
Efficient Decision Making under Uncertainty 
in High-Dimensional State Spaces

Khen Elimelech
under the supervision of Assoc. Prof. Vadim Indelman

Ph.D. Seminar, May 2021



/ 50

Autonomous Systems
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Robust Autonomous Systems
• Need to answer questions, such as:

• Where am I? 
• What’s around me? 

• Where to go?
• How to get there?

• Accounting for uncertainty is essential for reliability

State estimation,
inference, 
mapping…

Planning,   
control,
decision 
making…
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In this talk…
• Online decision making under uncertainty

• In the context of (but not limited to) SLAM: 
Simultaneous localization and mapping

1. State estimation and SLAM
2. Decision making under uncertainty
3. Contributions:

I. Efficient DM via belief sparsification (+ results)
II. Efficient DM via predictive reordering (+ results)
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Example Scenario
• A robot navigating in an unknown environment
• Observes features/landmarks around it
• Wants to infer its location in the environment

Landmarks

Motion𝑙!

𝑙"

𝑙#

𝑙$
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Example Scenario: Discretized
• Factor graph: a graph of constraints
• Constraints are defined according to the controller 

and sensor models 

Poses
Landmarks
Observation constraint
Motion constraint𝑥!

𝑥%

𝑥#

𝑥$
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𝑙$

𝑥"

6



/ 50

Stochastic Constraints => Beliefs 
• The motion model is stochastic (Markov assumption):

𝑥! = 𝑔 𝑥!"#, 𝑢! + noise

• The observation model is also stochastic:

𝑧!,% = ℎ 𝑥! , 𝑙 + noise

• At each time-step, these constraints induce a belief:
𝑏 𝑿! ≐ ℙ 𝑿! 𝑢#:! , 𝑧#:!)

• The posterior distribution over the state, given past 

controls and observations.
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A Big Optimization Problem
• From the belief 𝑏! (distribution), we wish to find the 

MAP estimate of the state vector 𝑿!
• E.g., robot poses, and position of landmarks

• Offline global optimization:
Structure from Motion (SfM) / Bundle Adjustment 

(BA) 

• Online iterative optimization, as time progresses:
Simultaneous localization and mapping (SLAM)
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Traditional Approach: Bayesian Filtering
• E.g. Kalman filter, information filter, particle filter
• Tells us how to update the belief given new 

actions/observations

𝑏 𝑋!'# ∝ ℙ(𝑧!'# 𝑋!'# 7𝑏(𝑋!) ⋅ ℙ 𝑥!'# 𝑥! , 𝑎!) 𝑑𝑥!

• Marginalization of (“forgetting”) previous poses
• We only maintain the most recent pose in the belief:

𝑋! ≐ 𝑥! , 𝐿 (
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Traditional Approach: Bayesian Filtering
• Advantages:    smaller state size
• Disadvantage: dense(r) system, 

cannot update estimate of past poses

𝑥!

𝑥%

𝑥#

𝑥$
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Smoothing and Mapping
𝑏 𝑋!'# ∝ 𝑏! ⋅ ℙ(𝑧!'# 𝑋!'# ⋅ ℙ 𝑥!'# 𝑥! , 𝑎!)

• State vector contains the entire trajectory

𝑋! ≐ 𝑥#:! , 𝐿 (

• No marginalization of past poses
• Pose-SLAM vs. full-SLAM

• More accurate estimation (updatable past poses)
• High-dimensional states, estimation cost grows quickly
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Common (Non-Essential) Assumptions
• Gaussian noise and linear(ized*) models

• Leads to Gaussian beliefs:

𝑏 𝑿! ≐ ℙ 𝑿! 𝑢":!, 𝑧":!) ≈ 𝒩(𝑿!∗ , Σ!)

• Can be described with two components:

• Mean vector (the MAP estimate)
• Information matrix Λ! (the constraints)

* For brevity, not discussed here.
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Constraints ó Graphs ó Matrices

• Given the constraints, we wish to find the MAP 

estimate 14

Information Matrix

Λ! ≐ 𝐴!%𝐴!
“Jacobians Matrix”

𝐴!Factor Graph
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Belief Factorization
• Skipping some equations… 
• In practice, looking for the upper triangular “square 

root” of Λ! , such that Λ! ≐ 𝑅!"𝑅!

