

iX-BSP: Belief Space Planning through Incremental Expectation

Introduction

• We denote the full unapproximated solution of BSP problem as X-BSP

 $J(u) \doteq \mathbb{E}_z \left[\sum_{i=k+1}^{k+L} c_i \left(b[X_{i|k}], u_{i-1|k} \right) \right]$

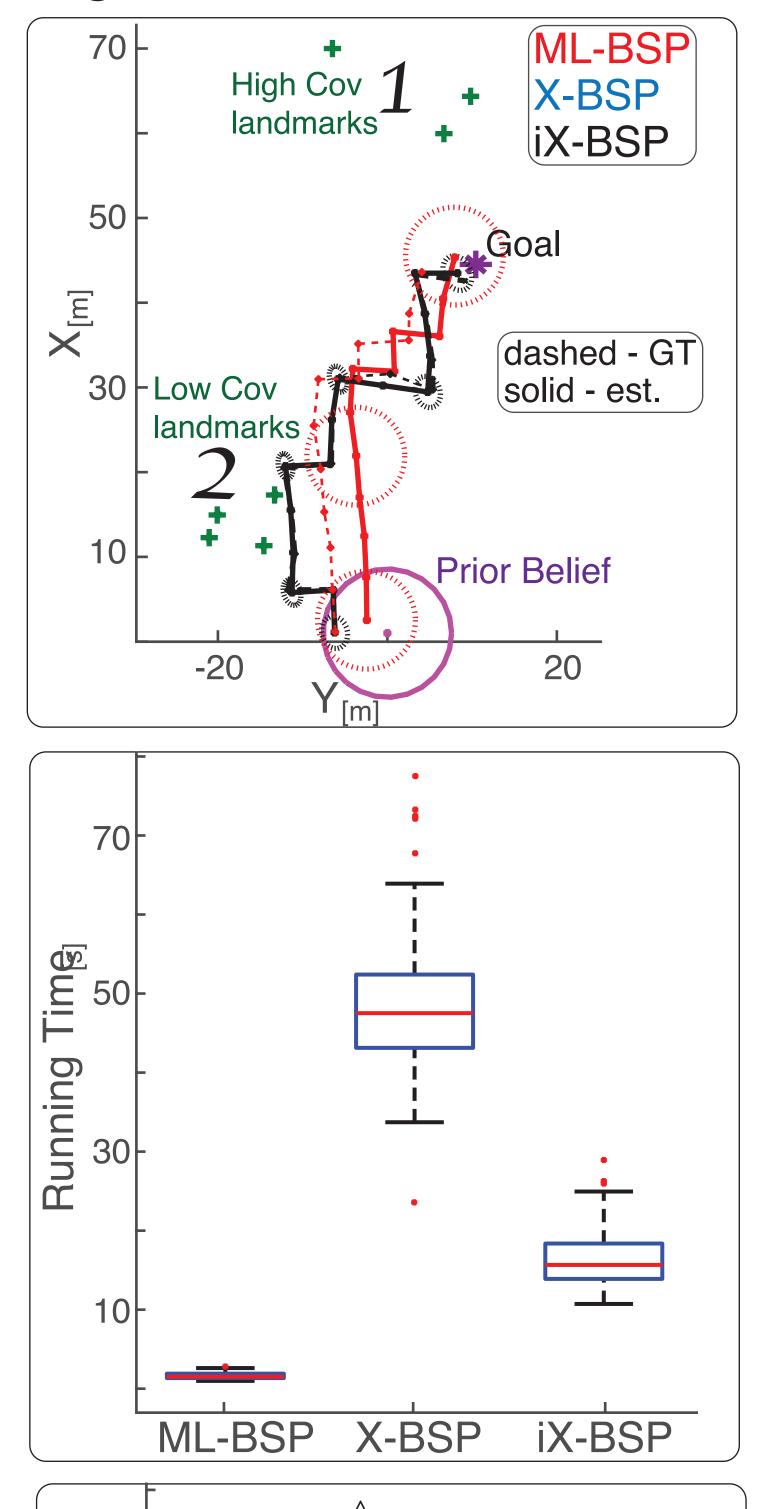
- The ML approximation for X-BSP is denoted by ML-BSP
- Calculation re-use in BSP has only been done over ML-BSP with re-

Approach

- Consider the objective calculations from planning time k $\forall u \in \mathcal{U}_k$
 - $J(u) \approx \frac{1}{n} \sum_{\substack{n \\ \{z_{k+1|k}\}_{1}^{n}}} \left[w_{k+1|k}^{i} \cdot c_{k+1|k} + \cdots \right]$
- and the desired objective for planning time k+l $\forall u' \in \mathcal{U}_{k+l}$ $J(u') \approx \frac{1}{n} \sum \left[w_{k+l+1|k+l}^j \cdot c_{k+l+1|k+l} \cdots \right]$ $\{z_{k+l+1|k+l}^n\}_1^n$

Results

• We performed 100 rollouts, each with a different sampled groundtruth for prior state. Map illustrates a single rollout.

