for both
summarization types are similar, and both are tighter than the
pure local solutions, indicating that the local estimate for a
robot improves with the integration of neighborhood factors.
Note that the local solution plotted is exactly the DDF-SAM
1.0 local map solution, which clearly shows that augmenting
the local map also improves estimation precision.

Comparing the uncertainty estimates for the augmented
local systems in Fig. 5 and the DDF-SAM 1.0 equivalent
pure-neighborhood plot in Fig. 6 provides qualitative insight
into consistency in DDF-SAM 2.0. Note that the marginal
covariance ellipses for variables in the neighborhood-only
system, which is guaranteed consistent by construction, are
the same as the local augmented system. As a qualitative
evaluation of consistency between the systems, the marginal
covariance ellipses be the same in each case, so long as no
information is double-counted or ignored.

In addition to qualitative measures of consistency, we
computed a numerical score for the information present in
individual summarized maps, defined as the trace of the
information matrix of each summarized map. If anti-factors
down-date summarized maps correctly, all summarization
techniques that directly exploit the Bayes tree should be no
more certain than the control batch summarization technique.
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Fig. 6. DDF-SAM 1.0 neighborhood-only map 2D plots with covariances
tracking the center robot in the simulated scenario, with comparison to
ground truth. Black denotes ground truth, green landmarks are purely local
landmarks, magenta landmarks overlap with neighbors, and red landmarks
are only observed through neighbors.
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Fig. 7. Quantitative measurement of information in summarized maps - the
trace of the information matrix for each summarization type. The difference
between batch summarization and Schur complement summarization is
within numerical error.

Fig. 7 shows this plot over time, indicating that the naive
Bayes approach is a conservative estimate for the full joint
density on the landmarks.

To evaluate computational impact of different summariza-
tion approaches, we present the timings for local updates,
summarization and neighborhood updates in Fig. 8. In this
case, we separated the timing plots for local and neighbor-
hood updates because we expect neighborhood updates to
become more expensive over time due to the increasing size
of summarized maps as robots explore.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a consistent decentralized
SLAM that extends the previous method by combining
local maps and information shared by other robots within
communication range into augmented maps. We introduced
anti-factor as a tool to avoid double-counting by down-dating
and systematically analyzing its application for incrementally
maintaining local augmented systems. In addition to the
original batch summarization approach, we presented an
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Fig. 8. Timing performance for updating a local augmented system with incoming local measurements (left), computing the summarized map (center),
and updating the local augmented system with summarized maps from neighboring robots (measured as mean time to add an incoming summarized map).
Each operation is evaluated when using batch summarization (equivalent to DDF-SAM 1.0), Schur complement reordering summarization and the naive
Bayes approximate reordering.

alternate exact summarization approach operating on the
Bayes tree directly, and a naive Bayes approximate summa-
rization algorithm. We presented an evaluation in a synthetic,
mostly linear scenario demonstrating that the DDF-SAM 2.0
algorithm can produce consistent estimates that exactly avoid
information double-counting. The results of this experiment
show that when summarizing a local augmented system,
we successfully subtract exactly the information that is
double-counted to yield summarizations that have equivalent
uncertainty to a batch summarization process.

In future work, we will relax the core assumptions made
by the evaluation presented in this paper by incorporating
re-linearization into the the approach, as well as handling
separate linearization points between robot platforms. We are
also investigating means to approximate or directly compute
a joint over a subset of variables directly from the Bayes tree
efficiently. As an additional future goal, we will examine
means to introduce incremental communication, such that
robots no longer need to share all of their landmarks at once.
By addressing these core concerns, we can demonstrate a
system capable of mapping in unknown environments.
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