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Abstract
Inference and decision making under uncertainty are key processes in every autonomous system and numerous robotic
problems. In recent years, the similarities between inference and decision making triggered much work, from developing
unified computational frameworks to pondering about the duality between the two. In spite of these efforts, inference and
control, as well as inference and belief space planning (BSP) are still treated as two separate processes. In this paper we
propose a paradigm shift, a novel approach which deviates from conventional Bayesian inference and utilizes the similarities
between inference and BSP. We make the key observation that inference can be efficiently updated using predictions made
during the decision making stage, even in light of inconsistent data association between the two. We developed a two
staged process that implements our novel approach and updates inference using calculations from the precursory planning
phase. Using autonomous navigation in an unknown environment along with iSAM2 efficient methodologies as a test case,
we benchmarked our novel approach against standard Bayesian inference, both with synthetic and real-world data (KITTI
dataset). Results indicate that not only our approach improves running time by at least a factor of two while providing the
same estimation accuracy, but it also alleviates the computational burden of state dimensionality and loop closures.

Keywords Artificial intelligence · Simultaneous localization And mapping (SLAM) · Passive-SLAM · Active-SLAM ·
Bayesian incremental inference · Belief space planning (BSP) · Inference update · Inference and planning · Joint inference
and planning

1 Introduction

Real life scenarios in autonomous systems and artificial intel-
ligence involve agent(s) that are expected to reliably and
efficiently operate under different sources of uncertainty,
often with limited knowledge regarding the environment;
e.g. autonomous navigation and simultaneous localization
and mapping (SLAM), search and rescue scenarios, object
manipulation and robot-assisted surgery. These settings
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necessitate probabilistic reasoning regarding high dimen-
sional problem-specific states. For instance, in SLAM, the
state typically represents robot poses and mapped static
or dynamic landmarks, while in environmental monitor-
ing and other sensor deployment related problems the state
corresponds to an environmental field to be monitored
(e.g. temperature as a function of position and perhaps time).

Attaining these levels of autonomy involves two key pro-
cesses, inference and decisionmaking under uncertainty. The
former maintains a belief regarding the high-dimensional
state given available information thus far,while the latter, also
often referred to as belief space planning (BSP), is entrusted
with determining the next best action(s).

The inference problem, has been addressed by the research
community extensively over the past decades. In partic-
ular, focus was given to inference over high-dimensional
state spaces with SLAM being a representative problem,
and to computational efficiency to facilitate online opera-
tion, as required in numerous robotics systems. Over the
years, the solution paradigm for the inference problem has
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evolved. From EKF based methods Davison et al. (2007);
Haykin (2001), through information form recursive Thrun et
al. (2004) and smoothingmethodsDellaert andKaess (2006);
Eustice et al. (2006), and in recent years up to incremental
smoothing approaches, such as iSAMKaess et al. (2008) and
iSAM2 Kaess et al. (2012).

Given the posterior belief from the inference stage, deci-
sion making under uncertainty and belief space planning
approaches are entrusted with providing the next optimal
action sequence given a certain objective. The aforemen-
tioned is accomplished by reasoning about belief evolution
for different candidate actions while taking into account dif-
ferent sources of uncertainty. The corresponding problem is
an instantiation of a partially observable Markov decision
process (POMDP) problem, known as PSAPCE-complete
Papadimitriou and Tsitsiklis (1987), hence computationally
intractable for all but the smallest problems, i.e. nomore than
a few dozen states Kaelbling et al. (1998).

Over the years, numerous approaches have been devel-
oped to trade-off suboptimal performance with reduced
computational complexity of POMDP, see e.g. Pineau et al.
(2006), Kurniawati et al. (2008), Hollinger and Sukhatme
(2014), Toussaint (2009). While the majority of these
approaches, including Prentice and Roy (2009), Platt et al.
(2010), Bry and Roy (2011), Van Den Berg et al. (2012),
assumed some sources of absolute information (GPS, known
landmarks) are available or considered the environment to be
known, recent research relaxed these assumptions, account-
ing for the uncertainties in the mapped environment thus
far as part of the decision making process Kim and Eustice
(2014); Indelman et al. (2015) at the price of increased state
dimensionality.

A crucial component in both inference and BSP is data
association (DA), i.e. associating between sensor observa-
tions and the corresponding landmarks. Incorrect DA in
inference or BSP can lead to catastrophic failures, due to
wrong estimation in inference or incorrect belief propagation
within BSP that would result in incorrect, and potentially
unsafe, actions. Recent research thus focused on develop-
ing approaches that are robust to incorrect DA, considering
both passive Carlone et al. (2014); Indelman et al. (2016);
Olson and Agarwal (2013); Sunderhauf and Protzel (2012)
and active perception Pathak et al. (2018).

Regardless of the decision making approach being used,
in order to determine the next (sub)optimal actions the cur-
rent belief is propagated using various action sequences.
The propagated beliefs are then solved in order to provide
an objective function value, thus enabling to determine the
(sub)optimal actions. Solving a propagated belief is equiv-
alent to performing inference over the belief, hence solving
multiple inference problems is inevitable when trying to
determine the (sub)optimal actions.

However, despite the similarities between inference and
decision making, the two problems have been typically
treated separately. Only in recent years, the research commu-
nity has started investigating and exploiting these similarities
between the two processes. For example, Kobilarov et al.
(2015) and Ta et al. (2014) developed Differential Dynamic
Programming (DDP) and Factor Graph (FG) based unified
computational frameworks, respectively, for inference and
decision making. Toussaint and Storkey (2006) provided an
approximate solution to Markov Decision Process (MDP)
problem using inference optimization methods, and Todorov
(2008) investigated the duality between optimal control and
inference for MDP case. Despite these research efforts,
inference and BSP are still being handled as two separate
processes.

Our key observation is that similarities between infer-
ence and decision making paradigms could be utilized in
order to save valuable computation time. Our approach is
rooted in the joint inference and belief space planning con-
cept, presented in Farhi and Indelman (2017) and Farhi and
Indelman (2019b), which strives to handle both inference
and decision making in a partially observable setting within
a unified framework, to enable sharing and updating similar
calculations across inference and planning (see discussion
in Sect. 5). In contrast to the notion of joint inference and
control, which considers an MDP setting, we consider a
partially observable setting (POMDP). Through the symbi-
otic relation enabled by considering the joint inference and
BSP problems we make the following key research hypoth-
esis: Inference can be efficiently updated using a precursory
planning stage. This paper investigates this novel concept
for inference update, considering operation in uncertain or
unknown environments and compares it against the current
state of the art in both simulated and real-life environments.

Updating inference with a precursory planning stage can
be considered as a deviation from conventional Bayesian
inference. Rather than updating the belief from the previous
time instant with new incoming information (e.g. measure-
ments),wepropose to exploit the fact that similar calculations
have already been performed within planning, in order to
appropriately update the belief in inference more efficiently.
We denote this novel approach by Re-Use BSP inference, or
RUB inference in short.

The standard plan-act-infer framework of a typical
autonomous system with conventional Bayesian approach
for inference update is presented in Fig. 1a. First, BSP deter-
mines the next best action(s) given the posterior belief at
current time; the robot performs this action(s); information is
gathered and the former belief from the precursory inference
is updated with new information (sensor measurements); the
new posterior belief is then transferred back to the planning
block in order to propagate it into future beliefs and provide
again with the next action(s).
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(b)(a)

Fig. 1 High level algorithm for joint inference and BSP presented in
a block diagram: a presents a standard plan-act-infer framework with
Bayesian inference andBSP treated as separate processes;bpresents our
novel approach for inference update using precursory planning. Instead
of updating the belief from precursory inference with new information
we propose to update the belief from a precursory planning phase. Since
the only difference between (a) and (b) manifests in computation time
within the inference block, it is timed for comparison

Our proposed concept, RUB inference, is presented
in Fig. 1b. RUB inference differs from the conventional
Bayesian inference in two aspects: The output of the BSP
process and the procedure of inference update. As opposed
to standard Bayesian inference, in RUB inference, BSP
output includes the next action(s) as well as the correspond-
ingpropagated future beliefs, noother changes are required in
BSP in order to facilitate RUB inference. These beliefs
are used to update inference while potentially taking care of
data association aspects, rather than using the belief from
precursory inference as conventionally done under Bayesian
inference. As can be seen in Fig. 1b, the inference block con-
tains data association (DA) update before the actual inference
update. There are a lot of elements that can cause the DA in
planning to be partially different than the DA established in
the successive inference, e.g. estimation errors, disturbances,
and dynamic or un-modeled unseen environments.

We start investigating this novel concept under a sim-
plifying assumption that the DA considered in planning is
consistent to that acquired during the succeeding inference,
e.g. we predicted an association to a specific previously
mapped landmark and later indeed observed that landmark.
Since data association only relates to connections between
variables and not to the measurement value, we are left
with replacing the (potentially) incorrect measurement val-
ues, used within planning, with the actual values. Under this
assumption, we provide four exact methods to efficiently
update inference using the belief calculated by the precur-
sory planning phase. As will be seen, these methods provide
the same estimation accuracy as the conventional Bayesian

(a)

(b)

Fig. 2 Illustration for inconsistent DA between planning and succeed-
ing inference: a at time k, our robot (i.e. the black jeep) plans three
steps into the future. For the future step k + 1 it predicts measurements
from three landmarks (tree, traffic-light and taxi). bAfter executing the
first action our robot obtained three measurements from the environ-
ment. Two of them (i.e. tree and traffic-light) match the predicted DA
from precursory planning session, while the third is associated to a new
landmark (i.e. the couple that came out of the taxi)

inference approach, with a significantly shorter computation
time.

