Fast Action Elimination for Efficient)
Decision Making and Belief Space L
Planning Using Bounded Approximations

Khen Elimelech and Vadim Indelman

1 Introduction

Autonomous decision making is a fundamental problem in artificial intelligence and
robotics, in which one wishes to select the action which maximizes some objective
function. When solved iteratively, in a context of a specific problem with a goal
definition, the problem turns into a planning problem. A solution to this problem
must take into consideration many aspects such as goal setting, definition of can-
didate actions, accounting to different planning horizons and future developments,
coordination of agents and so on. While these aspects can be optimized in the con-
text of the discussed problem, basic decision making, the examination of a group
of candidate actions under the objective measure, is still the common ground to all
planning problems. Unfortunately, little work has been done on trying to optimize
this elementary process, and even if the planning aspects are optimized, its solution
is still usually done naively with an exhaustive calculation of the objective function
for all candidates.

In our previous work [1-3], we raised the idea that the basic decision making
process can be done more efficiently. There, we defined a set of fundamental notions
to allow us to compare states in the context of the decision making. As far as we
know, there were no prior attempts to do so beforehand. There we introduced the
concept of action consistent state approximations, in order to to solely and directly
reduce the complexity of the decision making, while maintaining the same action

K. Elimelech ()

Robotics and Autonomous Systems Program, Technion - Israel Institute of Technology,
32000 Haifa, Israel

e-mail: khen@campus.technion.ac.il

URL: https://www.khen.io

V. Indelman

Department of Aerospace Engineering, Technion - Israel Institute of Technology,
32000 Haifa, Israel

e-mail: vadim.indelman @technion.ac.il

© Springer Nature Switzerland AG 2020 843
N. M. Amato et al. (eds.), Robotics Research, Springer Proceedings
in Advanced Robotics 10, https://doi.org/10.1007/978-3-030-28619-4_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28619-4_58&domain=pdf
mailto:khen@campus.technion.ac.il
https://www.khen.io
mailto:vadim.indelman@technion.ac.il
https://doi.org/10.1007/978-3-030-28619-4_58

844 K. Elimelech and V. Indelman

20r —o&—]J(b,a) - Real objective values
—— (bs,a) - Approximated objective values
:h(b,bs,a) - Simplification offset (of an action)
15+
[}
=1
8
> 10+
[}
~
5 -
:] o llflw Hmﬂmlﬂ
* av *
a a

S
Action

Fig. 1 This conceptual figure demonstrates a relation between two states b, by in the context of
decision making. The dark blue graph shows the real objective values, based on the original state b,
while the light blue graph shows the approximation of these values, based on the approximated state
bs. The states are not action consistent, since the graphs do not preserve the same trend. Hence, a*
is the real best candidate action, and a; is the best candidate action based on the approximation.
The green bars stand for the simplification offset between the states, for each action. The maximal
offset, the one of action a’, is the overall simplification offset between the two states. Obviously,
without action elimination, in order to solve the problem, all the real objective values (the entire
dark blue graph) have to be calculated

selection (Fig. 1). Despite involving state approximations, no dilution of information
is done from the maintained state in the inference process, as the approximations
are only used in candidate examination. In this work we wish to further demonstrate
that this framework of definitions and qualitative analysis is worthwhile, by using
it to create a new candidate-elimination paradigm to efficiently solve the decision
making problem, in a general context. In contrast to our fundamental papers, where
we solved an approximated problem, and then analyzed its consequences, this time
we utilize state approximation to create a tool to be used in the solution of the original
problem.

Here, we depend on the intuitive conclusion that in most cases, we can easily
realize when an action is clearly “bad”. For example, in the context of navigation to
a given goal, backtracking away from the goal is (usually) undesired, and there is
no need to invest in the calculation of how “bad” it is, when there are clearly better
options. Thus, we should thoroughly examine only the subset of candidates which
seems to be “good”. Our method suggests using easy-to-calculate approximation of
the objective function to identify unfit candidates, which, using our previous notions,
can be guaranteed not to be the desired one, and eliminate them. The problem can
then be efficiently solved considering a smaller subset of candidates, while sparing