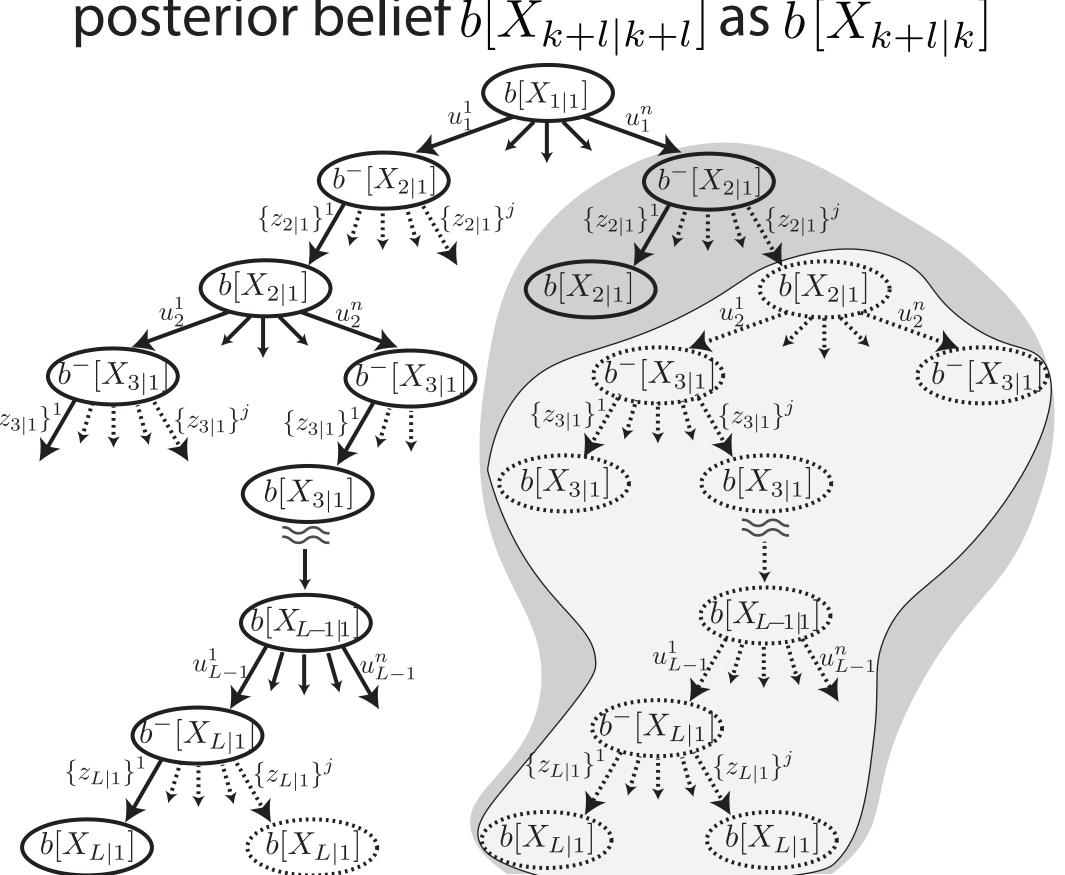


stricting assumptions

Problem Statement

- Planning at time k executed
- Optimal action chosen $u_{k:k+L-1|k}^{\star}$
- $u_{k:k+l-1|k}^{\star} \in u_{k:k+L-1|k}^{\star}$ executed
- Acquired measurements $z_{k+1:k+l|k+l}$
- Next planning is with respect to future measurements $z_{k+l+1:k+l+L|k+l}$
- Existing approaches perform these costly calculations from scratch
- Our goal develop approach for re-using calculations from precursory planning sessions

- Measurements from horizons k+l+1 to k+L are sampled from similar distributions (3) $\mathbb{P}\left(z_{k+l+1|k}|H_{k+l+1|k}^{-}\right)$ $(4) \mathbb{P}\left(z_{k+l+1|k+l} | H_{k+l+1|k+l}^{-}\right)$
- Assuming (1) has been sampled from original distribution, e.g. (3), we get $w_{i|k}^{j} \doteq 1 \quad \forall i, j$
- Denote belief $b[X_{k+l|k}]$ closest to the posterior belief $b[X_{k+l|k+l}]$ as $b[X_{k+l|k}]$