We later relax the simplifying assumption mentioned
above, and show inference can be efficiently updated using
the precursory planning stage even when the DA considered
in the two processes is partially different. Figure 2 illustrates
such a case of inconsistent DA using a simple navigation
problem. At time k our automated car (denoted by a black
jeep), performs planning with a horizon of three steps. Fig-
ure 2a presents the chosen candidate action sequence along
with the predicted measurements for future time k + 1. Our
automated car predicts that at future time k+1 itwould obtain
measurements from the tree, the traffic-light and the taxi from
the opposite lane. In addition to association, these predicted
measurements also have values (e.g. pixels, distance) which
depend on the state estimation (of both robot position and
landmarks). Under an MPC framework, Fig. 2b presents the
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succeeding inference for current time k + 1, in which our
automated car advanced a bit more than planned, and indeed
obtained three measurements. Two of these measurements
are to the tree and the traffic-light (i.e. with consistent DA),
while the third is to the couple that left the taxi (i.e. inconsis-
tent DA). In such a case, merely updating the measurement
values will not resolve the difference between the aforemen-
tioned DAs; instead the DA should be updated to match the
acquired data, before updating the measurement values. We
provide a novel paradigm to update inconsistent DA, lever-
aging iSAM2 graphical model based methodologies, thus
setting the conditions for complete inference update via BSP
regardless of DA consistency.

To summarize, our contributions in this paper1 are as fol-
lows: (a)We introduceRUB inference, a novel approach
for saving computation time during the inference stage by
reusing calculations made during the precursory planning
stage; (b) We provide four exact methods, that utilize our
concept under the assumption of consistent DA. We eval-
uate these four methods and compare them to the state of
the art in simulation. (c) We provide a paradigm for incre-
mentally updating inconsistent DA, thereby relaxing the
afore-mentioned assumption; (d) We evaluate our complete
paradigm and compare it to the state of the art both in sim-
ulation and on real-world data, considering the problem of
autonomous navigation in unknown environments.

This paper is organized as follows. Section 2 formu-
lates the discussed problem. Section 3 presents the sug-
gested approach and its mathematical formulation. Section 4
presents a thorough analysis of the suggested approach and
a comparison to related work. Section 5 discusses a broader
perspective of RUB Inference. Section 6 captivates the
conclusions of our work along with possible extensions and
usage. To improve coherence, several aspects are covered in
appendices.

2 Background and problem formulation

In this work, we consider the joint inference and belief space
planning problem in a model predictive control (MPC) set-
ting, i.e. BSP is performed after each inference phase. This
problem can be roughly divided into two successive and
recursive stages, namely inference and planning. The former
performs inference given all information up to current time,
updating the belief over the state with incoming informa-
tion (e.g. sensor measurements). The latter produces the next
control action(s), given the belief from the former inference
stage and a user defined objective function.

1 A preliminary version of this paper appeared in Farhi and Indelman
(2017).

Let xt denote the robot’s state at time instant t and L
represent the world state if the latter is uncertain or unknown.
For example, for SLAM problem, it could represent objects
or 3D landmarks. The joint state, up to time k, is defined as

Xk = {x0, ..., xk,L} ∈ R
n . (1)

We shall be using the notation t |k to refer to some time instant
t while considering information up to time k; aswill be shown
in the sequel, this notation will allow to refer to sequential
inference and planning phases in a unified manner.

Let zt |k and ut |k denote, respectively, the measurements
and the applied control action at time t , while the current
time is k. For example, zk+1|k represents measurements from
a future time instant k + 1 while zk−1|k represents measure-
ments from a past time instant k − 1, with the present time
being k in both cases. Representing the measurements and
controls up to time t , given current time k, as

z1:t |k
.= {z1|k, ..., zt |k} , u0:t−1|k

.= {u0|k, ..., ut−1|k}, (2)

the posterior probability density function (pdf) over the joint
state, denoted as the belief, is given by

b[Xt |k] .= P(Xt |z1:t |k, u0:t−1|k). (3)

For t = k, Eq. (3) represents the posterior at current time k,
while for t > k it represents planning stage posterior for a
specific sequence of future actions and observations. Using
Bayes rule, Eq. (3) can be rewritten as

P(Xt |z1:t |k, u0:t−1|k)

∝ P(x0) ·
t∏

i=1

⎡

⎣P(xi |xi−1, ui−1|k)
∏

j∈Mi |k
P(z ji |k |xi , l j )

⎤

⎦ , (4)

where P(X0) is the prior on the initial joint state,
P(xi |xi−1, ui−1|k) and P(z ji |k |xi , l j ) denote, respectively, the
motion and measurement likelihood models. The set Mi |k
contains all landmark indices observed at time i , i.e. it denotes
data association (DA). Themeasurement of some landmark j
at time i is denoted by z ji |k ∈ zi |k . Under graphical represen-
tation of the belief, the conditional probabilities of themotion
and observation models as well as the prior, can be denoted
as factors (see Appendix-B). Eq. (4) can also be represented
by a multiplication of these factors

P(Xt |z1:t |k, u0:t−1|k) ∝
t∏

i=0

{ f j }i |k , (5)

where { f j }i |k represents all factors added at time i while
current time is k. The motion and measurement models are
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conventionally modeled with additive zero-mean Gaussian
noise

xi+1 = f (xi , ui ) + wi , wi ∼ N (0, �w) (6)

z ji = h(xi , l j ) + vi , vi ∼ N (0, �v), (7)

where f and h are known possibly non-linear functions, �w

and �v are the process and measurement noise covariance
matrices respectively.

2.1 Inference

For the inference problem, t ≤ k, i.e time instances that are
equal or smaller than current time. Themaximuma posteriori
(MAP) estimate of the joint state Xk for time t = k is given
by

X�
k|k = argmax

Xk

b[Xk|k] = argmax
Xk

P(Xk |z1:k|k, u0:k−1|k).

(8)

For the Gaussian case, the MAP solution produces the first
twomoments of the belief through solving aNon-linear Least
Squares (NLS) problem, as will be shown later on. TheMAP
estimate from Eq. (8) is referred to as the inference solution
in which, all controls and observations until time instant k
are known.

2.2 Planning in the belief space

As mentioned, the purpose of planning is to determine the
next optimal action(s). Finite horizon belief space planning
for L look ahead steps involves inference over the beliefs

b[Xk+l|k] = P(Xk+l |z1:k+l|k, u0:k+l−1|k), l ∈ [k+1, k+L]
(9)

where we use the same notation as in Eq. (3) to denote the
current time is k. The belief (9) can be written recursively as
a function of the belief b[Xk|k] from the inference phase as

b[Xk+l|k ]

= b[Xk|k ] ·
k+l∏

i=k+1

⎡

⎣P(xi |xi−1, ui−1|k)
∏

j∈Mi |k
P(z ji |k |xi , l j )

⎤

⎦ ,

(10)

for the considered action sequence uk:k+l−1|k at planning
time k, and observations zk+1:k+l|k that are expected to be
obtained upon execution of these actions. The set Mi |k
denotes landmark indices that are expected to be observed
at a future time instant i . It is worth stressing that the future

belief (10) is determined by a specific realization of unknown
future observations zk+1:k+l|k , as stated in the belief def-
inition in (9). Since terms for future belief of the form
P(Xk+l |z1:k+l|k, u0:k+l−1|k) will be used frequently in this
paper in order not to burden the reader we use the more
compact form b[Xi |k]. Whenever i > k the reader should
consider the belief b[Xi |k] as a function of a specific realiza-
tion of future observations.

One can now define a general objective function

J (uk:k+L−1|k)
.= E

zk+1:k+L|k

[
k+L∑

i=k+1

ci
(
b[Xi |k], ui−1|k

)
]

,

(11)

with immediate costs (or rewards) ci and where the expec-
tation considers all the possible realizations of the future
observations zk+1:k+L|k . Conceptually, one could also rea-
son whether these observations will actually be obtained,
e.g. by considering also different realizations of Mi |k .
Note that for Gaussian distributions considered herein and
information-theoretic costs (e.g. entropy), it can be shown
that the expectation operator can be omitted undermaximum-
likelihood observations assumption Indelman et al. (2015),
while another alternative is to simulate future observations
via sampling, e.g. (Farhi and Indelman, 2019a, Sect. II-B), if
such a simulator is available. The optimal open-loop control
can now be defined as

u�
k:k+L−1|k = argmin

uk:k+L−1|k
J (uk:k+L−1|k). (12)

Evaluating the objective function (11) for a candidate action
sequence involves calculating belief evolution for the latter,
i.e. solving the inference problem for each candidate action
using predicted future associations and measurements. Note
that since we consider an MPC framework, the optimal con-
trol is affectively not an open-loop control, since it is being
recalculated at each single action step.

2.3 Problem statement

Our key observation is that inference and BSP share simi-
lar calculations. Despite the similarities between them, they
are treated as separate processes, thus duplicating costly cal-
culations and increasing valuable computation time. This
observation is impervious to any specific paradigms used for
inference or planning and constitutes the difference between
the use of RUB inference as opposed to conventional
Bayesian inference.

Our goal is to salvage valuable computation time in the
inference update stage by exploiting the similarities between
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inference and precursory planning, thus without affecting
solution accuracy or introducing new assumptions.

3 Approach

Calculating the next optimal action u�
k|k ∈ u�

k:k+L−1|k
within BSP necessarily involves inference over the belief
b[Xk+1|k] conditioned on the same action u�

k|k . As we
discuss in the sequel, this belief b[Xk+1|k] can be differ-
ent than b[Xk+1|k+1] (the posterior at current time k + 1)
due to partially inconsistent data association and differ-
ence between measurement values considered in planning
and those obtained in practice in inference. Our approach
for RUB Inference, takes care of both of these aspects,
thereby enabling to obtain b[Xk+1|k+1] from b[Xk+1|k].

In the following, we first analyze the similarities between
inference and BSP (Sects. 3.1 and 3.2), and use these insights
in Sect. 3.4 to develop methods for inference update under a
simplifying assumption of consistent DA. We then relax this
assumption, by analyzing the possible scenarios for incon-
sistent DA between inference and precursory planning (Sect.
3.5.1), and deriving a method for updating inconsistent DA
(Sect. 3.5.2).

It is worth stressing that the only thing needed to be
changed in any BSP algorithm in order to support our
paradigm for RUB Inference, is just adding more infor-
mation to its output.More specifically, outputting not only the
(sub)optimal action u�

k|k , but also the corresponding future
belief b[Xk+1|k] (e.g. the difference between Figs. 1a,b).

