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Abstract— In this paper we introduce a novel sparsification
method for efficient decision making under uncertainty and
belief space planning in high dimensional state spaces. By using
a sparse version of the state’s information matrix, we are able
to improve the high computational cost of examination of all
candidate actions. We also present an in-depth analysis for
the general case of approximated decision making, and use
it in order to set bounds over the induced error in potential
revenue. The scalability of the method allows balancing between
the degree of sparsification and the tolerance for this error,
in order to maximize its benefits. The approach differs from
recent methods by focusing on improving the decision making
process directly, and not as a byproduct of a sparsification of
the state inference. Eventually, we demonstrate the superiority
of the approach in a SLAM simulation, where we manage to
maintain the accuracy of the solution, while demonstrating a
significant improvement in run time.

I. INTRODUCTION

Solving a decision making problem is the essence of
any intelligent autonomous agent. The objective of this
optimization problem is finding the most beneficial action,
in relation to some measure, or a revenue function. Robots
which are set in the real world are often required to account
for its uncertainty when making decisions, in order to pro-
vide reliable and robust results. There are multiple possible
sources for this uncertainty, e.g. a dynamic environment in
which unpredictable events might occur; Noisy or limited ob-
servations, such as a limited camera range and an inaccurate
GPS signal; and inaccurate delivery of actions.

The notions of decision making under uncertainty and
belief space planning (BSP) are applicable to the solution of
numerous problems. These include simultaneous localization
and mapping (SLAM) (e.g. [7], [5], [10]), sensor deployment
and active sensing (e.g. [8], [14]), and in recent years even
more profound problems such as natural language processing
(NLP) (e.g. [13]).

Moreover, long-term autonomous navigation, sensor de-
ployment over large areas, and any kind of problem in which
a state is described with numerous features, often require
dealing with large states as well. These settings are translated
to high dimensional probabilistic states, known commonly
as beliefs (as in BSP, see [12]). In this case, the revenue
function account for the uncertainty of belief, yet uncertainty
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measures, such as entropy, are expensive to calculate. Con-
sider the fact that making a decision in a naive way requires
calculation of this measure for every candidate action, in
a possibly very large group of actions. Overall the total
computational cost of the problem can turn exceptionally
expensive, thus making the problem challenging for online
systems, or when having a limited processing power.

Recently several approaches have been introduced in order
to improve the high computational cost of dealing with the
uncertainty, often with some penalty on the accuracy of the
results. Many approaches ignore the least significant nodes in
the underlying factor graph (e.g. [1], [3], [11], [15]), in order
to achieve long-term autonomy. In the context of SLAM
problems, some try exploit the sparsity of the information, or
reuse previous calculations (e.g. [6], [9]). These approaches
have a few common downsides. First, the sparsification is
done in the context of inference, which over time causes an
unnecessary deviation from the true state. Second, although
some of these approaches demonstrate good performance, the
induced error from using them is not modeled nor bounded,
and therefore the results can not be guaranteed. In our
approach we try to take care of both issues.

We are looking for a computationally efficient method
to find the best action, while sparing the naive explicit
calculation of all revenues. [4] introduced a first attempt to
try and separate the approximation of the decision making
from the inference. That approach ignores the correlations
between variables, only for the action selection, and achieves
a great improvement in runtime. Yet, the concept was prelim-
inary and assumed several limitations, such as unary update
model, and a greedy selection. The idea was then thoroughly
examined in [2]. It introduced new ideas for comparison of
states in the context of decision making, which are later used
to find a sparsification method which yields action consistent
results, i.e. with no effect over the action selection.

In this follow-up paper we extend this analysis and explore
inexact approximations of the decision making, and their
influence on the results, in order to set bounds on the induced
error. This qualitative analysis is relevant to any decision
making process, and not only in an information-related
context, making it a good foundation for a yet unexplored
research area of decision making approximations. Using this
analysis, we then introduce a scalable sparsification method,
in the context of decision making under uncertainty, and
bound the error it causes. The benefits of the approach
are finally demonstrated in a SLAM simulation, where a
significant improvement in run time is achieved.



