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Abstract— Belief space planning (BSP) is a fundamental
problem in robotics. Determining an optimal action quickly
grows intractable as it involves calculating the expected accu-
mulated cost (reward), where the expectation accounts for all
future measurement realizations. State of the art approaches
therefore resort to simplifying assumptions and approximations
to reduce computational complexity. Importantly, while in
robotics re-planning is essential, these approaches calculate
each planning session from scratch. In this work we contribute
a novel approach, iX-BSP, that is based on the key insight
that calculations in consecutive planning sessions are similar
in nature and can be thus re-used. Our approach performs
incremental calculation of the expectation by appropriately
re-using computations already performed in a precursory
planing session while accounting for the information obtained
in inference between the two planning sessions. The formulation
of our approach considers general distributions and accounts
for data association aspects. We evaluate iX-BSP in statistical
simulation and show that incremental expectation calculations
significantly reduce runtime without impacting performance.

I. INTRODUCTION

Decision making under uncertainty and belief space plan-
ning (BSP) approaches are entrusted with providing the
next optimal action sequence given a certain objective. The
aforementioned is accomplished by reasoning about belief
evolution for different candidate actions while taking into
account different sources of uncertainty. The corresponding
problem is an instantiation of a Partially Observable Markov
Decision Process (POMDP) problem, which is known to
be computationally intractable [1] for all but the smallest
problems, i.e. no more than few dozen states [2].

The intractability of the BSP problem originates mainly
from the use of expectation in the objective function, J(U) =
Ez[
∑
i ci (bi, ui−1)]. The objective over a candidate action

sequence U , is obtained by calculating the expected value
of all possible costs (rewards) c received from following U .
Since the cost (reward) function is a function of the belief b
and the action led to it u, in practice the objective considers
all future beliefs obtained from following U , i.e. all future
measurements z. We refer to this general problem as the full
solution of BSP, denoted by X-BSP, expectation based BSP.

The exponential growth of possible measurements and
candidate actions, usually denoted as the curse of history,
is the key aspect targeted by a lot of research efforts. As
in any computational problem, one can either streamline the
solution process or change the problem, i.e. take simplifying
assumptions or approximations.
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Fig. 1: X-BSP performs lookahead search on a tree with depth L. Each belief tree
node represents a belief. For each node, the tree branches either for a candidate action
or a sampled measurement. The corresponding belief tree for ML-BSP is marked with
solid lines, while the dashed lines represent the parts of X-BSP that relate to sampled
measurements. Under iX-BSP, the gray-marked parts of the tree are being re-used
for the succeeding planning session.

Indeed, over the years, numerous approaches have been
developed to trade-off suboptimal performance with reduced
computational complexity of POMDP, see e.g. [3]–[6]. Sam-
pling based approaches, e.g. [4], [5], [7]–[9], discretize
the state space using randomized exploration strategies to
locate the belief’s optimal strategy. While many sampling
based approaches (e.g. [10]–[12]) assume perfect knowl-
edge of the state (i.e. MDP framework), along with de-
terministic control and known environment, efforts have
been made to assuage these simplifying assumptions. These
efforts vary in the alleviated-assumptions, from the belief
roadmap (BRM) [9] and the rapidly exploring random belief
trees (RRBT) [8], through, Partially Observable Monte-
Carlo Planning (POMCP) [13], Determinized Sparse Par-
tially Observable Tree (DESPOT) [14], [15] and up to active
full SLAM in discrete [16] and continuous [17] domains
accounting for uncertainties in the environment mapped thus
far as part of the decision making process (e.g. [16]–[19]) at
the price of increased state dimensionality.

While all the aforementioned research efforts tackle the
curse of history through providing various approximations
to the X-BSP problem, the common denominator for most
of them is the Maximum Likelihood (ML) assumption [20],
which allows to prune X-BSP by considering only the
maximum likelihood measurements rather than all possible
ones. We denote the use of ML in BSP as ML-BSP.