3.1 Looking into inference

To better understand the similarities between inference and
precursory planning, let us break down the inference solution
to its components. Introducing Eqs. (4–7) into Eq. (8) and
taking the negative logarithm yields the following non-linear
least squares problem (NLS)

X�
k|k = argmin

Xk

‖x0 − x�
0‖2�0

+
k∑

i=1

⎡

⎣‖xi − f (xi−1, ui−1|k)‖2�w
+

∑

j∈Mi |k
‖z ji |k − h(xi , l j )‖2�v

⎤

⎦ ,

(13)

where ‖a‖2� .= aT�−1a is the squared Mahalanobis norm.
Linearizing each of the terms in Eq. (13) and perform-

ing standard algebraic manipulations (see Appendix-A for
derivation) yields

�X�
k|k = argmin

�Xk

‖Ak|k�Xk − bk|k‖2, (14)

where Ak|k ∈ R
m×n is the Jacobian matrix and bk|k ∈ R

m

is the right hand side (RHS) vector. In a more elaborated
representation

Ak|k =
⎡

⎢⎣
�

− 1
2

0
F1:k|k
H1:k|k

⎤

⎥⎦ , bk|k =
⎡

⎢⎣
0

b̆F1:k|k
b̆H1:k|k

⎤

⎥⎦ , (15)

where F1:k|k , H1:k|k , b̆F1:k|k and b̆H1:k|k (see Appendix-A)
denote the Jacobian matrices and RHS vectors of all motion
and observation terms accordingly, for time instances 1 : k
when the current time is k. These Jacobians, along with the
corresponding RHS can be referred to by

A1:k|k =
[
F1:k|k
H1:k|k

]
, b̆1:k|k =

[
b̆F1:k|k
b̆H1:k|k

]
, (16)

While there are a few methods to solve Eq. (14), we choose
QR factorization as presented, e.g., in Kaess et al. (2008).
The QR factorization of the Jacobian matrix Ak|k is given by
the orthonormal rotationmatrix Qk|k and the upper triangular
matrix Rk|k

Ak|k = Qk|k Rk|k . (17)

Eq. (17) is introduced into Eq. (14), thus producing

Rk|k�Xk = dk|k, (18)

where Rk|k is un upper triangular matrix and dk|k is the corre-
sponding RHS vector, given by the original RHS vector and
the orthonormal rotation matrix Qk|k

dk|k
.= QT

k|kbk|k . (19)

We can now solve Eq. (18) for �Xk via back substitution,
update the linearization point, and repeat the process until
convergence. Eq. (18) can also be presented using a Bayes
tree (BT) Kaess et al. (2010). A BT is a graphical repre-
sentation of a factorized Jacobian matrix (the square root
information matrix) R and the corresponding RHS vector d,
in the form of a directed tree. More on the formulation of
inference using graphical models can be found in Appendix-
B. One can substantially reduce running time by exploiting
sparsity and updating the QR factorization from the previous
step with new information instead of calculating a factor-
ization from scratch, see e.g. iSAM2 algorithm Kaess et al.
(2012).

Given the inference solution, the belief b[Xk|k] can be
approximated by the Gaussian

b[Xk|k] .= P(Xk |z1:k|k, u0:k−1|k) = N (X�
k|k,�

−1
k|k), (20)
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while the information matrix is given by

�k|k = AT
k|k Ak|k = RT

k|k Rk|k, (21)

and the factorized Jacobian matrix Rk|k along with the cor-
responding RHS vector dk|k can be used to update the
linearization point and to recover the MAP estimate. In other
words, the factorized Jacobian matrix Rk|k and the corre-
sponding RHS vector dk|k are sufficient for performing a
single iteration within Gaussian belief inference.

3.2 Looking into planning

An interesting insight, that will be exploited in the sequel,
is that the underlying equations of BSP are similar to those
seen in Sect. 3.1. In particular, evaluating the belief at the Lth
look ahead step, b[Xk+L|k], involves MAP inference over a
certain action sequence uk:k+l−1|k and future measurements
zk+1:k+l|k , which in turn, as in Sect. 3.1, can be described as
an NLS problem

X�
k+L|k = argmin

Xk+L

‖Xk − X�
k|k‖2�−1

k|k

+
k+L∑

i=k+1

[
‖xi − f (xi−1, ui−1|k)‖2�w

+
∑

j∈Mi |k
‖z ji |k − h(xi , l j )‖2�v

⎤

⎦ (22)

For i > k, the set Mi |k contains predicted associations for
future time instant i ; hence, we can claim that ∀i > k it is
possible that Mi |k �= Mi |i . In other words, it is possible
that associations from the planning stage,Mk+1|k , would be
partially different than the associations from the correspond-
ing inference stage Mk+1|k+1. Moreover, the likelihood for
inconsistent DA between planning and the corresponding
inference rises as we look further into the future, i.e. with
the distance ‖i − k‖ increasing; e.g.Mk+ j |k andMk+ j |k+ j

are less likely to be identical for j = 10 than they are for
j = 1.
Predicting the unknownmeasurements zk+1:k+L|k in terms

of both association and values can be done in variousways. In
this paper the DA is predicted using current state estimation,
and measurement values are obtained using the maximum-
likelihood (ML) assumption, i.e. assuming zero innovation
Dellaert and Kaess (2006). The robot pose is first propagated
using the motion model (6). All landmark estimations are
then transformed to the robot’s new camera frame. Once in
the robot camera frame, all landmarks that are within the
robot’s field of view are considered to be seen by the robot
(predicted DA). The estimated position of each landmark,
that is considered as visible by the robot, is being projected

to the camera image plane Hartley and Zisserman (2004),
thus generating measurements. It is worth mentioning that
the aforementionedmethodology is not able to predict occur-
rences of new landmarks, since it is based solely on the map
the robot built thus far, i.e. current joint state estimation.
The ability to predict occurrences of new landmarks would
increase the advantage of RUB Inference over conven-
tional Bayesian inference (as discussed in the sequel), hence
is left for future work.

Once the predictedmeasurements are acquired, by follow-
ing a similar procedure to the one presented in Sect. 3.1, for
each action sequence we get

�X�
k+L|k = argmin

�Xk+L

‖Ak+L|k�Xk+L − bk+L|k‖2. (23)

The Jacobian matrix Ak+L|k and RHS vector bk+L|k are
defined as

Ak+L|k
.=

[
Ak|k

Ak+1:k+L|k

]
, bk+L|k

.=
[

bk|k
b̆k+1:k+L|k

]
, (24)

where Ak|k and bk|k are taken from inference, see Eq. (14),
and Ak+1:k+L|k and b̆k+1:k+L|k correspond to the new terms
obtained at the first L look ahead steps (e.g. see Eq. (16)).
Note that although Ak+1:k+L|k is not a function of the
(unknown) measurements zk+1:k+L|k , it is a function of the
predicted DA,Mk+1:k+L|k Indelman et al. (2015). Perform-
ing QR factorization, yields

Ak+L|k = QA
k+L|k Rk+L|k, (25)

fromwhich the informationmatrix, required in the information-
theoretic cost, can be calculated.UsingEq. (24) the belief that
correlates to the specific action sequence can be estimated,
enabling evaluating the objective function (11). Determining
the best action via Eq. (12) involves repeating this process
for different candidate actions.

3.3 Similarities between inference and BSP

In an MPC setting, only the first action from the sequence
u�
k:k+L−1|k is executed, i.e.

uk|k+1 = u�
k|k ∈ u�

k:k+L−1|k . (26)

In such case the difference between the belief obtained from
BSP (for action u�

k|k)

b[Xk+1|k] ≡ P(Xk+1|z1:k|k, u0:k−1|k, zk+1|k, u�
k|k), (27)

and the belief from the succeeding inference
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b[Xk+1|k+1] ≡ P(Xk+1|z1:k|k, u0:k−1|k, zk+1|k+1, uk|k+1),

(28)
is rooted in the set of measurements (i.e. zk+1|k+1 vs. zk+1|k),
and the corresponding factors added at time instant k + 1.
These factor sets, denoted by { fi }k+1|k and { f j }k+1|k+1

accordingly, can differ from one another in data association
and measurement values. Since solving the belief requires
linearization (14), it is important to note that both beliefs,
b[Xk+1|k] and b[Xk+1|k+1], make use of the same initial lin-
earizationpoint X̄k+1 for the commonvariables. In particular,
as in this work we do not reason within planning about new,
unmapped thus far, landmarks, it follows that

Xk+1|k =
[
Xk|k
xk+1

]
, Xk+1|k+1 =

⎡

⎣
Xk|k
xk+1

Lnew
k+1

⎤

⎦ (29)

where Lnew
k+1 represents the new landmarks that were added to

the belief for the first time at time instant k+1. The lineariza-
tion point for the common variables is [X�

k|k , f (xk, u�
k|k)]

for planning, and [X�
k|k , f (xk, uk|k+1)] for succeeding

inference, where f (.) is the motion model (6). Since the
(sub)optimal action provided by BSP is the one executed in
the succeeding inference i.e. Eq. (26), the motion models are
identical hence the same linearization point is used in both
inference and precursory planning.

When considering the belief from planning (27), which is
propagated with the next action (26) and predicted measure-
ments, with the previously factorized form of Ak|k and bk|k ,
we get

AR
k+1|k

.=
[

Rk|k
Ak+1|k

]
, bdk+1|k

.=
[

dk|k
b̆k+1|k

]
. (30)

Similarly,when considering the a posteriori belief from infer-
ence (28), propagated with the next action (26) and acquired
measurements, with the previously factorized form of Ak|k
and bk|k , we get

AR
k+1|k1

.=
[

Rk|k
Ak+1|k+1

]
, bdk+1|k+1

.=
[

dk|k
b̆k+1|k+1

]
. (31)

For the same action (26), the difference between Eq. (30) to
the equivalent representation of standard Bayesian inference
(31) originates from the factors added at time k + 1

Ak+1|k
?= Ak+1|k+1 , (32)

b̆k+1|k
?= b̆k+1|k+1 . (33)

Since the aforementioned share the same action sequence,
the same linearization point and the same models, the differ-
ences remain limited to the DA and measurement values at
time k + 1.