II. PROBLEM FORMULATION

A. Decision Making Under Uncertainty

Consider an iterative Markovian state inference process, in
which every update iteration consists of taking an observa-
tion, and then performing a certain action, with the following
transition and observation models

xk+1 = g(xk, ak) + wk, wk ∼ N (0,Wk) (1)
zk = h(Xk) + vk, vk ∼ N (0, Vk), (2)

both containing some Gaussian noise. These models can be
described probabilistically as P(xk+1 | xk, a) and P(zk |
Xk).

We can discuss the posterior distribution at time k over
the state vector Xk

bk
.
= P(Xk | a0:k−1, z0:k), (3)

where a0:k−1
.
= {a0, . . . , ak−1} and z0:k

.
= {z0, . . . , zk}

are the actions and observations until time k, respectively.
To describe such a distribution we use the term belief. The
variables in the state vector are defined with relation to the
discussed problem, e.g. for SLAM problems it can include
previous poses of the agent and the locations of observed
landmarks.

Considering a basic belief bk = N (Xk,Λ
−1
k ). An update

rule for the information matrix Λ of this belief, after perform-
ing the next action ak, and taking the following observation
zk+1, can be derived (see [2])

Λk+1 = Λ +GTW−1k+1G+HTV −1k+1H, (4)

such that bk+1 = N (×,Λ−1k+1). The matrices G and H are
the Jacobians G = ∇g and H = ∇h.

This expression (Eq. 4) can be rearranged into a more
compact form (see [5] for details):

Λk+1 = Λ +AT
kAk (5)

where the collective Jacobian Ak encapsulates information
regarding the models of both the action ak and its following
observation zk+1. Each update iteration can be described
using a Jacobian of this form, in relation to the performed
action. Note that Ak, and hence the information matrix Λk+1,
are not dependent on the actual unknown future observation
zk+1, nor on the result of performing the action, but only on
their given models.

Given a set of candidate actions A and a revenue (or
objective) function J , the decision making optimization
problem, starting from a belief b is defined as

a∗ = argmax
a∈A

J(b, a), (6)

In this context, we wish to minimize the uncertainty in the
future belief, or equivalently maximize the information gain.
We use entropy as a measure to uncertainty, as commonly
used in information-theoretic decision making. The entropy
of a Gaussian belief b, over a vector of size n, with an
information matrix Λ is:

entropy(b) =
1

2
ln
[
(2πe)n det(Λ−1)

]
(7)

Consider b to be the current belief and ba the updated
belief after performing an action a and taking the respective
observation. In order to minimize the entropy of ba, we can
define the following revenue function:

J(b, a)
.
= |Λa| = |Λ +ATA|, (8)

where Λ, Λa are the information matrices of b, ba, respec-
tively, and A is the collective Jacobian of a.

Note that incorporating new information in order to update
the belief, is done by adding it to the current information
matrix, as shown in Eq. (5). This property allows us to exam-
ine many candidate actions, and their posterior information,
easily.

Calculation of the revenues requires to compute a determi-
nant of the posterior information for every candidate action.
A single determinant computation of a matrix of size n×n is
valued at O(n3) at worst. Obviously the sparser the matrix
is, the less expensive it is to calculate this value. For this
reason, sparsifying all posterior information matrices, would
essentially reduce the computational cost of the problem.
Since the same basic information matrix is a factor in all
those matrices, sparsifying it only, would inherently mean
sparsifying all posterior information matrices, as needed. Yet,
this sparsification can affect the revenues. Optimally this
effect should be minimal, in order to maintain the original
action selection.

B. Objective

[2] introduced the concept of action consistency. Two
states are action consistent if when performing the group of
actions on them, the trend, or order of the actions is kept (in
relation to the revenue in their posterior belief). Let us recall
that definition. Previously stated specifically for belief space
planning, but it can be revised to be relevant to any kind of
decision making process, even with non-probabilistic states.

Definition 1: Consider a group of actions A and a rev-
enue function J(state, action) (these notations will also be
relevant for the definitions to follow). Two states b, bs are
action consistent, in relation to J and A, and marked b ∼ bs,
if the following applies ∀ai,j ∈ A:

J(b, ai) = J(b, aj) ⇐⇒ J(bs, ai) = J(bs, aj) (9)

J(b, ai) < J(b, aj) ⇐⇒ J(bs, ai) < J(bs, aj) (10)
This situation represents a tight correlation between the

two states, such that action selection, starting from either,
is equivalent. The revenue offset was offered as a ”metric”
between states. It yields an easy to prove condition for
action consistency, when the offset is zero (this is a sufficient
condition only).