• At worst, factorization holds a quadratic cost

15
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Belief Factorization Update
• New constraints are represented with “Jacobian” 

rows
• Should (incrementally) update the square root 

matrix:
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Recap: State Estimation (Inference)
• In sequential estimation, we gradually collect a set of 

constraints over a state vector of variables of interest

• We wish to maintain an up-to-date state estimate throughout 
the process 

• The smoothing paradigm suggests no pose marginalization, 
i.e., examining high-dimensional states

• At each time-step, the set of constraints induces a belief: the 
posterior distribution over the state

• To find the estimate, we shall find (and maintain) the belief’s 
upper triangular square root matrix
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Planning in the Belief Space
• We wish to plan the next action (sequence)

𝑥!

𝑥%

𝑥#

𝑥$

𝑙!

𝑙"

𝑙#

𝑙$

𝑥"
Poses
Landmarks
Observation constraint
Motion constraint
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Planning in the Belief Space
• Predict belief development (new poses/constraints) for 

multiple candidate actions/policies

𝑥&

𝑥'

𝑥(

𝑥(

𝑥'

𝑥!

𝑥%

𝑥#

𝑥$

𝑙!

𝑙"

𝑙#

𝑙$

𝑥"

𝑥&

Poses
Landmarks
Observation constraint
Motion constraint
Dashed: predicted
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Decision Problems
• Planning is comprised of many sub-problems, e.g.: 
• action generation (motion planning)
• motion prediction
• reward engineering
• candidate comparison 

• A decision problem 𝒫 ≐ 𝑏,𝒜, 𝑉 :  
• Given a set 𝒜 of candidate actions, we wish to find 

the optimal one, according to the objective 
function 𝑉:

𝑎∗= argmax
$∈𝒜

𝑉 𝑏, 𝑎
21
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Measuring Uncertainty
• We often wish to evaluate the impact of actions on 

the information/uncertainty of the posterior belief

• (Differential) entropy:   H 𝑋 =
− ∫ℙ 𝑥 lnℙ 𝑥 𝑑𝑥

• For a Gaussian belief, yields the objective function:

𝑉 𝑏, 𝑎 ≐ ln 𝑹' − (
)
⋅ ln 2𝜋𝑒

• 𝑹' is the square root matrix of the posterior belief
22
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Computationally Challenging
Belief update for every candidate, over (possibly) long 
horizons
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Decision Making: Simplified
• Consider a decision problem𝒫 ≐ 𝑏,𝒜, 𝑉

• The concept: Identify and solve an equivalent, yet 
“easier” decision problem 𝒫* ≐ 𝑏* , 𝒜* , 𝑉*

• In this talk, focus on simplifying the initial belief

• Goal: improving efficiency, maintaining quality
• How should we measure the simplification quality?

25
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Action Consistency
Definition:
The problems are action consistent, 
if the following applies ∀𝑎! , 𝑎" ∈ 𝒜:

𝑉 𝑏, 𝑎! < 𝑉 𝑏, 𝑎" ⇔ 𝑉 𝑏#, 𝑎! < 𝑉 𝑏#, 𝑎"

• In decision making, we only care 
to rank the actions

• Action selection is not affected by 
the actual objective values

26
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Simplification Loss
Definition:

𝑙𝑜𝑠𝑠 𝒫,𝒫# ≐ 𝑉 𝑏, 𝑎∗ − 𝑉 𝑏, 𝑎#∗

• Simplification may lead to a sub-
optimal action

• Measure for the quality-of-
simplified-solution

• Further work on how to derive 
loss bounds for simplification 
methods is not discussed here…
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• Plan with a sparse approximation of the initial belief
• Reduce the number of factors and disconnect 

variables
• Only a single sparsification per planning session

[1] Consistent Sparsification for Efficient Decision Making Under Uncertainty in High Dimensional State Spaces, K. Elimelech and V. Indelman, ICRA ‘17 

[2] Scalable Sparsification for Efficient Decision Making Under Uncertainty in High Dimensional State Spaces, K. Elimelech and V. Indelman, IROS ’17

[3] Fast Action Elimination for Efficient Decision Making and Belief Space Planning Using Bounded Approximations, K. Elimelech and V. Indelman, ISRR ‘17

[4] Simplified Decision Making in the Belief Space using Belief Sparsification, K. Elimelech and V. Indelman, IJRR ‘18 (conditionally accepted)

Belief Sparsification

28
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• In practice – (square root) matrix sparsification

Belief Sparsification

29

1. Separate variables 2. Remove entries 3. Reorder back
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Efficient Reoredering

30

• Reordering the variables (=columns) would break 𝑅’s shape
• Thus, variable reordering typically requires re-factorization
• We showed that we can simply apply (in parallel!) “local” 

modifications to the matrix, with minimal to no re-
factorization

[1] Efficient Modification of the Upper Triangular Square Root Matrix on Variable Reordering, K. Elimelech and V. Indelman, RA-L ‘21
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Belief Sparsification
Sparsification is scalable:

But which variables should we sparsify?