In planning, DA is based on predicting which landmarks
would be observed. This DA could very possibly be different
than the actual landmarks the robot observes, as presented
in Sect. 3.2. This inconsistency in DA manifests in both the
Jacobian matrices and the RHS vectors. Even in case of con-
sistent DA, the predicted measurements (if exist) would still
be different than the actual measurements due to various rea-
sons, e.g. the predicted position is different than the ground
truth of the robot, measurement noise, inaccurate models.

While for consistent DA and the same linearization point
Eq. (32) will always be true, the RHS vectors, specifically
Eq. (33), would still be different due to the difference in mea-
surement values considered in planning and actually obtained
in inference.

It is worth stressing that consistent data association
between inference and precursory planning suggests that all
predictions for state variable (new or existing) associations
were in fact true. In addition to the new robot state added each
time instant, new variables could also manifest in the form
of landmarks. Consistent DA implies that the future appear-
ance of all new landmarks has been perfectly predicted during
planning. Since for the purpose of this work, we use a sim-
ple prediction mechanism unable to predict new landmarks
(see Sect. 3.2), consistent DAwould inevitably mean no new
landmarks in inference, i.e Lnew

k+1 is an empty set.
We start developing our method by assuming consistent

DA between inference and precursory planning. In such a
case the difference is limited to the RHS vectors. Later we
relax this assumption by dealing with possible DA inconsis-
tency prior to the update of the RHS vector, thus addressing
the general and complete problem of inference update using
RUB Inference paradigm.

3.4 Inference update from BSP assuming consistent
data association

Let us assume that the DA between inference and precursory
planning is consistent, whether the cause is a “lucky guess”
during planning or whether the DA inconsistency has been
resolved beforehand. Recalling the definition of Mi |k (see
e.g. Eq. (10)), this assumption is equivalent to writing

Mk+1|k ≡ Mk+1|k+1. (34)

In other words, landmarks considered to be observed at a
future time k + 1, will indeed be observed at that time. Note
this does not necessarily imply that actual measurements and
robot poses will be as considered within the planning stage,
but it does necessarily state that both are considering the same
variables and the same associations.

Wenowobserve that themotionmodels in bothb[Xk+1|k+1]
and b[Xk+1|k] are evaluated considering the same control
(i.e. the optimal control u�

k). Moreover, the robot pose xk+1
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is initialized to the same value in both cases as f (xk, u�
k),

see e.g. Eq.(27) in Indelman et al. (2015), and thus the
linearization point of all probabilistic terms in inference
and planning is identical. This, together with the aforemen-
tioned assumption (i.e. Eq. (34) holds) allows us to write
Ak+1|k = Ak+1|k+1, and hence

Rk+1|k+1 ≡ Rk+1|k, (35)

for the first iteration in the inference stage at time k + 1.
Hence, in order to solve b[Xk+1|k+1]we are left to find the

RHSvector dk+1|k+1, while Rk+1|k+1 can be entirely re-used.
In the sequel we present four methods that can be used for

updating theRHSvector, and examine computational aspects
of each. The four methods use two different approaches
to update the RHS vector: while the first two (OTM and
OTM-OO), utilize the rotation matrix available from factor-
ization, the last two (DU and DU-OO) utilize information
downdate / update principles. After we review the methods
we shortly discuss the advantages and disadvantages of each
(Sect. 3.4.5). It is worth stressing that each of these methods
results in the same RHS vector which is also identical to the
RHS vector that would have been obtained by the standard
inference update. With both the factorized Jacobian matrix
(i.e. R) and the RHS vector identical to the standard inference
update approach, RUB inference provides the same estima-
tion accuracy for the inference solution.

3.4.1 The orthogonal transformation matrix method - OTM

In the OTM method, we obtain dk+1|k+1 following the defi-
nition as written in Eq. (19). Recall that at time k + 1 in the
inference stage, the posterior should be updated with new
terms that correspond, for example, to motion model and
obtained measurements. The RHS vector’s augmentation,
that corresponds to these new terms is denoted by b̆k+1|k+1,
see Eq. (16). Given Rk|k and dk|k from the inference stage at
time k, the augmented system at time k + 1 is

AR
k+1|k+1�Xk+1

.=
[

Rk|k
Ak+1|k+1

]
�Xk+1 =

[
dk|k

b̆k+1|k+1

]

(36)

which after factorization of AR
k+1|k+1 (see Eqs. (17)-(19))

becomes

Rk+1|k+1�Xk+1 = dk+1|k+1, (37)

where

dk+1|k+1 = QT
k+1|k+1

[
dk|k

b̆k+1|k+1

]
. (38)

As deduced from Eq. (38), the calculation of dk+1|k+1

requires Qk+1|k+1 . Since AR
k+1|k ≡ AR

k+1|k+1 (see Sect. 3.4),
we get Qk+1|k+1 = Qk+1|k . However, Qk+1|k , is already
available from the precursory planning stage, see Eq. (25),
and thus calculating dk+1|k+1 via Eq. (38) does not involve
QR factorization in practice. To summarize, under the OTM
method we obtain the RHS vector dk+1|k+1 in the following
manner:

dk+1|k+1 = QT
k+1|k

[
dk|k

b̆k+1|k+1

]
. (39)

where QT
k+1|k is available from the factorization of precur-

sory planning, dk|k is the RHS from inference at time k, and
b̆k+1|k+1 are the new un-factorized RHS values obtained at
time k + 1 (Table 1).

3.4.2 The OTM - only observations method - OTM-OO

The OTM-OO method is a variant of the OTM method.
OTM-OO aspires to utilize even more information from the
planning stage. Since the motion models from inference and
the precursory planning first step are identical, i.e. same func-
tion f (., .), see Eqs. (13) and (22), and as in both cases the
same control is considered - Eq. (26), there is no reason to
change the motion model data from the RHS vector dk+1|k .
In order to enable the aforementioned, we require the match-
ing rotation matrix. One way would be to break down the
planning stage as described in Sect. 3.2 into two stages, in
which the motion and observation models are updated sepa-
rately. Usually this breakdown is performed either way since
a propagated future pose is required for predicting future
measurements.

So following Sect. 3.4.1, instead of using dk|k , we attain
from planning the RHS vector alreadywith themotionmodel
(dFk+1|k), augment it with the new measurements and rotate
it with the corresponding rotation matrix obtained from the
planning stage

dk+1|k+1 = QHT

k+1|k

[
dFk+1|k
b̆Hk+1|k+1

]
. (40)

The rotationmatrix QH
k+1|k is given from the precursory plan-

ning stage where

QH
k+1|k Rk+1|k =

[
RF
k+1|k

Hk+1|k

]
, (41)

and where RF
k+1|k is the factorized Jacobian propagated with

the motion model given by

QF
k+1|k RF

k+1|k =
[

Rk|k
Fk+1|k

]
. (42)
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Table 1 Notations for Sect. 3.4 Variable Description

�t |k Of time t while current time is k

�Xk State perturbation around linearization point

Mt |k Data Association at time t

At |k Jacobian matrix at time t

bt |k RHS vector at time t

At |k Jacobian part related to all factors added at time t

Ft |k Jacobian part related to motion factor added at time t

Ht |k Jacobian part related to all factors added at time t without the motion factor

b̆t |k RHS vector related to all factors added at time t

b̆Ft |k RHS vector related to motion factor at time t

b̆Ht |k RHS vector related to all factors added at time t without the motion factor

Rt |k Factorized Jacobian, i.e. square root information matrix

dt |k Factorized RHS vector

AR
t |k Factorized

[
RT
t−1|k ,AT

t |k
]T

RF
t |k Factorized

[
RT
t−1|k ,FT

t |k
]T

dF
t |k Factorized

[
dTt−1|k , b̆FT

t |k
]T

Raug
t |k Factorized Jacobian at time t − 1 zero padded to match factorized Jacobian at time t

daugt |k Factorized RHS vector at time t − 1 zero padded to natch factorize RHS vector at time t

QA
t |k Rotation matrix for factorizing At |k into Rt |k

Qt |k Rotation matrix for factorizing AR
t |k into Rt |k

QF
t |k Rotation matrix for factorizing

[
RT
t−1|k ,FT

t |k
]T

into RF
t |k

QH
t |k Rotation matrix for factorizing

[
RF T

t |k ,HT
t |k

]T
into Rt |k

As will be seen later on, the OTM-OO method would
prove to be the most computationally efficient between the
four suggested methods.

3.4.3 The downdate update method - DU

In the DUmethodwe propose to re-use the dk+1|k vector from
the planning stage to calculate dk+1|k+1.

While not necessarily required within the planning stage,
dk+1|k could be calculated at that stage from bk+1|k and
Qk+1|k , see Eqs. (24)–(25). However, bk+1|k (unlike Ak+1|k)
is a function of the unknown future observations zk+1|k ,
which would seem to complicate things. Our solution to this
issue is as follows: We assume some value for the observa-
tions zk+1|k and then calculate dk+1|k within the planning
stage. As in inference at time k + 1, the actual measure-
ments zk+1|k+1 will be different, we remove the contribution
of zk+1|k to dk+1|k via information downdating (Sect. V-A
Cunningham et al. 2013), and then appropriately incorporate
zk+1|k+1 to get dk+1|k+1 using the same mechanism.