Fast Action Elimination for Efficient Decision Making 845

20

15

Revenue
—
o
T
\
~

’ Sog ’
5t / ~o’
/. —o—J(b,a) - Real objective values
~ > ’ —o—J(bS,a) - Approximated objective values
3
’ S .
p —— Elimination interval limits
0 1 1 1 1 1 1 1 1 1 1 1
* *

a a

Action

Fig. 2 This figure demonstrates the application of our action elimination method on the scenario
described in Fig. 1. The light blue graph of the approximated objective values is easily calculated,
and the approximated best action a; is found. Using the simplification offset (known in this case,
or bounded in the general case) and Eq. 8 from Theorem 1, the elimination interval, bounded by the
two red lines, is calculated. J (by, a*), the approximated objective value of the real best candidate
action, must be in this interval. Thus, all the actions for which the objective approximation J (b, a)
(in light blue) is below the lower red line, can be eliminated (the dashed section). Now, to solve
the problem and find a*, we should only calculate the real values J (b, a) of the remaining actions
(solid dark blue)

the need to calculate the exact objective values for each one (Fig.2). By doing so,
under real-time constraints, we are able to examine more complicated candidate
actions, or use a higher resolution to discretize a continuous action domain, leading
to an indirect improvement of solution quality as well. Moreover, since the method
does not depend on any specific planning problem, it can be added “on top” of other
methods, after the planning aspects were optimized, with no contradiction.

As a highly relevant case study, we extend the discussion to the sub-problem
of decision making under uncertainty and belief space planning. Relevant planning
problems include sensor deployment, for which we demonstrate the approach, and
also robotic arm manipulation, autonomus navigation and SLAM. For the last one,
improving the computational cost is especially important, as it is often required to
solve this problem online and on limited hardware (such as quadcopters) [4]. Also,
as the state size tends to grow over time in such problems, long-term autonomy is
another challenge. In this context, several methods achieve indirect improvement in
planning efficiency by using active sparsification of the maintained state [5, 6], but
thus sacrifice the quality of solution of the state inference and by such also of the
planning. Our method turns out superior in that matter, by being independent of the
inference process, in addition to not affecting the quality of action selection.

846 K. Elimelech and V. Indelman

Numerous studies have also attempted to directly optimize planning processes,
although almost always in the context of specific problems, by adjusting and opti-
mizing aspects in the representation of the problem; e.g., in the context of decision
making under uncertainty and belief space planning [7-9], and specifically SLAM
[10], path planning [11, 12], sensor deployment [13] and robotic arm manipulation
[14]. Some papers have examined action elimination in the context of planning prob-
lems. In [15] actions are eliminated from a constructed plan, comprised of a sequence
of actions, in order to reduce its execution complexity, and not the planning complex-
ity. For learning problems, a few papers [16—18] have attempted to remove actions
from consideration by transferring previous learned knowledge across learning tasks.
Our method requires no previous knowledge, and not even for the decision making
to be sequential. Several studies [19, 20] have utilized bounds for action elimination,
in a similar way our approach, yet these bounds are tightly coupled with their for-
mulation for planning under the limited MDP framework. In the context of motion
planning in the belief space, pruning of the planning tree has been applied in order
to remove unpromising candidate paths [21]. Overall, none of these approaches rely
solely on the general decision problem, making these applications limited to the dis-
cussed scenario. Being applicable for different problems is the main advantage of
our method, which also allows, as previously stated, to apply it with no contradiction
alongside other optimizations or pruning methods.

2 Problem Formulation

2.1 Decision Making

Let us first formally define the general decision problem. Starting from an initial state
b, we measure the value of an action a, using an objective function J (b, a). This
function can measure either the expected value of the posterior state, or the value of
the action itself, or a combination of these values. Given a set of candidate actions
&/, we look for the action which maximizes this function. Thus, the problem can be
formulated as

a* = argmax J (b, a). (D
acd

According to this basic problem definition, we are required to calculate the value
of the objective function per action. Yet, in many real world problems, especially
when discussing a discretization of a continuous action domain, as common to do
in navigation, or object manipulation, the set of candidate actions can grow very
large. Also, in some cases, such as decision making under uncertainty and belief
space planning in high dimensional states, calculation of this objective function
is computationally expensive, as it requires calculating information measures (e.g.
entropy or information gain) and by such, handling high dimensional covariance or
information matrices.

