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State Estimation → Linear Systems
• State estimation problems, such as Simultaneous Localization And 

Mapping (SLAM) and Bundle Adjustment (BA), are some of the 
main focus points of modern robotics research.

• In such optimization problems, we wish to estimate a state vector   
𝑋 ∈ ℝ!, which typically consists of robot poses, and/or positions 
of landmarks, given a set of (𝑚) stochastic constraints. 

• When these constraints are linear (or linearized), these problems 
can be represented as systems of linear equations.

• Such systems can be written in matrix form as
𝐴 ⋅ 𝑋 = 𝑏,  

where 𝐴 ∈ ℝ"×! is the coefficient matrix, and 𝑏 ∈ ℝ" is the RHS. 
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Solving Linear Systems
• Such systems are often solved by finding the upper 

triangular “square root information matrix”, 
marked 𝑅 ∈ ℝ!×!, and then performing “back-
substitution”. 

• This “square root matrix” can be found by 
calculating the Cholesky factorization of the 
information matrix Λ ≐ 𝐴$𝐴, such that Λ ≐ 𝑅$𝑅.

• Equivalently, by calculating the QR factorization of 
𝐴, such that 𝐴 ≐ 𝑄𝑅, for an orthogonal matrix 𝑄.

• In light blue – entries of the coefficient matrix;

• In green – entries of the original square root matrix;

• Colored cells represent possible non-zero entries in the matrices.
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Variable Reordering: Motivation
• In sequential estimation, as time progresses, and more and more 

constraints are added to the system, we are required to update its 
solution (i.e., state estimate).

• It is known that the order of state variables can drastically affect 
the cost of such updates, especially in sparse systems.

• It is hence common to periodically optimize the order of 
variables, e.g., in order to apply a fill-reducing variable order.

• Furthermore, in our recent work, titled “PIVOT: Predictive 
Incremental Variable Ordering Tactic”, we demonstrated the 
effectiveness of predictive optimization of the variable order, 
before planning sessions, in reducing their computational cost.

[1] Efficient Belief Space Planning in High-Dimensional State Spaces using PIVOT: Predictive Incremental Variable Ordering Tactic, K. Elimelech and V. 
Indelman, IJRR ’21 (invited)
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Variable Reordering: Challenges
• Surely, the order of variables in 𝑋 must match the order of 

columns in 𝑅 (and 𝐴).
• Yet, a naïve attempt to permute the columns of 𝑅, to convey 

reordering of the variables, would break its triangular shape, and 
is, therefore, an inappropriate solution.

• White overlay – reordered columns.
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Variable Reordering: Challenges
• Thus, variable reordering typically implies 

expensive re-factorization of the system, under the 
new order, in order to calculate the modified 
square root matrix.

• Unfortunately, re-factorization can be challenging 
or even infeasible when handling large-scale 
systems.

• Dark blue borders – matrices due to re-factorization.

• In red – entries calculated via re-factorization of 𝐴. 5
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Contribution
• To tackle this concern, in this work, we propose a novel 

algorithm for efficient modification of this square root 
matrix, on variable reordering.

• As we shall explain, such modification can be performed 
efficiently without re-accessing 𝐴 at all, or with minimal      
re-factorization of it.

• Note that we assume the new variable order is given (as a 
permutation), and only discuss how to practically apply it.
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Direct Modification
• First, we shall recognize that the modified square root matrix can, 

in fact, be inferred without re-accessing 𝐴.
• Instead, we can simply re-apply the QR factorization on the 

square root matrix directly, after permuting its columns, in order 
to “correct” its shape; we hence refer to such approach as “direct 
modification”.

• Nonetheless, this naïve re-application of QR is still not optimal for 
the task of variable reordering. 

• In orange – entries calculated via re-factorization of 𝑅.
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Local Effect of Variable Reordering
• Let us mark with 𝑗.irst the index of the first permuted variable, and 

with 𝑗last the index of the last permuted variable. 