In strike contrast to the vast amount of research invested
in approximating the X-BSP problem, only few tried re-



using calculations. Although under simplifying assumptions,
amongst them ML, both [21] and [22] re-use computation-
ally expensive calculations during planning. In their work,
Chaves and Eustice [21], consider a Gaussian belief under
ML-BSP in a Bayes tree [23] representation. All candidate
action sequences consider a shared location (entrance pose),
thus enabling to re-use a lot of the calculations through state
ordering constrains. That work enables to efficiently evaluate
a single candidate action across multiple time steps, and is
conceptually applicable to multiple candidate actions at a
single time step. While Kopitkov and Indelman [22], also
consider a Gaussian belief under ML-BSP, they utilize a
factor graph representation of the belief while considering
an information theoretic cost. Using an (augmented) deter-
minant lemma, they are able to avert from belief propagation
while re-using calculations throughout the planning session.
Although they consider calculation re-use within the same
planning session, their work can be augmented to consider
re-use also between planning sessions.

To the best of our knowledge, in-spite of aforementioned
research efforts, calculation re-use has only been done over
ML-BSP, with restricting assumptions. While ML-BSP is
widely used, the pruning of X-BSP by considering only
the most likely measurements, might mean choosing a sub-
optimal action in case the biggest available reward is not
the most likely one, in particular in presence of significant
estimation uncertainty. As for today, X-BSP approaches
do not re-use calculations between consecutive planning
sessions, and regard each planning session for its own.

Our key observation is that the similarity between two
successive planning sessions can be utilized to re-use cal-
culations, thus salvaging valuable computation time. In this
paper we provide a novel paradigm for Incremental eXpec-
tation BSP, or iX-BSP, which incrementally updates the
expectation related calculations in X-BSP, by re-using the
measurements sampled in a precursory planning session.
Instead of re-calculating the planning session each time from
scratch, we create it by incrementally updating the precursory
session with newly received information, using our previous
work on efficient belief update [24], [25].

Figure 1 illustrates a planning session of X-BSP at plan-
ning time t = 1 for a horizon of L steps, which determined
action un1 as optimal. In the succeeding planning session,
instead of re-calculating from scratch, we take the dark-
gray-marked part from precursory planning and update it
with information received between the successive planning
sessions. First, we locate the predicted measurement {zj2|1}
closest to the one received in inference, and prune our
selection accordingly, i.e. light-gray-marked part. Now we
go over all previously sampled measurements, update their
impact over current objective (i.e. importance sampling [26]),
which includes updating relevant beliefs while accounting for
possibly different data association (DA), and re-sampling.

To summarize, our contributions in this paper are as
follows: (a) We introduce a novel approach for incremental

expectation belief space planning (iX-BSP) that avoids the
common assumption of maximum likelihood (ML) observa-
tions. Our approach calculates incrementally the expectation
over future observations by appropriately re-using sampled
measurements and additional calculations from the previous
planning session. (b) We incorporate within our approach
data association (DA) aspects while accounting for the
potentially changing DA across planning sessions. (c) We
evaluate iX-BSP in simulation and compare it to X-BSP,
which calculates expectation form scratch, while considering
the problem of autonomous navigation in unknown environ-
ments. (d) We provide a statistical study that highlights BSP
with expectation is superior compared to ML-BSP, and show
iX-BSP significantly reduces runtime of X-BSP.

II. BACKGROUND AND PROBLEM FORMULATION

This section provides the theoretical background for belief
space planning (BSP), starting with belief definition, fol-
lowed by the BSP formulation. While the formulation, as
well as the suggested paradigm, are impartial to a specific
belief distribution, throughout this paper we also provide the
conventional case which deals with Gaussian distributions.