Fast Action Elimination for Efficient Decision Making 847

When planning in the belief space, we assume the states, actions, and observations
are stochastic. Hence, to describe a sequential planning process (POMDP) at time ,
we use the posterior distribution over the state vector Xy

b = P(Xy | aos—1, 204) ~ A (Xi, ATY, 2

where ag—1 = {ag, ..., ax—1} and zo.x = {20, . .., 2x} are the actions and observa-
tions taken until time k, respectively. To describe such a distribution we use the term
belief. The transition and observation models can be described probabilistically as
P(xg+1 | X, ax) and P(z; | Xx), respectively. We assume that both models and the
beliefs are normally distributed.

When applying a new action a; over belief b, (and then taking a new observation),
its information matrix A is updated according to the corresponding transition and
observation models. Due to the additive quality of the information form, such update
can be compactly described as

Aps1 = Ar + A Ay, 3)

where the collective Jacobian A; encapsulates all the new information in a single
term. This Jacobian can hold information (or new factors, in a factor graph represen-
tation) regarding the action, or the sequence of actions, for the nonmyopic scenario,
and the following observations. Representation of an update in such form can be done
for every candidate action (for more details see [1]). We will use this representation
throughout the paper.

In this context, we wish to minimize the uncertainty in the future belief, or equiv-
alently maximize the information gain in the posterior belief. Thus, we define the
following objective function (although other objective definitions may also be appli-
cable):

J (b ai) = | At = | Ak + AL Arl,)

Calculation of the objective values requires computing the determinant of the poste-
rior information for each candidate action. We recall that a single determinant eval-
uation of a matrix of size n x n is valued at O (n?), for the general case. Although
this computation can be done efficiently for sparse matrices (a quality which is often
utilized by state of the art code frameworks), it is still considerable when discussing
high dimensional states.

The variables in the state vector are defined with relation to the discussed problem,
e.g. for a sensor deployment problem, it can include the measured values from the
placed sensors; for a SLAM problem it can include previous poses of the agent and
the locations of observed landmarks. In that case, the dimension of the state vector
and information matrix can rapidly grow such that revenue calculation becomes
challenging to do in real time.

848 K. Elimelech and V. Indelman

2.2 Goal

As demonstrated, solving the decision problem may encapsulates a high computa-
tional cost, caused by an expensive objective function and/or numerous candidate
actions. We wish to select the best candidate action without the explicit and exhaus-
tive calculation of all of the objective values. Of course, we want to minimize any
effect over the action selection, in order to maintain the original quality of solution,
as our focus is on reducing the computational cost of the problem.

3 Approach

3.1 Action Elimination

As stated, solution of the decision making problem requires calculation of the revenue
function for each candidate action, given an initial state b. Alternatively, say we were
to calculate the revenues of the same set of candidate actions, while considering a
different initial state b, (s is used to mark a simplified or sparse version of b).
Considering these two initial states, if all the respective pairs of revenues were equal,
then the selected candidate action, the one with the highest revenue, would be the
same in both cases. To describe this tight correlation, we say that b and b, are action
consistent. When this situation is guaranteed, we could equivalently examine the
actions using either of these states. Formally:

Definition 1 Consider a set of actions . and an objective function J (state, action)
(these notations will also be relevant for the definitions to follow). Two states b, by
are action consistent, in relation to J and <7, and marked b >~ by, if the following
applies Va;, a; € -

J(,a)) < J(b,a;) < J(bs,a;) < J(bs,aj) (5)

In other cases, when there is a difference in the objective values of some actions, the
action selection might be affected. To examine this situation, we suggest the simpli-
fication offset as a “metric” between such states, in the context of decision making.
Naturally, when the offset between the states is zero, they are action consistent.

Definition 2 The simplification offset of an action a € <7 is defined as:

y(b,bs,a) =1J(b,a) — J(bs,a)| (6)

Fast Action Elimination for Efficient Decision Making 849
The simplification offset between the two states is defined as:
y (b, by) = max y (b, by, a) (7
acdl

Please note, Definitions 1 and 2, were initially definied in our previous work [1], but
due to their extensive use throughout the paper, are brought here again, in order to
allow fluent reading. These definitions are demonstrated in Fig. 1.