Definition 2: Consider two states b and bs.
The revenue offset of an action a is defined as:

γ(b, bs, a)
.
= |J(b, a)− J(bs, a)| (11)

The revenue offset between the two states is defined as:

γ(b, bs)
.
= max

a∈A
γ(b, bs, a) (12)



In [2] the revenue offset was used to find a sparsification
method which yields a sparse and action consistent approx-
imation of the state. This approximation was then used as
the basic value for the decision making iteration, in order to
reduce the computational cost. As stated, this had no effect
over the action selection and the results.

We now wish to examine what happens to the correlation
between the states when allowing a looser coupling and a
non-zero revenue offset. By exploiting this ease of restric-
tions, we wish to find an improved sparsification method.
In this scenario, an error, or loss of revenue is expected to
be caused by using the approximated state for the decision
making. To provide valuable results, it is important to set
bounds over this error.

III. APPROACH

A. Bounding the Error
As stated, it is already known that when the revenue offset

between two states is zero, the states are action consistent,
and the action selection in this case is equivalent from both.
Considering a state b, over which we wish to examine a
group of actions A; bs is a given approximation of that
state. Solving the decision making problem means finding
the action that yield the maximum revenue. When using the
approximation bs as the base state, instead of b, the revenues
of the actions might change, thus the chosen best action is
not necessarily the actual best action, when applied on the
real state b. This difference of the theoretically maximum
revenue and lesser generated revenue, is the error we bare
for using the approximation.

Formally, for

a∗ = argmax
a

J(b, a)

a∗s = argmax
a

J(bs, a),
(13)

the error is J(b, a∗) − J(b, a∗s). We wish to bound and
control this possible error that is induced from using the
approximation. To do so we can use the revenue offset
between b and bs. First, we prove the following supporting
theorem:

Theorem 1:

|J(b, a∗)− J(bs, a
∗
s)| ≤ γ(b, bs) (14)

Proof:
Considering the false assumption:

|J(b, a∗)− J(bs, a
∗
s)| > γ(b, bs)

.
= max

c∈A
|J(b, c)− J(bs, c)|

If J(b, a∗) ≥ J(bs, a
∗
s):

|J(b, a∗)− J(bs, a
∗
s)| > |J(b, a∗)− J(bs, a

∗)|
J(b, a∗)− J(bs, a

∗
s) > J(b, a∗)− J(bs, a

∗)

J(bs, a
∗) > J(bs, a

∗
s)

And this is a contradiction to the definition of a∗s .
If J(b, a∗) < J(bs, a

∗
s):

|J(b, a∗)− J(bs, a
∗
s)| > |J(b, a∗s)− J(bs, a

∗
s)|

J(bs, a
∗
s)− J(p, a∗) > J(bs, a

∗
s)− J(b, a∗s)

J(b, a∗s) > J(b, a∗)

And this is a contradiction to the definition of a∗. In any
way our false assumption is not possible. Therefore:

|J(b, a∗)− J(bs, a
∗
s)| ≤ γ(b, bs)

And now we can conclude the following error bound:
Theorem 2:

0 ≤ J(b, a∗)− J(b, a∗s) ≤ 2 · γ(b, bs) (15)
Proof:

The following is given directly from the definition of a∗:

0 ≤ J(b, a∗)− J(b, a∗s)

Considering the false assumption:

J(b, a∗)− J(b, a∗s) > 2 · γ(b, bs)

Using the supporting theorem:

J(b, a∗)− J(bs, a
∗
s) ≤ |J(b, a∗)− J(bs, a

∗
s)| ≤ γ(b, bs)

J(b, a∗) ≤ J(bs, a
∗
s) + γ(b, bs)

J(bs, a
∗
s) + γ(b, bs)− J(b, a∗s) > 2 · γ(b, bs)

J(bs, a
∗
s)− J(b, a∗s) > γ(b, bs)

γ(b, bs, a
∗
s) > γ(b, bs)

And this is a contradiction to the definition of γ. Therefore:

J(b, a∗)− J(b, a∗s) ≤ 2 · γ(b, bs)

Meaning, the error of using the approximation for decision
making can always be bounded using the offset between
the original state and its approximation. Note that important
benefit of bounding the error using offset is that it does not
require finding the actual best actions a∗ and a∗s , since the
bound is absolute and not dependent on them. This allows
to decide in advance, before solving the decision making
problem, whether the approximation is good enough for us
to use within the limits of the error we can bare.