A. Belief Definition

Let xt denote the agent’s state at time instant t and
L represent the mapped environment thus far. The joint
state, up to and including time k, is defined as Xk =
{x0, ..., xk,L}. We shall be using the notation t|k to refer to
some time instant t while considering information up to and
including time k. The unique time notation is required since
this paper makes use of both current and future time indices
in the same equations. Let zt|k and ut|k denote, respectively,
measurements and the control action at time t, while the
current time is k. The measurements and controls up to time
t given current time is k, are represented by

z1:t|k
.
= {z1|k, ..., zt|k} , u0:t−1|k

.
= {u0|k, ..., ut−1|k}, (1)

The posterior probability density function (pdf) over the joint
state, denoted as the belief, is given by

b[Xt|k]
.
= P(Xt|z1:t|k, u0:t−1|k) = P(Xt|Ht|k). (2)

where Ht|k
.
= {u0:t−1|k, z1:t|k} represents history at time t

given current time k. The propagated belief at time t, i.e.
belief b[Xt|k] lacking the measurements of time t, is denoted
by b−[Xt|k]

.
= b[Xt−1|k] · P(xt|xt−1, ut−1|k) = P(Xt|H−t|k),

where H−t|k
.
=Ht−1|k ∪ {ut−1|k}.

Using Bayes rule, Eq. (2) can be rewritten as b[Xt|k] ∝
P(X0)

∏t
i=1

[
P(xi|xi−1,ui−1|k)

∏
j∈Mi|k

P(zi,j|k|xi, lj)
]
,

where P(X0) is the prior on the initial joint state, and
P(xi|xi−1, ui−1|k) and P(zi,j|k|xi, lj) denote, respectively,
the motion and measurement likelihood models. Here, zi,j|k
represents an observation of landmark lj from robot pose xi,
while the set Mi|k contains all landmark indices observed
at time i, i.e. it denotes data association (DA). The DA of
few time steps is denoted by M1:i|k

.
= {M1|k, · · · ,Mi|k}.



B. Belief Space Planning

The purpose of BSP is to determine an optimal action
given an objective function J , belief b[Xk|k] at planning
time instant k and, considering a discrete action space, a
set of candidate actions Uk. While these actions can be
with different planning horizons, we consider for simplicity
the same horizon of L look ahead steps for all actions,
i.e. Uk = {uk:k+L−1}. The optimal action is given by
u?k:k+L−1|k = argminuk:k+L−1|k∈Uk J(uk:k+L−1|k), where
the general objective function J(.) is defined as

J(u)
.
= E

[
k+L∑
i=k+1

ci
(
b[Xi|k], ui−1|k

)]
, (3)

with u
.
= uk:k+L−1|k, immediate costs (or rewards) ci and

where the expectation is with respect to future observations
zk+1:k+L|k. The expectation can be written explicitly as

J(u) =

∫
zk+1|k

Pk+1|k(ck+1 + . . .

∫
zi|k

Pi|k(ci + . . .) . . .) (4)

where each integral accounts for all possible measurement
realizations from an appropriate look ahead step, Pi|k

.
=

P(zi|k|H−i|k) with i ∈ [k + 1, k + L] and H−i|k is a function
of a specific sequence of measurement realization, i.e.

H−i|k = Hk|k ∪ {zk+1:i−1|k, uk:i−1|k}. (5)

Above, we also used ci
.
= ci

(
b[Xi|k], ui−1|k

)
, where

b[Xi|k] = P(Xi|k|H−i|k, zk+i|k).
Evaluating the objective for each candidate action in Uk

involves calculating (4), considering different measurement
realizations. As solving these integrals analytically is typi-
cally not feasible, in practice these are approximated by sam-
pling future measurements from appropriate distributions.

Specifically, consider the i-th future step and correspond-
ing H−i|k to some realization of measurements from the pre-
vious steps. In order to sample from P(zi|k|H−i|k), we should
marginalize over the future robot pose xi and landmarks L

P(zi|k|H−i|k) =
∫
xi

∫
L

P(zi|k|xi,L)·P(xi,L|H−i|k)dxidL, (6)

where P(xi,L|H−i|k) can be calculated from the belief
b−[Xi|k]

.
= P(Xi|k|H−i|k). We approximate the above integral

via sampling as summarized in Algorithm 1. One can also
choose to approximate further by considering only landmark
estimates L̂ (i.e. without sampling L).