Sparsification of uninvolved variables 
does not compromise action consistency!

31

Original Partial Sparsification   Full Sparsification 
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Approach Summary
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Experimental Results
• A highly realistic active-SLAM problem
• The robot should navigate through a list of goals in 

an unknown indoor environment.

• Pioneer 3-AT robot, with a lidar sensor, Hokuyo UST-10LX – real and in 
simulation.
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Experimental Results
• The environment and the PRM graph, used for 

generation of candidate trajectories.

• Every square stands for 1m x 1m in reality.
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Experimental Results
• Pose SLAM
• Examining 20 different trajectories to the next goal
• Objective: minimal final uncertainty (entropy)
• Loop closures via point cloud matching (ICP)

• For comparison, for each goal we solved three versions of 
the decision problem:
• 𝒫 – using the original belief
• 𝒫!"#$%#&' – with sparsification of the uninvolved variables
• 𝒫'!()$"(% – full sparsification
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Experimental Results
• Scenario, three versions of the initial belief, and the 

considered updates of the candidate trajectories
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Experimental Results
Comparison: objective trend (quality-of-solution), and run-
time.
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More Results

38
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More Results
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Belief Sparsification: What’s Next? 
• Evidently, very effective in reducing the planning cost!

• We calculate the sparsification “from scratch” at every 
planning session

• Can we make it incremental?
• Can we make it even more efficient? 

• These questions led us to another “simplification”:
PIVOT: Predictive Incremental Variable Ordering Tactic

[1] Introducing PIVOT: Predictive Incremental Variable Ordering Tactic for Efficient Belief Space Planning, K. Elimelech and V. Indelman, ISRR ‘19

[2] Efficient Belief Space Planning in High-Dimensional State Spaces using PIVOT: Predictive Incremental Variable Ordering Tactic, K. Elimelech and V. 
Indelman, IJRR ’21 (invited)
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PIVOT: Basic Concept
• Like in sparsification: identify involved variables
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PIVOT: Basic Concept
• Variable reordering: simply push involved variables 

forwards  -- no sparsification, no “reordering back”
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PIVOT: Basic Concept
• Efficient updates: reducing the size of the affected blocks!
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PIVOT: Optimized
• Basic PIVOT is comparable to uninvolved sparsification
• However, with PIVOT*, we suggest further order 

optimizations:
• First, we divide the variables to multiple classes:

• “More involved” are pushed “more forwards”

4444

2 variable classes 3 variable classes
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PIVOT: Optimized
• Further, PIVOT* is aware of fill-in (density), and 

takes into consideration variable connectivity (node 
degree)

For the full algorithm see:

[1] Efficient Belief Space Planning in High-Dimensional State Spaces using PIVOT: Predictive Incremental Variable Ordering Tactic, K. Elimelech and V. 
Indelman, IJRR ’21 (invited) 4545
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PIVOT Applied to the Prev. Scenario

46

• We solved the previous simulated experiment with variations of PIVOT.

• Reordering the variables before each planning session (instead of spars.)

• No approximation! Different representations for the same belief

𝑅 at the final planning session after applying PIVOT after applying PIVOT*
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PIVOT: Results

47

• We solved the previous simulated experiment with variations of PIVOT.

• Reordering the variables before each planning session (instead of spars.)
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PIVOT: More Benefits
• If we maintain the modified order after planning:
• Order can be updated incrementally on re-planning!
• PIVOT can also improve the efficiency of state inference!
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Sparsification vs. PIVOT
• PIVOT = change of representation
• Sparsification = approximation

• Efficiency:
“full” spars. > PIVOT* > PIVOT = “uninvolved” spars. > original

• Quality-of-solution:
original = PIVOT(*) = “uninvolved” spars. > “full” spars.
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Summary
We covered:
• SLAM and estimation under uncertainty
• Beliefs over high-dimensional states
• Planning in the belief space
• Our contributions:

1. Theoretical framework for simplified decision making
2. Sparsification for efficient planning
3. Variable reordering for efficient planning (and 

inference)
4. Efficient variable reordering algorithm
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