While it appears that calculating this offset essentially requires calculation of all
objective values, and thus actually solving the problem, in many cases it can still be
bounded without actually calculating them, but by considering the structure of the
state, actions, and objective. An example of calculating such a bound is to appear
ahead.

If b, represents an approximation or simplification of the original state b, then for
each action a, we can say that J (by, a) represents an approximation of the exact value
of this action. By using a simplified, or sparse by, the approximated values should be
easier to calculate than the real ones. For intuition, when the offset between states is
small enough, then the action selection is “similar” in both cases. Therefore, since
our goal is to improve the computational complexity of the problem, with minimal
effect on the action selection, utilizing such an approximation may be worthwhile.

When approximating the objective using b; (which is not action consistent),
although they are expected to be faster to calculate than the values, we might not
achieve the highest potential value, due to selection of a sub optimal action. To make
any valuable conclusion, we should seek a formal connection between the approxi-
mated objective values and the exact ones.

Theorem 1 (Elimination Interval) For two states b, by, and an objective function
J(state, action):

a* = argmax J (b, a)
a

J(bs,ai) —2-y(b,bs) < J(bs,a®) =< J(bs,ay)| where

ag = argmax J (bs, a),
a
3

Proof According to [2], given a state and its approximation, the error in the objective
value can be bounded in the following manner:

|J(b,a*) = J(b,a})| <2y (b, by). ©)

Since this statement is true for every selection of b, by, it is also true when switching
between the two beliefs, as if b is the approximation of by, giving the following
equation:

|J by, a) = T (b, a*)| <2y (b by). (10)

850 K. Elimelech and V. Indelman

By definition a; yields higher value than any other action, considering by as the prior.
Hence, we can omit the absolute value,

0 < J(bs,a;) — J(bs,a*) <2y (b, by). (11
Finally, we can rearrange the equation into
J(bs,a5) —2-y(b,bs) < J(bs,a*) < J(by, ay). (12)

(]
Note that despite its short proof, Theorem 1 is not trivial. It transforms a statement
over the exact values (Eq.9), which are unknown to us, into a statement based solely
on the approximation, and allows us to infer about the desired best candidate action.

This important conclusion allows us to learn about the desired best candidate
action a*, without having to know what it is, nor to exactly calculate the objective
for the actions, but only using the easy to calculate approximated values, and the rev-
enue offset of the approximation (which, as previously stated, can often be bounded
without having to solve the problem, and such an example appears ahead). Eq.8
defines an interval of size 2 - y (b, by), in which the approximated value of the real
best candidate action J (b;, a*) must lie. Thus, without having to know the exact
values, we can eliminate actions which cannot possibly be the best candidate a*,
since the approximation is not in this range.

Of course, when using a bound of the offset, and not the real value, the interval
grows larger in size. Hence, when bounding the offset, we should balance between
a tight bound, and keeping it easy to calculate. We recall again that we aspire to use
a simplified approximated state b, such that by using it, the approximated objective
values are easy to calculate. Overall, when an approximation of the initial state is
given, considering its offset from the original state can be calculated or bounded,
we can easily eliminate unfit actions, resulting in a smaller subset of candidates, to
be used for solving the problem. This action elimination method is summarized and
demonstrated in Fig. 2.

Again, this discussion is not limited to a specific class of problems, not even
decision making under uncertainty, and is general to any decision problem. Finding
such b, can be done in any way for which the offset from the real state y (b, by) can be
calculated. Overall, an action elimination process can either be applied once before
the action selection, or recursively, when the approximation is scalable, as described
in the next section.

Fast Action Elimination for Efficient Decision Making 851

3.2 Recursive Elimination

As arule of thumb, we consider that calculating a rough approximation of the objec-
tive (high offset) is faster than calculating a more refined one (smaller offset). For
example, a factor graph can be approximated using node sparsification. Removal of
more nodes from it is expected to increase the offset from the original graph, as the
approximation becomes more “rough”. Hence, given state approximations of differ-
ent scale (with different offsets from the original), one can balance between investing
in minimizing the offset and by such the size of the interval, potentially leading to
elimination of more actions, and an easier calculation of the approximation, with a
more lenient elimination.