Algorithm 1 Sampling zi|k ∼ P(zi|k|H−i|k)

1: χi
.
= {xi,L} ∼ P(xi,L|H−i|k)

2: Determine data association Mi|k(xi,L)
3: zi|k = {zi,j|k}j∈Mi|k(χi) with zi,j|k ∼ P(zi,j|k|xi, lj)
4: return zi|k and χi

Each sample χi and the determined DA (lines
1-2 of Alg. 1) define a measurement likelihood

P(zi|k|χi,Mi|k(χi)) =
∏
j∈Mi|k(χi)

P(zi,j|k|xi, lj) from
which observations are sampled in line 3. Considering
nx samples, {χni }

nx
n=1, we can approximate Eq. (6) by

P(zi|k|H−i|k) ≈ ηi
nx∑
n=1

wni · P(zi|k|χni ,Mi|k(χ
n
i )), where wni

represents n-th sample weight, χni , and η−1i
.
=
∑nx
n=1 w

n
i .

Here, since all samples are generated from their original
distribution (corresponding to the proposal distribution in
importance sampling), see line 1, we have identical weights.

For each sample χni ∈ {χni }
nx
n=1, we can generally

consider nz measurement samples (line 3), providing the
set {zn,mi|k }

nz
m=1. In other words, Algorithm 1 yields nx ·

nz sampled measurements, denoted by {zi|k}, for a given
realization of zk+1:i−1|k. Thus, considering all such possible
realizations, we get (nx ·nz)i sampled measurements for the
i-th look ahead step. Figure 1 illustrates this conceptually.

We can now write an unbiased estimator for (4), consid-
ering the (nx ·nz)i sampled measurements. In particular, for
the i-th look ahead step, we get

E
zk+1:i|k

[ci]≈ηk+1

∑
{zk+1|k}

wnk+1(· · · (ηi
∑
{zi|k}

wni · ci) · · · ) (7)

where H−i|k varies with each measurement realization.
The above exponential complexity makes the described

calculations quickly infeasible, due to both curse of dimen-
sionality and history. In practice, approximate approaches,
e.g. Monte-Carlo tree search [13], must be used. However,
in this work we prefer to present our paradigm considering
the above formulation, without any further approximations,
referring to it as X-BSP. We believe our proposed concept
can be applied in conjunction with existing approximate
approaches, however leave this endeavor for future research.

Before proceeding further, we mention another common
approximation to Eq. (3), ML-BSP, which corresponds to
nx = nz = 1 (and considering the mean of the propagated
belief in the above generative model). The belief propaga-
tion illustrated in Figure 1 is reduced to contain only the
beliefs marked with a solid line, thus drastically reducing
complexity at the expense of sacrificing performance.

C. Problem Statement

We are now in a position to formulate the problem
addressed in this work. Consider the planning session at time
instant k has been solved by evaluating the objective (3)
via appropriate measurement sampling for each action in Uk
and subsequently choosing the optimal action u?k:k+L−1|k.
A subset of this action, u?k:k+l−1|k ∈ u?k:k+L−1|k with
l ∈ [1, L), is now executed, new measurements zk+1:k+l|k+l
are obtained and the posterior belief b[Xk+l|k+l] in inference
is calculated, upon which a new planning session is initiated.

Determining the optimal action sequence at time instant
k + l involves evaluating the objective function for each
candidate action u′ .= uk+l:k+l+L−1|k+l ∈ Uk+l

J(u′)
.
= E

[
k+l+L∑
i=k+l+1

ci

(
b[Xi|k+l], u

′
i−1|k+l

)]
, (8)



where the expectation is with respect to future observations
zk+l+1:k+l+L|k+l. Existing approaches perform these costly
evaluations from scratch for each candidate action.

In contrast, our goal in this work is to develop an approach
for evaluating the objective function (8) more efficiently by
re-using calculations from the previous planning session.