More specifically, downdating the measurements zk+1|k
from dk+1|k is done via (Sect. V-A Cunningham et al. 2013)

daugk+1|k = Raug−T

k+1|k (RT
k+1|kdk+1|k − AT

k+1|k b̆k+1|k), (43)

where b̆k+1|k is a function of zk+1|k , see Eqs. (22)–(24), and
where Raug

k+1|k is the downdated Rk+1|k matrix which is given
by

RaugT

k+1|k R
aug
k+1|k = ART

k+1|k AR
k+1|k − AT

k+1|kAk+1|k . (44)

Interestingly, the above calculations are not really required:
Since we already have dk|k from the previous inference stage,
we can attain the downdated daugk+1|k vector more efficiently
by augmenting dk|k with zero padding.

daugk+1|k =
[
dk|k
0

]
(45)

where daugk+1|k is the downdated RHS vector and 0 is a zero

padding to match dimensions. Similarly, Raug
k+1|k can be cal-

culated as
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Raug
k+1|k =

[
Rk|k 0
0 0

]
, (46)

where Rk|k is zero padded to match dimensions of Rk+1|k .
Now, all which is left to get dk+1|k+1, is to incorporate the

new measurements zk+1|k+1 (encoded in b̆k+1|k+1). We uti-
lize the information downdatingmechanism in (Cunningham
et al., 2013, Sect. V-A), in order to update information. Intu-
itively, instead of downdating information from dk+1|k , we
would like to add information to daugk+1|k . So by appropriately
adjusting Eq.(43) this can be done via

dk+1|k+1 = R−T
k+1|k+1(R

augT

k+1|kd
aug
k+1|k + AT

k+1|k+1b̆k+1|k+1),

(47)

where according to Eq. (34) Rk+1|k+1 ≡ Rk+1|k and
Ak+1|k+1 ≡ Ak+1|k , Raug

k+1|k is given by Eq.(46), daugk+1|k is

given by Eq.(45), and b̆k+1|k+1 are the new un-factorized
RHS values obtained at time k + 1.

To summarize, under the DU method we obtain the RHS
vector dk+1|k+1 in the following manner:

dk+1|k+1 = R−T
k+1|k

([
Rk|k 0
0 0

]T [
dk|k
0

]
+ AT

k+1|k b̆k+1|k+1

)
.

(48)

3.4.4 The DU - only observations method - DU-OO

The DU-OO method is a variant of the DU method, where,
similarly to Sect. 3.4.2, we utilize the fact that there is no rea-
son to change the motion model data from the RHS vector
dk+1|k . Hence we would downdate all data with the excep-
tion of the motion model, and then update accordingly. As
opposed to Sect. 3.4.3, now we do need to downdate using
(Cunningham et al., 2013, Sect. V-A)

dFk+1|k = RF−T

k+1|k(RT
k+1|kdk+1|k − HT

k+1|k b̆Hk+1|k), (49)

where dFk+1|k is theRHSvector, downdated fromall predicted
measurements with the exception of the motion model, and
RF
k+1|k is the equivalent downdated Rk+1|k matrix which is

given by

RFT

k+1|k RF
k+1|k = ART

k+1|k AR
k+1|k − HT

k+1|kHk+1|k, (50)

whereHk+1|k denotes the portion of the planning stage Jaco-
bian, of the predicted factors with the exception of themotion
model. Now, all which is left, is to update dFk+1|k with the new
measurements from the inference stage

dk+1|k+1 = R−T
k+1|k+1(R

FT

k+1|kdFk+1|k + HT
k+1|k+1b̆

H
k+1|k+1),

(51)

where according to Eq. (34) Rk+1|k+1 ≡ Rk+1|k and
Hk+1|k+1 ≡ Hk+1|k , RF

k+1|k is given by Eq.(50), dFk+1|k is

given by Eq.(49), and b̆k+1|k+1 are the new un-factorized
RHS values obtained at time k + 1.

By introducing Eqs. (49) into (51) we can also avert from
calculating RF

k+1|k so under theDU-OO assumptionweobtain
the RHS vector dk+1|k+1 in the following manner:

dk+1|k+1

= R−T
k+1|k

(
RT
k+1|kdk+1|k + HT

k+1|k
(
b̆Hk+1|k+1 − b̆Hk+1|k

))
,

(52)

which can be rewritten as

dk+1|k+1 = dk+1|k + R−T
k+1|kH

T
k+1|k

(
b̆Hk+1|k+1 − b̆Hk+1|k

)
.

(53)

3.4.5 Discussion - RHS update methods

In this section we would like to give the reader some intu-
ition regarding the advantages and disadvantages of the OTM
approach when compared to the DU approach. Since both
provide the same desired solution, the difference between
them would manifest in computation time and ease of use.
In the sequel we cover both starting with the complexity of
each.

Let us compare the complexity required for updating the
RHS by OTM, see Eq. (39), against the complexity required
for updating the RHS by DU, see Eq. (48). For OTMwe have a
singlemultiplication between a sparse rotationmatrix Qk+1|k
and a vector, both in the dimension of the joint state at time
k plus the number of rows of the linearized new factors (i.e.
depending on number of factors and their types). The com-
plexity of OTMwould be given by the number of non zeros in
the rotation matrix Qk+1|k . In Appendix-C we provide some
understanding on the creation of the rotation matrix Qk+1|k ,
and also develop an expression for the number of non zeros
in Qk+1|k . We direct the reader to Fig. 3 for illustration of the
new notations used in this discussion. Following the devel-
opment in Appendix-C, the number of non zeros in Qk+1|k
is represented by two potentially dominant terms separated
by a simple condition
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Fig. 3 Illustration of the Jacobian matrix AR
k+1|k+1 introduced in

Eq. (31), on its components and dimensions. These notations are used
along Sect. 3.4.5, and brought here for the reader’s convenience

O(OTM) =

⎧
⎪⎨

⎪⎩

O

((
nsk + n f

k+1 − j
)2)

n f
k+1 ≥ nsk ≥ 6

O
(
nsk · n f

k+1

)
n f
k+1 < nsk

(54)

where j denotes the column index of the left-most entry in
Ak+1|k+1, nsk denotes the size of the joint state vector at the

precursory time k, n f
k+1 denotes the number of rows in the

linearized new factors Ak+1|k+1. The condition in Eq. (54)
is a simple upper bound to the real expression (see Eq. (93)),
resulting with a cleaner condition without affecting the solu-
tion.

It is worth stressing that depending on its type, each state
occupies more than a single row / column in the Jacobian,
e.g. 6DOF robot pose occupies six rows and six columns.
Similarly, depending on its type, each factor occupies more
than a single row in the Jacobian, e.g. a monocular factor
occupies two rows in the Jacobian.

For DU in addition to multiplications between upper tri-
angular matrices and vectors, we have a matrix inverse.
Differently from OTM here the matrix dimensions are of the
joint state vector at time k+1, hence the worst case scenario
for DU is a fully dense upper triangular matrix inverse

O(DU) = O
(
nsk+1

2
)

, (55)

where nsk+1 represents the size of the joint state vector at time
k + 1.

For the case of n f
k+1 < nsk we should compare

nsk · n f
k+1

?
≶ nsk+1 · nsk+1. (56)

Assuming states are not removed from the state vector, we
can say

nsk ≤ nsk+1, (57)

then evidently

nsk · n f
k+1 < nsk+1 · nsk+1. (58)

For the case of n f
k+1 ≥ nsk ≥ 6 we should compare

nsk + n f
k+1 − j

?
≶ nsk+1 , j ∈ [1, nsk], (59)

so for this case OTM is computationally superior to DU if

n f
k+1 < nsk+1 − nsk + j , j ∈ [1, nsk]. (60)

It isworth stressing that unlikeEqs. (58), (60) is dependent
on state ordering in the form of the left-most non zero entry
in Ak+1|k+1.

Concluding the complexity analysis of OTM and DU, OTM
will be computationally superior to DU if the following holds

(
n f
k+1 < nsk

)
∪

(
n f
k+1 < nsk+1 − nsk + j ∩ n f

k+1 ≥ nsk

)
.

(61)

In other words, if the number of rows in Ak+1|k+1 is
smaller than the size of the state vector at time k OTM is
computationally superior to DU. If the number of rows in
Ak+1|k+1 is larger or equal to the size of the state vector at
time k, than OTM is computationally superior to DU only if
the number of rows in Ak+1|k+1 is smaller than the size of
the added states at time k + 1 plus the column index of the
left-most state in Ak+1|k+1.

Although most of the time DU is computationally inferior,
unlike OTM that requires access to the rotation matrix which
might not be easily available in every planning paradigm,
DU makes use in a more readily available information: the
inference solution of precursory time, the predicted factors,
the new RHS vector at time k + 1, and the factorized Jaco-
bian from precursory planning. Therefore the advantage in
using DU lies in the information availability with minimal
adjustments to the planning stage.

Since OTM-OO would prove to perform the best empir-
ically, let us get some intuition on why it is more efficient
than OTM. The OO addition to OTM, refers to the use of the
motion propagated belief RF

k+1|k dFk+1|k rather than the use
of precursory inference solution Rk|k dk|k . The dimension
of RF

k+1|k is larger from that of Rk|k by a single robot pose,
while the number of rows of Hk+1|k+1 is smaller by a sin-
gle robot pose from that ofAk+1|k+1. Let us assume without
affecting generality that our robot pose dimension isα. Under
this assumption we can calculate Eq. (54) for both OTM and
OTM-OO. Let n¬ f

k+1 denote the number of rows of the newly
added factors at time k + 1 without the motion factor, i.e.
Hk+1|k+1 number of rows, so the complexity of OTM would
be

O(OTM)

=

⎧
⎪⎨

⎪⎩

O

((
nsk +

(
n¬ f
k+1 + α

)
− j

)2) (
n¬ f
k+1 + α

)
≥ nsk

O
(
nsk ·

(
n¬ f
k+1 + α

))
= O

(
nsk · n¬ f

k+1 + α · nsk
) (

n¬ f
k+1 + α

)
< nsk

,

(62)
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while the complexity of OTM-OO would be

O(OTM-OO)

=

⎧
⎪⎨

⎪⎩

O

(((
nsk + α

)
+ n¬ f

k+1 − j ′
)2)

n¬ f
k+1 ≥

(
nsk + α

)

O
((

nsk + α
)

· n¬ f
k+1

)
= O

(
nsk · n¬ f

k+1 + α · n¬ f
k+1

)
n¬ f
k+1 <

(
nsk + α

) ,

(63)

where j ′ ∈ [1, (nsk + α
)], opposed to j ∈ [1, nsk]. From

comparingEqs. (62 – 63), for the casewhere the size of added
factors is larger than the state, we can deduce that other than
the difference between j and j ′, they are the same. Judging
the second case, we can see they differ by the difference
between the size of the state at time k and the number of
Ak+1|k+1 rows. As wewill see later on, OTM-OO empirically
proves to be more efficient than OTM, which means that the
state at time k is in fact larger than the number of size of
Ak+1|k+1 rows.