Recursively refining the approximation (decreasing offset) can be the most bene-
ficial. After each iteration of eliminating actions, we can try to reduce the size of the
interval, using a more refined approximation, in order to perform another elimination
iteration. Each iteration leaves us with a smaller subset of candidate actions to select
from. This way actions which are clearly non beneficial are eliminated first, with
minimal computational investment, and the refined approximation is only used for
the top candidates. Ultimately, all the candidates but one would be eliminated, with
convergence of the size of the interval into zero, and the approximated best candidate
into the real one. Alternatively, considering the time constraints, if more than one
candidate still remains, we can either solve the problem exactly for those remaining
actions, or return the best choice based on the current approximation. This recursive
method is summarized in the form of “anytime” Algorithm 1.

Note that whenever breaking on this anytime algorithm, the loss in potential value,
induced by selecting the approximated best action, is still ensured to be bounded
(according to Eq.9).

Also, every iteration requires recalculation of the values according to the new
scale of approximation. This can be optimized if the approximation method allows
to update and refine them, instead of calculating the values all over again. We still
assume that applying the elimination can be done fast enough, such that the saved time
in objective calculation is greater than the run time of the elimination itself. In our
experiments we show that this claim is indeed feasible. We note, however, that if the
convergence of the elimination interval is very slow, then the overall computational
cost may increase, due to the recalculation of the objective. Therefore, when applying
sequential elimination, the refinement of the approximations should be considered
in accordance to the problem, and the magnitude of the objective cost.

852 K. Elimelech and V. Indelman

Algorithm 1: Recursive action elimination—an “anytime” algorithm

Inputs:
L Initial state b

A set of candidate actions <7

Output:
L Best candidate action a*

Calculate an approximation of the initial state by

Calculate an approximation of the objective values using b for each candidate action in ./
Calculate or bound the simplification offset y (b, by)

Eliminate actions for which the approximated value is not in the interval from Theorem 1.

W N -

For the remaining subset of candidate actions:
5 if only a single action af is in the interval then
6 ‘ return a; (the real best candidate action)

7 else if timeout then

8 ‘ return a; (the best current choice)

9

else
10 Refine the approximation b5 and go to 3
11 or
12 Solve the problem exactly, for the remaining candidate actions

4 Practical Application

4.1 Decision Making Under Uncertainty

As stated earlier, the elimination process is general and independent of the problem
structure. Here we extend the discussion to the highly relevant case of decision
making under uncertainty and belief space planning, and specify practical tools for
applying the method.

When discussing decision making under uncertainty, the states, known as beliefs,
are stochastic, and described using a state vector and an information (or covariance)
matrix. Thus, state approximation here translates to sparsification of the the under-
lying information matrices, as sparse matrices can be efficiently processed. In [2]
we describe a scalable sparsification algorithm (brought here as Algorithm 2), which
yields a sparse approximation of an information matrix, for which the offset can
be bounded. Since the algorithm is scalable, and allows creating approximations
of different degrees, it is an appropriate match to the recursive action elimination
process.

According to the algorithm, we are able to select which variables, or rows, to
sparsify from the matrix (the indices of the sparsified rows are collected to a set
of indices .¥). Sparsification of each row contributes somewhat to the offset from
the original belief, with variables which are uninvolved in the current decision (see
[1]) having zero contribution. One can freely select which and how many rows to
sparsify, and by such control the scale of the sparsification, and its offset from the
original belief.