At this point, we summarize our assumptions in this work.
Assumption 1: Calculations from a precursory planning

session are accessible from the current planning session.
Assumption 2: The planning horizon of current time k +

l, overlaps the planning horizon of the precursory planning
time k, i.e. l ∈ [1, L).

Assumption 3: Action sets Uk+l and Uk overlap in the
sense that actions in Uk which overlap in the executed
portion of the optimal action also partially reside in Uk+l. In
other words, ∀u ∈ Uk with u .

= {uk:k+l−1|k, uk+l:k+L−1|k}
and uk:k+l|k ≡ u?k:k+l−1|k, ∃u′ ∈ Uk+l such that
u′

.
= {u′k+l:k+L−1, u′k+L:k+l+L−1} and u′k+l:k+L−1 ∩

uk+l:k+L−1|k /∈ ∅.
III. APPROACH

Our key observation is that expectation related calculations
from two successive X-BSP planning sessions at times k
and k + l are similar and, often, calculations related to
sampled measurements from the former planning session
can be appropriately re-used in the planning session at time
k + l. Based on this observation we develop incremental
expectation BSP (iX-BSP) approach that saves valuable
computation time, while at the same time preserving the
benefits of the expectation solution obtained by X-BSP.
A. Approach Overview

Let us compare between the objective functions for two
planning sessions (3) and (8), with u ∈ Uk and u′ ∈ Uk+l,
and consider, for simplicity, u and u′ overlap, i.e. u 3
uk+l:k+L−1|k = uk+l:k+L−1|k+l ∈ u′, and u = u? was the
optimal action determined at time k, where a sub-sequence
uk:k+l−1 ∈ u has been executed by the current time k + l.
We note our approach is applicable also to the more general
case where actions only partially overlap (see Assumption
3), as discussed in the sequel.

Along the overlapping planning horizon (between k+l+1
and k + L), calculations performed for u at time k and
those to be performed for u′ at time k + l are similar
- in both cases, measurements are sampled from similar
distributions. The key difference resides in the information
up to time k + l: While at time k, different measurement
realizations {zk+1:k+l|k} were considered (via sampling), at
time k+ l a particular measurement realization zk+1:k+l|k+l
was captured in inference, in practice.

For example, consider the look ahead time step k+ l+1.
At the first planning session, the expectation is with respect
to P(zk+l+1|k|H−k+l+1|k), where H−k+l+1|k is a function of a
measurement realization zk+1:k+l|k ∈ {zk+1:k+l|k}. On the
other hand, at the second planning session, the expectation is
with respect to P(zk+l+1|k|H−k+l+1|k+l), where H−k+l+1|k+l
involves the actually obtained measurements zk+1:k+l|k+l.

Considering again the sampled different measurement
realizations from time k, {zk+1:k+l|k} for each action in Uk,
it is possible to identify a realization, in terms of action se-
quence uk:k+l−1|k and observations zk+1:k+l|k, that is closest
to actions taken uk:k+l−1:k+l and obtained measurements
zk+1:k+l|k+l, such that the corresponding beliefs b[Xk+l|k]
and b[Xk+l|k+l] are closest. We formalize this notion and
discuss our method to do so in Sec. III-B.

The identified closest realization zk+1:k+l|k, corresponds
to its own Hk+l|k, which has been used, at time k,
for sampling measurements in the next look ahead steps,
e.g. {zk+l+1|k}, {zk+l+2|k} etc., as described in Sec. II-B.
Importantly, the costs ci for these sampled measurements
have been already calculated at time k. Assuming these
calculations are available at time k+ l, we now discuss how
these computations can be appropriately re-used.