Revisiting Eq. (61) in-light of the understanding that the
state at time k is in fact larger than the number of Ak+1|k+1

rows we can say that OTM is computationally superior to DU
without any restricting conditions.

3.5 Inconsistent data association

In order to address the more general and realistic scenario,
the DAmight require correction before proceeding to update
the new acquired measurements. In the sequel we cover the
possible scenarios of inconsistent data association and its
graphical materialization, followed by a paradigm to update
inconsistent DA from planning stage according to the actual
DA attained in the consecutive inference stage. We later
examine both the computational aspects and the sensitivity
of the paradigm to various parameters both on simulated and
real-life data.

3.5.1 Types of inconsistent DA

We would now discuss, without losing generality, the actual
difference between the two aforementioned beliefs b[Xk+1|k ]
and b[Xk+1|k+1]. As already presented in Sect. 3.4, in case
of a consistent DA i.e. Mk+1|k = Mk+1|k+1, the differ-
ence between the two beliefs is narrowed down to the RHS
vectors dk+1|k and dk+1|k+1 which encapsulates themeasure-
ments zk+1|k and zk+1|k+1 respectively. However, in the real
world it is possible that the DA predicted in precursory plan-
ning would prove to be inconsistent to the DA attained in
inference.

There are six possible scenarios representing the relations
between DA in inference and precursory planning:

• In planning, association is assumed to either a new or
existing variable, while in inference no measurement is
received.

• In planning it is assumed there will be nomeasurement to
associate to,while in inference ameasurement is received
and associated to either a new or existing variable.

• In planning, association is assumed to an existing vari-
able, while in inference it is to a new variable.

• In planning, association is assumed to a new variable,
while in inference it is to an existing variable.

• In planning, association is assumed to an existing vari-
able, while in inference it is also to an existing variable
(whether the same or not).

• In planning, association is assumed to a new variable,
while in inference it is also to a new variable (whether
the same or not) (Table 2).

While the first four bullets always describe inconsistent
DA situations (e.g. in planning we assumed a known tree
would be visible but instead we saw a new bench, or vice
versa), the last two bullets may provide consistent DA situ-
ations. In case associations in planning and in inference are
to the same (un)known variables we would have a consistent
DA.

While different planningparadigmsmight diminish occur-
rences of inconsistent DA, e.g. by better predicting future
associations, none can avoid it completely. Methods to better
predict future observations/associations will be investigated
in future work, potentially leveraging Reinforcement Learn-
ing (RL) techniques. As mentioned in Sect. 3.2, in this paper
we do not predict occurrences of new landmarks, hence every
new landmark in inference would result in inconsistent DA.

In the following section we provide a method to update
inconsistent DA, regardless of a specific inconsistency sce-
nario or a solution paradigm. This method utilizes the
incremental methodologies of iSAM2 Kaess et al. (2012)
in order to efficiently update the belief from the planning
stage to have consistent DA with the succeeding inference.

3.5.2 Updating inconsistent DA

Inconsistent DA can be interpreted as disparate connections
between variables. As discussed earlier, these connections,
denoted as factors, manifest in rows of the Jacobian matrix
or in factor nodes of a FG. Two FGs with different DA
would thus have different graph topology. We demonstrate
the inconsistent DA impact over graph topology using the
example presented in Fig. 4: Fig. 4a represents the belief
b[Xk+1|k] from planning stage, and Fig. 4b represents the
belief b[Xk+1|k+1] from the inference stage. Even-though
the same elimination order is used, the inconsistent DA
would also create a different topology between the result-
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Table 2 Notations for
Sect. 3.5.2

Variable Description

�t |k Of time t while current time is k

FGt |k Factor graph (FG) at time t

Tt |k Bayes Tree (BT) at time t

Mt |k Data Association (DA) at time t

M
⋂

t Consistent DA at time t

Mrmv
t DA at time t from planning inconsistent with inference, indicating factors to be removed

Madd
t DA at time t from inference inconsistent with planning, indicating factors to be added

{ fr }rmv
t Factors at time t from planning inconsistent with inference, to be removed

{ fs}addt Factors at time t from inference inconsistent with planning, to be added

{X}inv
t All states at time t , involved in { fr }rmv

t and { fs}addt

T inv
t Sub-BT of Tt |k composed of all cliques containing {X}inv

t

{X}inv�
t All states at time t , related to the sub-BT T inv

t

FGinv
t The detached part of FGt |k containing {X}inv�

t

FGupd
t The FG FGinv

t after DA update

T upd
t The sub-BT eliminated from FGupd

t

FGupd
t |k The Factor Graph at time t with all-correct DA

T upd
t |k The Bayes Tree at time t with all-correct DA

ing BTs, e.g. the resulting BTs for the aforementioned FGs
are Fig. 4d,e accordingly.

Performing action uk|k+1, provides us with new mea-
surements zk+1|k+1, which are gathered to the factor set
{ f j }k+1|k+1 (see Appendix-B for factor definition). From the
precursory planning stagewe have the belief b[Xk+1|k] along
with the corresponding factor set { fi }k+1|k for time k + 1.
Sinceweperformed inferenceover this belief during theplan-
ning stage, we have already eliminated the FG, denoted as
FGk+1|k , into a BT denoted as Tk+1|k , e.g. see Fig. 4a,d,
respectively.

We would like to update both the FG FGk+1|k and the
BT Tk+1|k from the planning stage, using the new factors
{ f j }k+1|k+1 from the inference stage. Without losing gener-
ality we use Fig. 4 to demonstrate and explain the DA update
process. Let us consider all factors of time k + 1 from both
planning { fi }k+1|k and inference { f j }k+1|k+1. We can divide
these factors into three categories:

The first category contains factors with consistent DA -
Good Factors. These factors originate from only the last two
DA scenarios, in which both planning and inference consid-
ered either the sameexisting variable or a newone.Consistent
DA factors do not require our attention (other than updating
the measurements in the RHS vector). Indices of consistent
DA factors can be obtained by intersecting theDA from plan-
ning with that of inference:

M
⋂

k+1 = Mk+1|k
⋂

Mk+1|k+1. (64)

The second category - Wrong Factors, contains factors from
planning stage with inconsistent DA to inference, which
therefore should be removed from FGk+1|k . These factors
can originate from all DA scenarios excluding the second.
Indices of inconsistent DA factors from planning, can be
obtained by calculating the relative complement of Mk+1|k
with respect toMk+1|k+1:

Mrmv
k+1 = Mk+1|k \ Mk+1|k+1. (65)

The third category - New Factors, contains factors from the
inference stage with inconsistent DA to planning; hence,
these factors should be added to FGk+1|k . These factors can
originate from all DA scenarios excluding the first. Indices
of inconsistent DA factors from inference, can be obtained
by calculating the relative complement of Mk+1|k+1 with
respect toMk+1|k :

Madd
k+1 = Mk+1|k+1 \ Mk+1|k . (66)

We now use our example from Fig. 4 to illustrate these dif-
ferent categories:

• The first category - Good Factors, contains all factors
from time k + 1 that appear both in Fig. 4a,b, i.e. the
motion model factor between xk to xk+1.

• The second category -Wrong Factors, contains all factors
that appear only in Fig. 4a, i.e. the star marked factor in
Fig. 4a. In this case the inconsistent DA is to an existing
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(a) (b)

(c)

(d) (e)

Fig. 4 The process of incremental DA update, following on iSAM2
methodologies. a and b show factor graphs for b[Xk+1|k ] and
b[Xk+1|k+1], respectively, which differ due to incorrect association con-
sidered in the planning phase - l j was predicted to be observed within
planning, while in practice li and lr were observed at time instant k+1.
In a, current-time robot pose is bolded, horizon factors and states are
dotted. Involved variables from DA comparison are marked in red in
a and green in b. The belief b[Xk+1|k ], represented by a Bayes tree
shown in d, is divided in two: sub Bayes tree containing all involved
variables and parent cliques up to the root (marked in blue) and the rest

of the Bayes tree in white. The former sub Bayes tree is re-eliminated
by i forming the corresponding portion of the factor graph, as shown
in the left figure of c; ii removing incorrect DA and adding correct DA
factors, which yields the factor graph shown in the right figure of c; iii
re-eliminating that factor graph into a sub Bayes tree, marked blue in
e, and re-attaching the rest of the Bayes tree. While the obtained Bayes
tree now has a correct DA, it is conditioned on (potentially) incorrect
measurement values for consistent-DA factors, which therefore need
to be updated (as detailed in Sect. 3.4), to recover the posterior belief
b[Xk+1|k+1]

variable, landmark l j was considered to be observed in
planning but is not seen in the succeeding inference.

• The third category - New Factors, contains all factors
that appear only in Fig. 4b, i.e. the star marked factors
in Fig. 4b. In this case the inconsistent DA is both to an
existing and a new variable. Instead of landmark l j that
was considered to be observed in planning, a different
existing landmark li has been seen, along with a new
landmark lr .