• As the first step in optimizing the modification process, we 
identified that variable reordering has only a “local effect” on 𝑅.

• In other words, to apply the new variable order, we should only re-
calculate the block of affected rows indexed between 𝑗.irst and 
𝑗last; all other rows remain unchanged.
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Identifying Independent Row Blocks
• Further, by decomposing the variable permutation into 

disjoint cycles, we can divide it into distinct “sub-
permutations”, which affect non-overlapping subsets of 
variables.
• Hence, we can divide (as marked with the dashed blue line) 

the affected row block into distinct sub-blocks, which can be 
re-calculated independently, and even in parallel!
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Efficient Row Modification
• We may note that each row block in the square root matrix is 

“wide”, i.e., it contains more columns than rows.
• Accordingly, we show that, for each such row block, it is sufficient 

to examine its square sub-block, around the matrix diagonal, in 
order to infer its “correcting” orthogonal transformation (via QR 
factorization).
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Optimized Direct Modification
• After correcting the block around the diagonal, the correcting 

transformations should and can be easily applied to the 
remainder of the elements in each row block.

• The following figure represents our suggested optimized 
algorithm for direct modification of 𝑅, when considering variable 
reordering.

• Again, the individual blocks can be processed in parallel.

• In yellow – entries calculated by applying a pre-calculated transformation. 11
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Numerical Concerns
• We note that direct modification is more prone to numerical 

errors, in comparison to naïve re-factorization, since it conveys an 
overall longer sequence of mathematical operations:

𝐴 → 𝑅 → 𝑅& (direct modification)

vs.
𝐴& → 𝑅& (re-factorization) 

• Such numerical errors may lead to “false fill-in” in the matrix, 
when zero entries incorrectly become non-zeros.
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Modification via Re-factorization
• Therefore, if maintaining sparsity is crucial, we should modify the 

affected row block via re-factorization of 𝐴, instead. 
• This, of course, is more expensive than direct modification.
• Yet, by utilizing the same conclusions we identified before 

(locality of variable reordering, division into distinct row blocks, 
and efficient row modification), we can similarly minimize the 
sub-matrix of 𝐴, which is due for re-factorization.
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Modification via Re-factorization
• The figure on the right represents our suggested optimized 

algorithm for modification of 𝑅 via re-factorization.

• In purple – marginal factors obtained from the original factorization process.
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Experimental Demonstration
• To test our modification algorithm(s), we applied them to a 

realistic linear system, derived when solving a robotic SLAM 
problem.

• Constraints between the poses in this state represent the robot 
motion and the inferred loop closures (via point cloud matching).
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A visualization of the robot navigating in 
the unknown indoor environment.

The coefficient matrix 𝐴, and its square root 
𝑅, at the end of navigation.



/ 18

Experimental Demonstration
• We considered a randomized variable permutation, and 

appropriately modified 𝑅, using different modification algorithms.
• We measured the runtimes of these calculations, in order to 

compare the efficiency of the algorithms.
• We also measured the number of non-zero entries in the 

modified matrices, in order to compare the accuracy of the 
algorithms.

• The results are summarized in the table below.
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Summary
• In this work, we provided a new algorithm for modification of the 

square root matrix of a linear system, on variable reordering.
• We identified three main conclusions in that regard:

• (1) variable reordering has a “local effect” on the matrix;
• (2) the modification can be parallelized, by identifying independent row 

blocks;
• (3) each row block can be efficiently modified, by only examining a relevant 

square sub-block.

• We applied these conclusions in two algorithmic variations:                
via direct modification of 𝑅, and via partial re-factorization of 𝐴.

• Generally, direct modification enjoys a relatively lower computation 
time, while re-factorization is less prone to numerical errors.

• In either case, we saw that our optimized algorithm was able to 
significantly reduce the modification time compared to naïve 
solutions.
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Thank you!
Full implementation of the algorithms is available at:

www.khen.io