Fast Action Elimination for Efficient Decision Making 853

NG = = i —_— ¢
100 ;é_s__‘-_&:- = 0 =_' (t
00 ||' 200 1 00
Wiy ‘ 10 0
e || '|“ @t “wo
00 3 I .!‘I- E) 50

|
af Ll
20 || Jl = 700 |

00 N K 40 00 0 TN L] 00 0 M0 W0 W0 0 YO o 100 200 M0 40 0 W0 T

NZ = 354239 NZ = 34879 NZ = 747

Fig. 3 Sparsification example using Algorithm 2. On the left—an information matrix taken from a
SLAM process; In the middle—a sparse version, after sparsifying all the uninvolved variables; On
the right—a diagonal approximation, after sparsifying all variables. Note the significant difference
in the number of non zero elements

Recall the objective function for this problem includes an evaluation of a deter-
minant (Eq.4). The order of magnitude of calculation of a determinant of a general
matrix of size n x n is O(n*), while for a fully sparsified matrix, a diagonal one, it
is linear. Meaning, the calculation of the approximated objective can be done much
faster, making the elimination process here very cost-effective. This progression also
matches the intuition we previously got while discussing a recursive elimination. A
sparser approximation leads to a faster calculation, yet a bigger offset and a more
lenient elimination (Fig. 3).

The usage of the sparsification Algorithm 2 for the recursive elimination Algo-
rithm 1, is done by selecting a growing number of rows to sparsify in each iteration.
Otherwise, for a single elimination process, one can use any row selection . for the
sparsification.

Algorithm 2: Scalable sparsification of a belief

Inputs:
Abeliefb ~ 4 (x, A7)
A set .7 of row indexes to sparsify

Output:
| A sparse approximated belief by

1 Use Cholesky decomposition to find R such that A = RT R
2 Calculate M = R™!
3 Generate a sparse M, according to:

0 ieSandi#j
M;; else

(My)ij = {

4 Calculate Ry = M;"!
5 Calculate Ay = RST Ry
6 return by ~ A (x, A7)

854 K. Elimelech and V. Indelman

According to Definition 2 and Eq. 3, the offset of an action a in this case is
y(b, by, a) = ||A + AAT| — | A, + AATY|. (13)

For an approximation generated using Algorithm 2, given a specific selection of
rows ., and considering a single-row collective Jacobian A of an action a, the offset
can be developed into (see [2])

1 —\ -1 -1
y(b.boa) = = ; ;A, (2 — %) Aj| where A=X71 A =53]
(14)
Again, the overall offset of the approximation is the maximal offset among all
actions. Instead of explicitly calculating the offset of all the actions, we reduce the
cost of calculating y (b, by) by settling on a bound over this value. This can be done
by using an upper bound over the elements of A:

1
y(b, by, a) = E'ZM’AJ" 2=z < %[}(2— 20, (15)
iJ

i

where the scalar « is an upper bound over the coefficients]A,-A jlofor1 <i,j<
n. When o bounds the coefficients Ya € o7, this bound over the offset becomes
independent of a specific action, and only a single value needs to be calculated
(instead of calculating the offset per action, and then choosing the maximal value).
Another “middle solution” could be finding similar upper bounds for subsets of
similar actions, and then taking the maximal value among the bounds of each of
these subsets. We denote that despite what is implied from its definition, we were
able to bound the offset without actually having to calculate the objective values of
the actions, as previously promised.

In the more general scenario, where A is a multi-row matrix, representing a non-
myopic action sequence, the offset can be bounded using various determinant bounds.
This scenario is left to be investigated as a part of our future research.

4.2 Simulation

In this simulation, we demonstrate the application of the method on a sensor deploy-
ment problem, based on the previously presented analysis for decision making under
uncertainty. We wish to place 10 sensors on the junctions of a 5 x 5 grid, in order
to measure its temperature in the most informative way. This is a demonstration of
planning in the belief space, hence the grid states are stochastic, and the information
matrix (sized 25 x 25) represents the uncertainty of the current temperature mea-
surement in the 25 junctions of the grid. At each step we greedily choose a position

Fast Action Elimination for Efficient Decision Making 855

Fig. 4 Uncertainty levels in the temperature grid. Left—initial state, right—after sensor deploy-
ment. Higher values indicated higher uncertainty levels in that junction

from those available, and place a sensor on it (meaning, taking a measurement of the
temperature from that position), as shown in Fig.4. The problem is initialized with
random uncertainty over the grid, leading to a dense prior information matrix.
Ateachiteration, we performed an elimination of unfit candidates, according to the
previously described approach. The approximated objective values were calculated
using a sparse approximation of the information matrix, generated using Algorithm 2,
with . containing all rows, leaving only a diagonal matrix. Here the collective
Jacobians of the actions contain only 0’s and 1’s, indicating placement of a sensor,