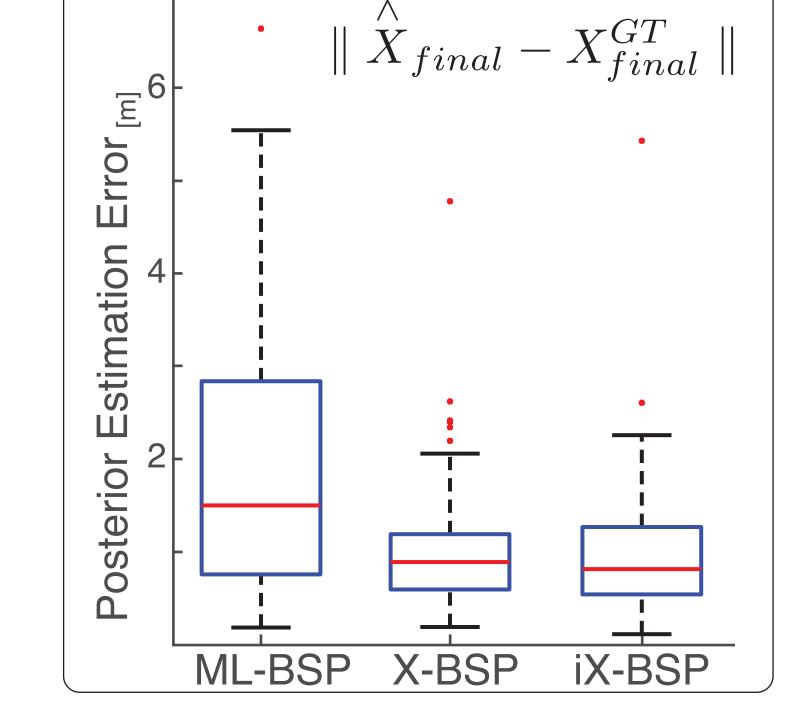
- Assumptions:
 - Precursory planning calculations are accessible
 - Horizon overlap, i.e. $l \in [1, L)$
 - $u_{k+l:k+L-1|k}^{\star}$ partially resides in the set of candidate actions for planning time k+l

Key Observation

• Two successive X-BSP sessions from times k and k+l are similar

(b) Selecting beliefs for re-use

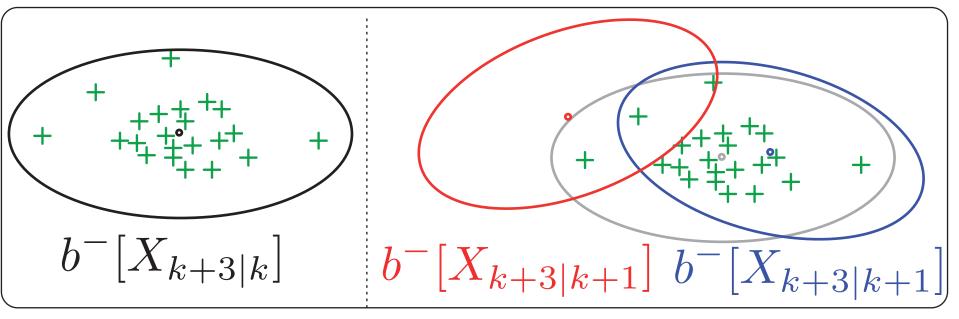
- All beliefs from planning time k rooted in $b[X_{k+l|k}]$ are considered for re-use in planning time k+l
- We assume all samples can be reused, will be relaxed in future work
- Incrementally update all candidate beliefs with actual information received up-to time k+l (Farhi17icra)
- Since samples are re-used rather than freshly sampled, the jth weight at the ith horizon step is given by



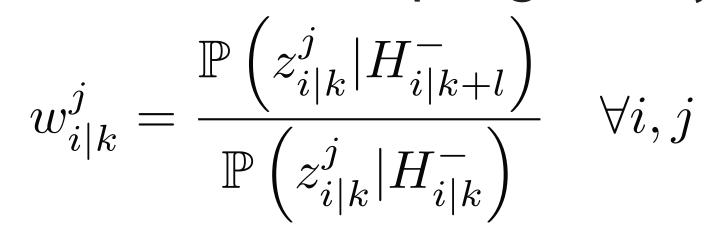
Conclusions

- BSP using expectation can be efficiently updated using a precursory planning session, presenting iX-BSP
- iX-BSP provides the same statistical accuracy as X-BSP for a reduced computational effort

- Calculations in planning time k can be re-used for planning time k+l
- By re-using samples we can avert from costly calculations at time k+l



(a) Belief distance affecting sample re-use



- Since (3) nor (4) can be directly calculated we use
- $\mathbb{P}\left(z_{i|k}|H_{i|k}^{-}\right) \approx \frac{1}{n} \sum_{\mathbf{X}} \mathbb{P}\left(z_{i|k}|X_{i}\right) \mathbb{P}\left(X_{i}|H_{i|k}^{-}\right)$
- We complete the rest of the horizon
- (k+L+1:k+L+I) with X-BSP
- With solved beliefs and updated weights we can now solve (4) $\forall u' \in \mathcal{U}_{k+l}$

• Since iX-BSP alters the solution approach of the original, un-approximated, problem (X-BSP), we believe it can also be utilized for existing approximations of X-BSP

References

E. I. Farhi and V. Indelman, "Towards efficient inference update

through planning via jip - joint inference and belief space plan-

ning," in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2017