Once the three aforementioned categories are determined,
we use iSAM2 methodologies, presented in Kaess et al.
(2012), to incrementally update FGk+1|k and Tk+1|k , see
Alg. 1. The involved factors are denoted by all factors from
planning needed to be removed (Wrong Factors), and all fac-

tors from inference needed to be added (New Factors),

{ fr }rmv
k+1 =

∏

r∈Mrmv
k+1

fr , { fs}addk+1 =
∏

s∈Madd
k+1

fs . (67)

The involved variables, denoted by {X}inv
k+1, are all variables

related to the factor set { fr }rmv
k+1 and the factor set { fs}addk+1

(Alg. 1, line 6), e.g. the colored variables in Figs. 4a,b accord-
ingly. In Tk+1|k , all cliques between the ones containing
{X}inv

k+1 up to the root are marked and denoted as the involved
cliques, e.g. colored cliques in Fig. 4d. The involved cliques
are detached and denoted by T inv

k+1 ⊂ Tk+1|k (line 7). This
sub-BT T inv

k+1, contains more variables than just {X}inv
k+1. The

involved variable set {X}inv
k+1, is then updated to contain all

variables from T inv
k+1 and denoted by {X}inv�

k+1 (line 8). The
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Algorithm 1 - Data Association Update
1: function UpdateDA(FGk+1|k , Mk+1|k , FGk+1|k+1 , Mk+1|k+1)

2: Mrmv
k+1 ← Mk+1|k \ Mk+1|k+1 � indices of factors required to

be removed

3: Madd
k+1 ← Mk+1|k+1 \ Mk+1|k � indices of factors required to

be added

4: { fr }rmv
k+1 ← ∏

r∈Mrmv
k+1

{ fr }k+1 � factors required to be removed

5: { fs}addk+1 ← ∏

s∈Madd
k+1

{ fs}k+1 � factors required to be added

6: {X}inv
k+1 ← Variables({ fr }rmv

k+1)
⋃

Variables({ fs}addk+1) � get

involved variables

7: T inv
k+1 ← T {X}inv

k+1
k+1|k � get corresponding sub-BT

8: {X}inv�
k+1

get all variables←−−−−−−−− T inv
k+1 � update involved variables

9: FGinv
k+1 ← FG{X}inv�

k+1
k+1|k � get corresponding sub-FG

10: FGupd
k+1 ← [FGinv

k+1\{ fr }rmv
k+1]

⋃{ fs}addk+1 � Update the sub

Factor Graph

11: T upd
k+1

eliminate←−−−−− FGupd
k+1 � re-eliminate the updated sub-FG into

BT

12: FGupd
k+1|k ← [FGk+1|k\FGinv

k+1]
⋃

FGupd
k+1 � Update the Factor

Graph

13: T upd
k+1|k ← [Tk+1|k\T inv

k+1]
⋃

T upd
k+1 � Update the Bayes Tree

14: return FGupd
k+1|k , T

upd
k+1|k .

15: end function

part of FGk+1|k , that contains all involved variables {X}inv�
k+1

is detached and denoted by FGinv
k+1 (line 9). While T inv

k+1 is
the corresponding sub-BT to the acquired sub-FG FGinv

k+1.
In order tofinishupdating theDA, all that remains is updat-

ing the sub-FG FGinv
k+1 with the correct DA and re-eliminate

it to get an updated BT. All factors { fr }rmv
k+1 are removed

from FGinv
k+1, then all factors { fr }addk+1 are added (line 10).

The updated sub-FG is denoted by FGupd
k+1, e.g. update illus-

tration in Fig. 4c.
By re-eliminating FGupd

k+1, a new updated BT, denoted

by T upd
k+1 , is obtained (line 11), e.g. the colored sub-BT in

Fig. 4e. This BT is then re-attached back to Tk+1|k instead
of T inv

k+1, subsequently the new BT is now with consistent

DA and is denoted as T upd
k+1|k (line 13). In a similar man-

ner FGupd
k+1|k is obtained by re-attaching FGupd

k+1 instead of

FGinv
k+1 to FGk+1|k(line 12). At this point the DA in both

the FG and the BT is fixed. For example, by completing the
aforementioned steps, Figs. 4a,d will have the same topology
as Figs. 4b,e.

After the DA update, the BT T upd
k+1|k has consistent DA to

that ofMk+1|k+1. However, it is still not identical toTk+1|k+1

due to difference between measurement values predicted in
planning to the values obtained in inference. The DA update
dealt with inconsistent DA factors and their counterparts.
For these factors the newmeasurements from inference were
updated in the corresponding RHS vector values within the
BT. The consistent DA factors, on the other hand, were left
untouched; therefore, these factors do not contain the new
measurement values from inference but measurement values
from the planning stage instead. These inconsistent measure-
ments are thus baked into the RHS vector dk+1|k and in the

appropriate cliques of the BT T upd
k+1|k . In order to update the

RHS vector dk+1|k , or equivalently update the corresponding
values within relevant cliques of the BT, one can use any of
the methods presented in Sect. 3.4.

4 Results

In this section we present an extensive analysis of the
proposed paradigm for RUB inference and benchmark
it against the standard Bayesian inference approach using
iSAM2 efficient methodologies as a proving-ground.

We consider the problem of autonomous navigation and
mapping in an unknown environment as a testbed for the pro-
posed paradigm, first in a simulated environment and later-on
in a real-world environment (as discussed in the sequel). The
robot performs inference to maintain a belief over its current
and past poses and the observed landmarks thus far (i.e.full-
SLAM), and uses this belief to decide its next actions within
the framework of belief space planning. As mentioned ear-
lier, our proposed paradigm is indifferent to a specificmethod
of inference or decision making.

In order to test the computational effort, we compared
inference update using iSAM2 efficient methodology, once
based on the standard Bayesian inference paradigm Kaess et
al. (2012) (here on denoted as iSAM), and second based on
our proposed RUB inference paradigm.

As mentioned earlier, there are two changes required in
a plan-act-infer system in order to facilitate the use of RUB
inference. The first change involves the outputs of the
planning stage, in addition to the standard output of the
chosen (sub)optimal action sequence, we also output the
future belief corresponding to said action. No other changes
are required within the planning stage other than outputting
more already available data. The second and more extensive
change involves the inference stage, where we are required to
incrementally update the aforementioned future belief with
the newly acquired information.

All of our complementary methods (see Sect. 3.4),
required to enable inference update based on the RUB
inference paradigm,were implemented inMATLABand
are encased within the inference block. The iSAM approach
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uses the GTSAM C++ implementation with the supplied
MATLAB wrapper Dellaert (2012). Considering the general
rule of thumb, that MATLAB implementation is at least one
order of magnitude slower, the comparison to iSAM as a ref-
erence is conservative. All runs were executed on the same
Linux machine, with Xeon E3-1241v3 3.5 GHz processor
with 32 GB of memory.

In order to get better understanding of the difference
between our proposed paradigm and the standard Bayesian
inference, we refer to the high-level algorithm diagram given
in Fig. 1, which depicts a plan-act-infer framework. Fig. 1a
represents a standard Bayesian inference, where the first and
only inference update iteration is timed for comparison rea-
sons. Fig. 1b shows our novel paradigm RUB inference,
while the DA update, along with the first and only inference
update iteration, are being timed for comparison. The compu-
tation time comparison is made only over the inference stage,
since the rest of the plan-act-infer framework is identical in
both cases.

As mentioned, our proposed paradigm does not affect
estimation accuracy. We verify that in the following exper-
iments, by comparing the estimation results obtained using
our approach and iSAM. Both provide essentially the same
results in all cases; we provide an explicit accuracy com-
parison with real-world data experiment (Sect. 4.2). It is
worth mentioning that our paradigm is agnostic to the spe-
cific planning method or whether the action space is discrete
or continuous. The solution procedure of a discrete action
space revolves around solving the objective for multiple sets
of action sequences, while under a continuous action space
the candidate action sequence is continuously adjusted in the
direction of the objective gradient up to some threshold. In
both cases, the future belief corresponding to the selected
(sub)optimal action will be calculated thus readily available
as output.

All experiments consist of a 3D landmarks and 6D robot
poses. The robot track is presented in a top view in order
to allow the reader to examine the entire map with minimal
occlusions.

4.1 Simulated environment

4.1.1 Basic analysis - sanity check

The purpose of this experiment is to provide with a
basic comparison between the suggested paradigm for RUB
inference and the existing standard Bayesian inference.
This simulation performs a single horizon BSP calculation,
followed by an inference step with a single inference update.
The simulation provides a basic analysis of running time for
each method, denoted by the vertical axis, for a fully dense
information matrix and with no loop closures. The presented
running time is a result of an average between 103 repetitions

per step per method. Although a fully dense matrix does not
represent a real-world scenario, it provides a sufficient initial
comparison. The simulation analyzes the sensitivity of each
method to the initial state vector size, denoted by the hor-
izontal axis, and to the number of new factors, denoted by
the different graphs. Since we perform a single horizon step
with a single inference update, no re-linearization is neces-
sary; hence, iSAM comparison is valid. The purpose of this
check is to provide a simple sensitivity analysis of our meth-
ods to state dimension and number of new factors per step,
while compared against standard batch update (denoted as
STD) and iSAM paradigm. While both STD and iSAM are
based on the standard Bayesian inference paradigm, the rest
of the methods are based on the novel RUB inference
paradigm.

Fig. 5 presents average timing results for all methods,
while Figs. 5a–f represent different number of new rows
added to the Jacobian matrix (equivalent to adding newmea-
surements), [2 100 200 300 400 500] respectively. After
inspecting the results, we found that for all methods, running
time is a non-linear, positive-gradient function of the infer-
ence state vector size and a linear function of the number of
new measurements. Moreover, the running time dependency
over the number of new measurements diminish as the infer-
ence state vector size grows. For all inspected parameters our
methods score the lowest running time with a difference of
up to three orders of magnitude comparing to iSAM.

Figure 6 provides a zoom-in of Fig. 5, focusing on our sug-
gested methods. Interestingly while we can clearly see that
the OTMmethodology is more efficient than the DU method,
and the DU-OO is more efficient than DU, no such think can
be said on OTM and OTM-OO. From inspecting Figs. 6a–f
we can see that up to a state vector size of about 2500 there
is no visible difference between OTM and OTM-OO perfor-
mance, while for larger sizes the latter slightly outperforms
the former.