This conclusion is general for every decision making
process, and not limited for a specific revenue function nor
type of state. It extends the general foundations provided in
[2], for a qualitative decision making analysis.

B. Sparsification Method

[2] introduced a consistent sparsification algorithm for the
information matrix of a belief b, which was proven to return
an approximation bs s.t. γ(b, bs) = 0 and thus being exact
and induce no error. According to that algorithm, the belief
is sparsified by identifying uninvolved variables. Considering
a given action, variables in the state vector are involved if
they are directly updated by applying the action. Practically,
in the collective Jacobian of the action, each of the columns
corresponds to a variable of the state vector. A variable
is involved if at least one of the entries in its matching
column is non-zero, while uninvolved variables correspond to
columns of zeros. The identification of uninvolved variables
is done for each action independently, and the algorithm



Fig. 1: On the left - the original information matrix taken from an iteration of the SLAM scenario. The state vector holds all previous poses and all the observed landmarks.
The sparser part of the matrix is of the loosly correlated poses, which are the first variables in the vector (as expected in an information matrix). The denser part is of the highly
correlated landmarks. In the middle - a sparser version, generated using algorithm 1 with K including the uninvolved variables. On the right - completely sparse version, with
K including all variables. Note the significant difference in the number of non zero elements.

considers the variables which are uninvolved for all the
candidate actions, thus keeps consistency for all actions,
using a single sparsification process per decision.

We now define an extended version, in the form of
Algorithm 1, in which we allow removal of elements of
involved rows as well. Using Definition 2 and Theorem 2
we can model the error induced by using this approximation
for decision making under uncertainty.
1 Inputs:
2 A belief b ∼ N (x,Λ−1)
3 A group of row indexes K
4 Output:
5 A sparse approximated belief bs
6 Use Cholesky decomposition to find R such that Λ = RTR
7 Calculate M = R−1

8 Generate a sparse Ms according to:

(Ms)ij =

 Mii i = j
Mij i 6= j and i /∈ K
0 i 6= j and i ∈ K

9 Calculate Rs = M−1
s

10 Calculate Λs = RT
s Rs

11 return bs ∼ N (x,Λ−1
s )

Algorithm 1: Scalable sparsification of a belief
In practice, in every sparsified variable in Algorithm 1,

all the elements in its corresponding row in matrix M are
zeroed (besides the diagonal). This removal of elements in
the matrix Ms bubbles back the information matrix Λs and
causes it to be more sparse.

We now wish to examine the error induced by using this
sparsification. The following analysis considers a single-row
collective Jacobian. In principle, since multi-row Jacobians
can be represented as a sum of single-row Jacobians, it is
possible to extend this work in order to describe the revenue
offset of more challenging cases, yet further work is required.
It is also easy to show that Σ = Λ−1 = MMT and
|Σ| = |Σs| (see [2] for details). For an action a ∈ A with a
matching Jacobian vector v:

γ(b, bs, a) =

| |Λa| − |Λa
s | |=

| |Λ + vvT | − |Λs + vvT | |=
(according to the matrix determinant lemma)

| (1 + vT Λ−1v) · |Λ| − (1 + vT Λ−1s v) · |Λs| |=

∣∣∣∣ 1

|Σ|
(1 + vT Σv)− 1

|Σs|
(1 + vT Σsv)

∣∣∣∣ =

(Σ is PSD and therefore its determinant is non-negative)
1

|Σ|
·
∣∣(1 + vT Σv)− (1 + vT Σsv)