To this end, our approach considers two aspects, con-
sidering the fact that, in the general case, zk+1:k+l|k and
zk+1:k+l|k+l are not identical. First, the sampled measure-
ments zi|k for each look ahead step i ∈ [k + l + 1, k +
L], that were originally sampled from P(zi|k|H−i|k), see
Eq. (6), should be re-weighted such that these samples
could be considered as samples from the correct distribution
P(zi|k|H−i|k+l). This step is discussed in Sec. III-C. Second,
we re-use calculations of costs ci that were performed at
planning time k, while accounting for the difference between
b[Xk+l|k] and b[Xk+l|k+l]. This is discussed in Sec. III-
D. The planning steps that cannot be re-used from the
precursory planning session, e.g. k+L+1 : k+ l+L, are
calculated from scratch (as in X-BSP).

Next, we go over each step in iX-BSP: selecting calcula-
tions for re-use (Sec. III-B), re-using the samples (Sec. III-C)
and updating information from current time (Sec. III-D).

B. Selecting Closest Predictions for Re-Use

While the precursory planning session contains several
candidate actions uk:k+l−1|k and for each of which several
future beliefs b[Xk+l|k], the current planning session contains
a single given action sequence uk:k+l−1|k+l resulting in a
single posterior b[Xk+l|k+l]. In order to utilize calculations
from precursory planning we need to first choose from it,
the candidate action sequence, and resulting belief which are
closest to those in current time k + l.

We start the selection process by considering all action
sequences uk:k+L−1|k meeting Assumption 3. Each of these
actions propagated the precursory posterior b[Xk|k] into
several candidate future beliefs b[Xk+l|k] using different sets
of sampled measurements zk+1:k+l|k. We wish to prune
the calculations from precursory planning further and re-
main with a single belief b[Xk+l|k], which is equal to
the current posterior (b[Xk+l|k+l]) in the sense of sampled
measurements. Because the actions are already identical the
measurements are the only difference between both beliefs.

It is highly unlikely to find a belief such that zk+1:k+l|k ≡
zk+1:k+l|k+l, hence we look for the closest match in
the sense of DA and measurement values. First we



Fig. 2: Illustration for adequate and inadequate representative sample. Samples in
green, beliefs mean and covariance are represented by ellipse and dot respectivly.

prune according to DA, we keep only the beliefs clos-
est to b[Xk+l|k+l] in the sense of DA, i.e. the set of
beliefs corresponding all DA such that Mk+1:k+l|k ∈
argmax
Mk+1:k+l|k

(
Mk+1:k+l|k∩Mk+1:k+l|k+l

)
.

In case we are not left with a single belief, we continue
pruning seeking minimal measurement value difference. We
choose the set of beliefs that correspond to the sampled
measurements zk+1:k+l|k which are closest to zk+1:k+l|k+l
by value. This comparison is crucial since the sampled mea-
surements that we are forcing in current planning session, i.e.
{zk+l+1:k+L|k}, were sampled as a function of zk+1:k+l|k
(see Sec. II-B), hence directly affects the relevance of the
re-used samples (as discussed in the sequel).

At the end of the process we are either left with a single
belief b[Xk+l|k] closest to b[Xk+l|k+l], or we are left with
few beliefs which are equally close to b[Xk+l|k+l]; in case
of the latter, we just pick one and prune the others.

C. Re-using Samples

After Sec. III-B, we have a set of sampled measurements,
from the precursory planning session, for each of the over-
lapping horizon steps k + l + 1 : k + L.

Since we are forcing the measurement samples, the val-
ues used for the estimation are of zi|k, rather than of
zi|k+l. Moreover, the old samples were generated from
the set of sampled states χi|k, hence the measurement
model should consider χi|k as the given sampled loca-
tion (Algorithm 1, line 1), rather than χi|k+l. Under im-
portance sampling the approximation of Eq. (6) is given

by P(zi|k|H−i|k+l) ≈ ηi
nx∑
n=1

wni · P(zi|k|χni|k,Mi|k+l(χ
n
i|k)),

where wni are no longer uniform, but instead equal the
probability P(χ = χi|k|H−i|k+l).