2600
~ Exact
2400 + I R i &
App
———— Elimination Interval

2200 F /
2000 N
[V

1800 F |
|

1600

Revenue

1400

Action

Fig. 5 A single elimination process. The approximated objective values (revenues) and the
(unknown) exact values are shown in turquoise and green, respectively. Actions for which the
approximated value is not between the blue lines can be eliminated

856 K. Elimelech and V. Indelman

25

T T T T T T T T T
I Original
[After Elimination

20

15

10

Number of candidates

Iteration

Fig. 6 Number of candidates action to examine, before and after the elimination process

and therefore in order to calculate the elimination interval (Eq. 8), we were able to
calculate a single bound of the overall offset using Eq. 15.

Figure 5 describes a single elimination process from one of the iterations. The
approximated objective values (revenues) and the (unknown) exact ones are shown
in turquoise and green, respectively. The horizontal blue lines stand for the limits of
the elimination interval—actions for which the approximated value is not between
these lines, can be eliminated. In that iteration, only 3 actions passed the elimination.
We could then continue and solve the decision problem to this minimal subset of
candidates, without having to calculate the exact value of the eliminated ones.

Figure 6 shows the number of remaining candidate actions after the elimination,
in each iteration, in comparison to the original number of candidates. In a few cases,
all candidates besides one were eliminated, hence leaving us with the best candidate,
without even calculating any value exactly. In the final iterations, the most informative
sensors were already placed, and the remaining candidates yield similar value (no
dominant actions), therefore more candidates passed the elimination.

5 Discussion and Conclusions

This paper introduced an approach to reduce the computational complexity of the
basic decision problem. Instead of exhaustively calculating the exact objective val-
ues of the candidate actions, in order to select the best one, we can use a rough
approximation of these values to quickly eliminate unfit candidates.

Fast Action Elimination for Efficient Decision Making 857

The main concept of this paper is not tied to a specific problem. Yet, since this
approach is highly relevant to problems in which the action domain is large, and the
objective is hard to calculate, we extended the discussion to the challenging case
of decision making under uncertainty and belief space planning. There we used a
dedicated scalable approximation algorithm, to form a practical set of tools alongside
the elimination algorithm. We finally demonstrated the benefits of using the method
while solving a sensor deployment problem.

This work is a conceptual introduction to the general case, and acts as a good
basis to many future research directions. The simple simulation is brought in order
to demonstrate how, in practice, the approach can be used, and to indicate its pos-
sible benefits. Applications to advanced scenarios require a thorough examination.
Future extensions include, for example, in the context of belief space planning: set-
ting bounds over multi-row Jacobians, to support non myopic cases; upgrading the
sparsification algorithm, such that it becomes updatable—sparing the recalculation
of the objective values in each iteration, which would dramatically improve the per-
formance; or creating an entirely new sparsification method. Similar analysis can be
developed to other types of problems as well.

A subsequent goal of this paper is to break the current nativity in approaching
decision problems. To the best of our knowledge, our continuous work on the subject
is the first attempt to analyze and directly improve the computational complexity of
the fundamental problem. With this work we also wish to encourage the robotics and
Al community to extend its focus on the algorithmic basis of autonomous systems,
and specifically towards efficient decision making and planning. Despite the growth
in academic research in this field, a great portion of recent work has been on adjusting
specific properties in order to improve or upgrade existing methods. This paper proves
that tackling the basics can be fruitful, and have a wider impact.

References

1. Elimelech, K., Indelman, V.: Consistent sparsification for efficient decision making under
uncertainty in high dimensional state spaces. In: IEEE International Conference on Robotics
and Automation (ICRA) (2017)

2. Elimelech, K., Indelman, V.: Scalable sparsification for efficient decision making under uncer-
tainty in high dimensional state spaces. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2017)

3. Indelman, V.: No correlations involved: decision making under uncertainty in a conservative
sparse information space. IEEE Robot. Autom. Lett. (RA-L) 1(1), 407-414 (2016)

4. He, R., Prentice, S., Roy, N.: Planning in information space for a quadrotor helicopter in a gps-
denied environment. In: IEEE International Conference on Robotics and Automation (ICRA),
pp. 1814-1820 (2008)