∣∣ =

1

|Σ|
·
∣∣vT (Σ− Σs)v

∣∣ =

1

|Σ|
·

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

vi · (Σ− Σs)ij · vj

∣∣∣∣∣∣
Now, let us examine the inner addends of this summation:

vi · (Σ− Σs)ij · vj =

vi · (MMT −MsM
T
s )ij · vj =

vivj ·
(
(MMT )ij − (MsM

T
s )ij

)
=

vivj ·

(
n∑

k=1

MikMjk −
n∑

k=1

MsikMsjk

)
If i, j /∈ K then Mik = Msik, Mjk = Msjk, and the two

sums cancel each other. If i, j ∈ K then the right sum in
zero, and we get:

vivj · Σij (16)

If j ∈ K, i /∈ K we get:

vivj · (Σij −MijMjj) (17)

If j /∈ K, i ∈ K we get:

vivj · (Σij −MiiMji) (18)

After summing up the addends according to these rules,
we can derive the final expression for the revenue offset:

γ(b, bs, a) =

1

|Σ|
·

∣∣∣∣∣∣
∑
i∈K

vi ·

∑
j∈K

vj · Σij +
∑
j /∈K

vj · 2(Σij −MiiMji)

∣∣∣∣∣∣
(19)

This expression represents the revenue offset of an action,
and is dependent on the selection of the variables in K. Note
that if i is uninvolved (i.e. vi = 0), the corresponding term
becomes zero anyway, and does not affect the revenue offset.
Thus, the final summation describes penalty over involved
variables (vi 6= 0), that are chosen to K. To find the overall



revenue offset of an approximation, given a known group K,
one should return the maximal value among all actions.

The cost for calculating the expression in Eq. 19, in order
to bound the the error induced by a specific approximation
(known K) is O(# of actions·|K|·n). Yet, it is possible to re-
duce this cost by settling for a less tight bound. For example,
by using an upper bound for the values of vi, considering
all candidate Jacobians, and calculating a (single) bound over
the offset. In this case the cost can be reduced all the way
to O(|K| ·n). A middle solution can also be choosing those
upper bounds for subgroups of similar actions.

As for the sparsification itself, its calculation is done once
with no dependence on the number of actions. Inverting
the matrix, and computing the Cholesky decomposition are
the most dominant calculations of the algorithm, making it
O(n3) at worst. The recalculation of the adapted information
matrix becomes easier the more sparse the matrix is. Thus,
a higher degree of sparsification - a larger group K - would
actually mean a quicker computation.

Fig. 2: The revenues of the action which were calculated from the information matrices
from Figure 1. Comparing the original version with the sparsified version, for which
K includes all variables. It is clearly visible that, despite not being fully guaranteed,
the offset between the graphs is slim, and the action selection does not change.

C. Scalability

Every selection of K results in a different approximation
of the state, with a different degree of sparsification and a
different bound on the error it causes. Assuming it is possible
to tolerate a certain degree of inaccuracy in the results,
we can analyze whether using a certain approximation can
guarantee not exceeding this allowance. Optimally, even
actively choosing the most cost-effective group K, that gives
the highest degree of sparsification, while exploiting this
tolerable error range. For example, a navigating robot that
can tolerate a certain level of uncertainty along its trajectory.

A wise selection of K also bares a certain cost, yet it can
prove itself profitable by saving more time on the calculation
of the revenues, especially for a large group of candidate
actions, where the initial investment becomes less significant.

We can scalabily choose the rows in K according to some
heuristic - adding up rows until the bound no longer guaran-
tees satisfying results. Adding more rows would essentially
improve the degree of sparsification. A suggested heuristic

for choosing rows for K is the ratio between the number
of elements in the row, and the contribution to the error
caused by removing this row by itself (a relatively easy
calculation). Other options are a simple random selection
until the criteria is met, genetic algorithms, and more.
This discussion is beyond the scope of this paper, and is
considered an optimization problem by itself.

IV. RESULTS

In this simulated SLAM scenario, we wish to demon-
strate improvement in performance through the usage of
our approach. In order to keep this example easy to follow,
the demonstration focuses on presenting the actual runtime
improvement achieved by the sparsification, using predefined
selection of K. We do not try to optimize the group K in
attempt to find the most cost effective sparsification.