Since we are re-using previously sampled measurements
(a.k.a. importance sampling), we need to assure they con-
stitute a representative sample of the true measurement
likelihood. Figure 2 illustrates the problem with re-using
samples from precursory planning sessions. Consider prop-
agated belief b−[Xk+3|k], colored in black. During planning
time k we sampled (Alg. 1, line 1) from the propagated
belief b−[Xk+3|k]. We now consider planning time k + 1,
and in it, two propagated beliefs b−[Xk+3|k+1], colored
red and blue in Figure 2, each of which consider different
realizations at inference time k + 1, hence with different
posterior. While the samples provide adequate representative
sample for the blue propagated belief, they lack doing so for
the red propagated belief. To avoid this problem, we examine
re-used samples coverage by judging weight values. When

needed, we re-sample measurements from scratch to provide
with an adequate representative sample for the distribution.
D. Incremental Belief Update: from b[Xk+l|k] to b[Xk+l|k+l]

The last remaining aspect in iX-BSP approach is re-
using the costs ci. Specifically, for each sampled measure-
ment zi|k ∼ P(zi|k|H−i|k), the corresponding posterior belief
b[Xi|k] and cost ci have already been calculated. However,
in-spite re-using the sampled measurements zk+l+1:i|k, the
posterior belief b[Xi|k] still needs to be updated to recover
b[Xi|k+l]. In particular, these two beliefs can be written as

b[Xi|α]∝b[Xk+l|α]

i∏
s=k+l+1

[P(xs|xs−1, us−1|α)
∏

j∈Ms|α

P(zjs|α|xs, lj)],

with α∈{k, k+l} and Ms|k=Ms|k+l, ∀s. Thus, to recover
b[Xi|k+l], b[Xi|k] has to be updated to account for the
difference between b[Xk+l|k] and b[Xk+l|k+l]. In case u and
u′ partially overlap (see Assumption 3), the motion model
terms for b[Xi|k+l] and b[Xi|k] will also partially differ.

Given two beliefs, b[Xk+l|k] and b[Xk+l|k+l], the former
can be used to update the latter to the point of algebraic
equality. Luckily, this update can be done incrementally,
building upon our previous work [24], [25], which consid-
ered multivariate Gaussian distributions. We believe similar
concepts are also applicable to more general distributions,
which should be investigated in future work.

Briefly, for the special case of consistent DA between
two beliefs, i.e. Mk+l|k = Mk+l|k+l, such update can be
performed using the DU-OO method (see details in [24]).
In case of inconsistent DA, as presented in our recent
work (see [25], one can update the DA before using the
aforementioned to update the belief. In particular, the first
step in updating the DA is to mark the inconsistency between
both beliefs, meaning which associations in b[Xk+l|k] do not
appear in b[Xk+l|k+l] and vice versa. Once the inconsisten-
cies are flagged, we incrementally remove the unnecessary
associations from b[Xk+l|k], and add the correct ones from
b[Xk+l|k+l] using iSAM2 efficient methodologies (see [27]).

IV. RESULTS

In this section we provide statistical comparison between
X-BSP, ML-BSP and iX-BSP, using Active-SLAM as a
test-bed under Model Predictive Control (MPC) framework.
For simplicity we consider the following: (a) Motion and
observation models with additive zero-mean Gaussian noise.
(b) All landmarks are already part of the joint state. (c) All
previously sampled measurements provide adequate repre-
sentative sample in current planning time, i.e. all samples are
re-used. Code implemented in MATALB, and executed on
a Linux machine, with Xeon E3-1241v3 3.5GHz processor
with 64GB of memory. In the sequel we present a single-
action statistical comparison of X-BSP to ML-BSP, and then
compare between iX-BSP, X-BSP, and ML-BSP.
A. The ML Assumption

In this section we provide a glimpse behind the curtains
of X-BSP and ML-BSP. We show the results of a single
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Fig. 3: (a) and (b) Spatial sensitivity to the ground truth location in respect to the objective value when considering ”left” and ”forward” actions accordingly. While X-BSP
considers the weighted average of different possible measurements, denoted by colored area, ML-BSP considers only the most likely measurement, denoted by the black arrow.
(c) Testing scenario, landmarks denoted by green ”+”, prior state and uncertainty in solid purple, ML-BSP denoted by red, X-BSP and iX-BSP denoted by black, see Sec. IV-B
for more details. (d) and (e) Box plots of 100 rollouts for planning session timing (d) and posterior estimation error (e) upon reaching the goal.