5. Huang, G., Kaess, M., Leonard, J.J.: Consistent sparsification for graph optimization. In: Pro-
ceedings of the European Conference on Mobile Robots (ECMR), pp. 150-157 (2012)

6. Carlevaris-Bianco, N., Kaess, M., Eustice, R.M.: Generic node removal for factor-graph SLAM.
IEEE Trans. Robot. 30(6), 1371-1385 (2014)

7. Roy, N., Gordon, G., Thrun, S.: Finding approximate pomdp solutions through belief compres-
sion. J. Artif. Intell. Res. 23, 1-40 (2005)

858 K. Elimelech and V. Indelman

8. Patil, S., Kahn, G., Laskey, M., Schulman, J., Goldberg, K., Abbeel, P.: Scaling up gaussian
belief space planning through covariance-free trajectory optimization and automatic differen-
tiation. In International Workshop on the Algorithmic Foundations of Robotics (2014)

9. Indelman, V., Carlone, L., Dellaert, F.: Planning in the continuous domain: a generalized belief
space approach for autonomous navigation in unknown environments. Int. J. Robot. Res. 34(7),
849-882 (2015)

10. Eustice, R., Walter, M., Leonard, J.: Sparse extended information filters: insights into sparsifi-
cation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
3281-3288, Aug 2005

11. Prentice, S., Roy, N.: The belief roadmap: efficient planning in belief space by factoring the
covariance. Int. J. Robot. Res. (2009)

12. Van Den Berg, J., Abbeel, P., Goldberg, K.: Lqg-mp: optimized path planning for robots with
motion uncertainty and imperfect state information. Intl. J. Robot. Res. 30(7), 895-913 (2011)

13. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in gaussian processes:
theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235-284 (2008)

14. Platt, R., Tedrake, R., Kaelbling, L.P., Lozano-Pérez, T.: Belief space planning assuming max-
imum likelihood observations. In: Robotics: Science and Systems (RSS), Zaragoza, Spain, pp.
587-593 (2010)

15. Nakhost, H., Miiller, M.: Action elimination and plan neighborhood graph search: two algo-
rithms for plan improvement. In: Twentieth International Conference on Automated Planning
and Scheduling (ICAPS), pp. 121-128 (2010)

16. Rosman, B., Ramamoorthy, S.: What good are actions? Accelerating learning using learned
action priors. In: 2012 IEEE International Conference on Development and Learning and
Epigenetic Robotics (ICDL), pp. 1-6. IEEE (2012)

17. Sherstov, A., Stone, P.: Action-space knowledge transfer in mdps: Formalism, suboptimality
bounds, and algorithms. In: Conference on Learning Theory (2005)

18. Abel, D., Hershkowitz, D.E., Barth-Maron, G., Brawner, S., O’Farrell, K., MacGlashan, J.,
Tellex, S.: Goal-based action priors. In: Twenty-Fifth International Conference on Automated
Planning and Scheduling(ICAPS), pp. 306-314 (2015)

19. Kuter, U., Hu, J.: Computing and using lower and upper bounds for action elimination in mdp
planning. In: International Symposium on Abstraction, Reformulation, and Approximation,
pp. 243-257. Springer, Heidelberg (2007)

20. Even-Dar, E., Mannor, S., Mansour, Y.: Action elimination and stopping conditions for the
multi-armed bandit and reinforcement learning problems. J. Mach. Learn. Res. 7(Jun), 1079-
1105 (2006)

21. Bry, A., Roy, N.: Rapidly-exploring random belief trees for motion planning under uncertainty.
In: IEEE International Conference on Robotics and Automation (ICRA), pp. 723-730 (2011)

	Fast Action Elimination for Efficient Decision Making and Belief Space Planning Using Bounded Approximations
	1 Introduction
	2 Problem Formulation
	2.1 Decision Making
	2.2 Goal

	3 Approach
	3.1 Action Elimination
	3.2 Recursive Elimination

	4 Practical Application
	4.1 Decision Making Under Uncertainty
	4.2 Simulation

	5 Discussion and Conclusions
	References