For comparison we examine side-by-side three different
degrees of sparsification, using three options for K: An
empty group, i.e. the original version with no sparsification;
The group of uninvolved variables, which has no influence
on the result, but on the performance only; All variables -
the highest degree of sparsification.

The simulation itself consists of a robot navigating in
an unknown environment, in which random landmarks are
scattered. In the scenario the robot tries to navigate through
several predefined world points in a safe way. Meaning,
keeping the uncertainty of the state low throughout the
trajectory, by preferring more informative actions. The state
vector consists of the entire trajectory Xk and positions
of observed landmarks. Candidate actions are generated
dynamically in every iteration, and represent navigation in
short paths around the robot, either towards landmarks (can
reduce uncertainty by observing loop closures), or towards
a goal points. The robot iteratively decides what is the best
future action, executes it, and takes an observation of the
environment.

The total revenue function by which the actions are chosen
is of the following form:

J(b, a)
.
= w1 · |Λa|+w2 · |xk+1−Goal|+w3 ·Penalty(a),

(20)

Fig. 3: The 2-dimensional navigation scenario from a top view. The robot navigates
between goals 1-4. The red line indicates the estimated trajectory, with the uncertainty
ellipses drawn at each state. The blue line indicates the ground truth that the robot
passes. Blue dots are landmarks - when observed they are marked green. Note the
reduction in size of the red ellipses when observing more landmarks.



where w1, w2, w3 ∈ R. Our method is only relevant to the
calculation of the first element - the uncertainty. The other
two elements represent the distance to the next goal and
penalty on locomotion (taking a shorter path is preferable).

To test the approach, in each iteration, we calculate the
uncertainty in this revenue function using the three versions
of the information matrix, according to three sparsification
configurations. The revenue is calculated for each candidate
action. We measure the total revenue calculation time per
iteration, along with the one time calculation of the sparsifi-
cation itself (for the latter two configurations. Obviously no
such calculation for the original configuration). Overall, in
each iteration we compare the total decision making time.

It should be noted that the number of candidate actions
in each iteration in this scenario is small (averaging at 10).
The more candidate actions there are, the less significant the
sparsifcation cost becomes in the iteration. Usually in a real
scenario, the number of candidate actions is much bigger,
making the relative improvement even more profound.

In Figure 2 we compare the revenues of the actions, which
were calculated from the information matrices from Figure 1,
in that iteration, where for the sparsified version, K includes
both the involved and uninvolved variables (the matrix on
the right). It is clearly visible that the offset between the
graphs is slim. Hence, even though Algorithm 1 does not
guarantee a consistent approximation, in practice, the results
still maintain accuracy, and the action selection does not
change. This situation was repetitive throughout the process.

Figure 4 shows a comparison of the accumulated decision
making time, for each of the configurations. The growing
saving in run time is clearly visible, and is correlated with the
growth of state dimension. It also shows that this difference
is more significant for a larger group K - in this case, the
one which contains all variables.

V. CONCLUSIONS

The work presented in this paper is deviation from the
usual approaches which try to improve the high computa-
tional cost of decision making under uncertainty, and holds
multiple benefits over them. Firstly, we define theoretical
foundations for approximation of decision making processes,
which is an unexplored and novel concept. Despite their
theoretical quality, these ideas prove to have feasible values,
as they are then used to define a new approximation method.

This highly scalable method allows to control the degree of
sparsification in exchange of lost in revenue from the action
selection, which is possible due to bounds we set over the
error caused by the approximation. Assuming a certain error
is acceptable in the context of the problem, the bound allows
us to choose the most cost-effective sparsification which still
guarantees results within this acceptable range.

The sparsification method in this paper is just an example
in the context of belief space planning. In a similar way, more
approximation methods can be developed in other contexts,
with other state structures and revenue functions.

Furthermore, a significant improvement in performance
has been demonstrated in the SLAM simulation, by using

our approach. Thus, showing relevance and possible benefits
for online BSP in computationally-constrained robots.

Fig. 4: Comparison of the accumulated decision making time throughout process.
In green - calculation with the original information matrix, i.e. without using our
method. In blue - sparsification of uninvolved variables. In yellow - a higher degree
of sparsification, using the involved variables as well. Note the growing gap between
the three configurations.
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