planning session, for which expectation and ML produced
different optimal actions. Consider a robot with initial esti-
mated location and covariance, given two candidate actions.
The world consists out of two types of landmarks, the first
with high covariance and the second with low. Figures 3a-
3b present the spatial cost values which are the result of
choosing ”left” or ”forward” actions accordingly, and where
warm colors denote higher cost values. While ML considers
only the cost value where the arrow is placed, expectation
considers multiple samples from different spatial locations.
As a result expectation favored the ”left” action while ML
favored ”forward”. For 20k inference rollouts, each with a
different ground truth location, choosing left is favorable in
the sense of minimizing cost (uncertainty), 74% of the times.

B. Re-Using The Precursory Planning Session

In this section we compare all three methods in the
sense of planning-session computation time and the posterior
estimation error upon reaching the goal. For comparison
we perform 100 rollouts (entire mission run), each with a
different sampled ground-truth for the prior state. For each
rollout, we time the planning sessions of all three methods.
Figure 3c presents the scenario on which all rollouts were
performed. Considering the same world and same landmarks
as in Sec. IV-A. A robot equipped with a stereo camera, is
required to reach the goal whilst not crossing a covariance
threshold, i.e. cost consisting of distance to goal and a
covariance penalty above a certain value. Figure 3c shows
one of the 100 rollouts that were calculated, in which the
estimated trajectory by each method is denoted by a solid
line, the ground truth by a dashed line and the posterior
covariance by a dashed ellipse. In Figure 3c both X-BSP
and iX-BSP, in black, chose the same optimal actions along
the mission, while ML-BSP, in red, chose differently. We
can also see the effect of this difference over each method’s
covariance, X-BSP and iX-BSP action choice led to a
smaller covariance along the entire path.

Figure 3d presents the statistical data of the planning
session running time. Since in this example we follow an
MPC framework, the last step of each horizon is required

to be calculated from scratch. Since doing so is identical to
the course of action in X-BSP, we present the computation
time of the entire horizon, excluding the last horizon step. As
expected, for average timing as well as for each separate roll-
out, both ML-BSP and iX-BSP timings are lower than that
of X-BSP. By re-using previous planning session, instead
of calculating it from scratch we save valuable computation
time, theoretically without effecting the planning solution.
We examine the effect on the planning solution in Figure 3e,
by comparing the posterior estimation error upon reaching
the goal. As expected, the statistical results of 100 rollouts
presented in Figure 3e, shows that X-BSP is statistically
superior to ML-BSP: in 63% of the rollouts it has a smaller
estimation error while in 10% they are equal. Importantly, we
can also see that iX-BSP is statistically similar to X-BSP,
with 41% of the rollouts with smaller estimation error and
15% equal. We note that relaxing the simplifying assumption
that all samples provide an adequate representative sample,
would result with an even better match between X-BSP and
iX-BSP.

V. CONCLUSIONS

State of the art approaches under X-BSP paradigm (BSP
with expectation) calculate each planning session from
scratch. In this paper we presented an alternative paradigm,
iX-BSP, that utilizes similarities and appropriately re-uses
calculations between two consecutive planning sessions. Per-
forming importance sampling using samples from precur-
sory planning session enables to incrementally update the
expectation calculations for the current planning sessions.
Thus, planning calculations can be efficiently re-used in
order to save valuable computation time. After recalling
the strengths of expectation over the common maximum
likelihood observations assumption, we showed our proposed
iX-BSP is statistically equal to X-BSP whilst providing
shorter computation time.

Since our paradigm changes the solution approach of the
original, un-approximated, problem (X-BSP), we believe it
can be utilized to also reduce computation time of existing
approximations of X-BSP.
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