Thus scoring all methods from the fastest to the slowest
with a time difference of four orders of magnitude between
the opposites:

OTM-OO ⇒ OTM ⇒ DU-OO ⇒ DU ⇒ iSAM ⇒ STD

4.1.2 BSP in unknown environment - consistent DA

The purpose of this experiment is to further examine the
suggested paradigm of RUB inference, in a real world
scenario, under the simplifying assumption of consistent DA.
The second simulation performs BSP over continuous action
space, in an unknown synthetic environment. In contrast to
Sect. 4.1.1, since now the synthetic environment replicates a
real world scenario, the obtained information matrix is now
sparse (e.g. Fig. 16). A robot was given five targets (see
Fig. 7a) while all landmarks were a-priori unknown, and was
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Fig. 5 Method comparison through basic analysis simulation, check-
ing sensitivity to new added measurements and the size of the inference
state vector over all the tested methods i.e. STD, iSAM and our four
methods, i.e. OTM, UD, OTM-OO and UD-OO. Each graph represents a

different number for new rows added to the Jacobian matrix a 2 rows b
100 rows c 200 rows d 300 rows e 400 rows f 500 rows. Due to orders
of magnitude issues we also provide zoom-in to our four methods in
Fig. 6
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Fig. 6 Zoom-in on Fig. 5, checking sensitivity to new added measure-
ments and the size of the inference state vector over our four methods
i.e. OTM, UD, OTM-OO and UD-OO. Each graph represents a different

number for new rows added to the Jacobian matrix a 2 rows b 100 rows
c 200 rows d 300 rows e 400 rows f 500 rows
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Fig. 7 Second simulation layout
and results: a The Synthetic
Environment, where landmarks
are marked in green, targets are
numbered and marked with red
crosses, the ground truth is
denoted by a blue line, the
estimated trajectory is denoted
by a red line while the
covariance is visualized by red
ellipse b Total average running
time of inference update for
each method -500 0 500 1000 1500
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required to visit all targets whilst not crossing a covariance
value threshold. The largest loop closure in the trajectory of
the robot, and the first in a series of large loop closures, is
denoted by a yellow � sign across all relevant graphs. The
robot performs BSP over continuous action space, with a
finite horizon of five look ahead steps Indelman et al. (2015).
During the inference update stage each of the aforementioned
methods were timed performing the first inference update
step. The presented running time is a result of an average
between 103 repetitions per step per method. Similarly to
Sect. 4.1.1, as can be seen in Fig. 7b, the suggested MAT-
LAB implementedmethods are up to twoorders ofmagnitude
faster than iSAM used in a MATLAB C++ wrapper. Inter-
estingly, the use of sparse information matrices changed the
methods’ timing hierarchy. While OTM-OO still has the best
timing results (3 × 10−3 s), two orders of magnitude faster
than iSAM, OTM and DU-OO switched places. So the timing
hierarchy from fastest to slowest is:

OTM-OO ⇒ DU-OO ⇒ OTM ⇒ DU ⇒ iSAM ⇒ STD

After demonstrating the use of our novel paradigm dras-
tically reduce cumulative running time, we continue on to
showing that in a few aspects it is also less sensitive. Fig-
ure 8 presents the performance results of each of the methods
per simulation step. The upper graphs presents the number
of new factors and new states per each step, while the lower
graph presents the average running time of each method as
a function of the simulation step. The � sign, represents
the first largest loop closure in a series of large loop clo-
sures. While some of the behavior presented in Fig. 8 can be
related to machine noise, from carefully inspecting Fig. 8,
alongside the trajectory of the robot in Fig. 7a, a few inter-
esting observations can still be made. The first observation
relates to the “flat line” area noticeable in the upper graph of
Fig. 8b between time steps 60− 90. This time steps range is
equivalent to the path between the third and fourth targets,
were the only factor added to the belief is motion based. As
a result, a single new state (the new pose) is presented to the

belief, along with a single motion factor. In this range, the
timing results of iSAM DU and OTM present a linear behavior
with a relatively small gradient. This gradient is attributed to
the computational effort of introducing a single factor, con-
taining a new state, to the belief.While the vertical difference
between the aforementioned can be attributed to the sensi-
tivity of each method to the number of states and factors in
the belief.

From this observation, we can try to better understand the
reason for the substantial time difference between the meth-
ods. Basing a method on RUB inference, rather than on
standard Bayesian inference, will not magically change the
computational impact of introducing factors or new states to
the belief. However, because RUB inference is re-using
calculations from precursory planning, the computational
burden is being “paid” once, rather than twice as in the stan-
dard Bayesian inference. For the simple example of strictly
motion propagation, since this motion based factor has
already been introduced during precursory planning, under
RUB inference it offers no additional computational bur-
den. In the same manner, the reason RUB inference is
less sensitive to the state dimensionality originates in cal-
culations re-use. Under incremental update performed by
iSAM, the state dimension is mostly noticeable when in need
of re-ordering and/or re-eliminating states. Although same
mechanisms also affect RUB inference, our method
avoids them whenever they were adequately performed
during the precursory planning, thus reducing inference com-
putation time.

Another interesting observation refers to “pure” loop clo-
sures, were there are measurements with no addition of
new variables to the state vector, i.e. measurements to pre-
viously observed landmarks. For the case of “pure” loop
closures, STD, iSAM and the DU based methods (i.e. DU and
DU-OO) experienced the largest timing spikes throughout the
trajectory of each method while both OTM based methods
experienced minor spikes if any.
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Fig. 8 Second simulation timing results for the scenario presented in
Fig. 7a. Upper part of each graph provides indication on new factors
and new states per computation step while the lower presents the meth-

ods timing results: a All six methods b OTM, DU, OTM-OO, DU-OOand
iSAM methods c OTM-OO and DU-OO methods

By introducing the OOmethodology to both DU and OTM,
we drastically reduce the methods sensitivity to the motion
propagation e.g. the once-positive gradient line in DU during
time steps 60 − 90, turned into a flat line in DU-OO as can
easily be seen in Fig. 8c. Moreover, while both DU and OTM
present some sensitivity to different occurrences, i.e. the size
of the state vector, new measurements and loop closures,
this sensitivity is drastically reduced by introducing the OO
methodology, e.g. OTM-OO is basically a flat line throughout
the simulation as can easily be seen in Fig. 8.

In conclusion, ourmethods, based on RUB inference,
particularly OTM-OO, seem to be more resilient to large loop
closures that were already detected during planning, state
vector size, belief size, number of newly added measure-
ments or even the combination of the aforementioned.

4.1.3 BSP in unknown environment - relaxing consistent DA
assumption

The purpose of this experiment is to further examine
the suggested paradigm of RUB inference, in a real
world scenario, while relaxing the simplifying assumption of
consistent DA. The third simulation performs BSP over con-
tinuous action space, in an unknown synthetic environment.
A robot was given twelve targets (see Fig. 9a) while all land-
marks were a-priori unknown, and was required to visit all
targets whilst not crossing a covariance value threshold. The
experiments presented in Sects. 4.1.1 and 4.1.2were based on
the simplifying assumption of consistent DA between infer-
ence and precursory planning, which can often be violated in
real world scenarios. In this simulation we relax this restrict-
ing assumption and test our novel paradigm under the more
general case where DA might be inconsistent.

The main reason for inconsistent data association lies in
the perturbations caused by imperfect system and environ-
ment models. These perturbations increase the likelihood of
inconsistent DA between inference and precursory planning.
While the planning paradigm uses state estimation to decide
on future associations, the further it is from the ground truth
the more likely for inconsistent DA to be received. This
imperfection is modeled by formulating uncertainty in all
models (see Sect. 2).

For a more conservative comparison, in addition to the
aforementioned,we force inconsistentDAbetween inference
and precursory planning for all new variables. In contrast to
planning paradigms that can provide DA to new variables, in
addition to an unknown map, the robot’s planning paradigm
considers only previously-mapped landmarks. As a result of
this limitation, the DA received from the planning stage can
not offer new landmarks to the state vector. Consequently,
each new landmark would essentially mean facing incon-
sistent DA, while the single scenario in which a consistent
DA is obtained (see Sect. 3.5.1), occurs when both planning
and inference are considering the same known landmark.
Both perturbations caused by uncertainty and considering
only previously mapped landmarks, resulted in just 50% DA
consistency between planning and succeeding inference in
this experiment. The remaining 50% contain factors related
to both existing and new landmarks.

Following the findings of Sect. 4.1.2, out of the four
suggested methods we choose to continue the comparison
just with the OTM-OO method. While OTM-OO assumed
consistent DA, the more general approach deals with incon-
sistent DA before updating the RHS vector. We denote the
complete approach, updating DA followed by OTM-OO, as
UD-OTM-OO, where UD stands for Update Data association.
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Fig. 9 Simulation layout and
results: a The Synthetic
Environment, where landmarks
are marked in green, targets are
numbered and marked with red
crosses, the ground truth is
denoted by a blue line, the
estimated trajectory is denoted
by a red line while the
covariance is visualized by red
ellipse. b Total average running
time of inference update for
each method, when 50% of the
steps were with inconsistent DA
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It is important to clarify that UD-OTM-OO and for consis-
tent DA also OTM-OO, yield the same estimation accuracy as
iSAM, since the inference update using RUB inference
results in the same topological graph with the same values.
Such comparisonwill be presented later on using a real-world
data in Sect. 4.2. For that reason, the accuracy aspect will not
be discussed further in this section. While the scenario pre-
sented in Fig. 9a contains at least ten large loop closures, for
the readers convenience we marked two of them using yel-
low � signs. Same loop closures are also marked in Fig. 10
for comparison.

Figure 9b presents the cumulative computation time of
the inference update phase throughout the simulation. We
can see that the majority of UD-OTM-OO computation time,
i.e. 96.4%, is dedicated to DA update while only 3.6% for
updating the RHS vector. Although the need for DA update
increased running time (as to be expected),UD-OTM-OO still
outperforms iSAM by an order of magnitude.

In addition to the improvement in total computation time
of the inference update stage, we continue on analyzing the
“per step” behavior of UD-OTM-OO, and demonstrate that in
a few aspects it is less sensitive than iSAM. Fig. 10a presents
per step computation time of both UD-OTM-OO and iSAM,
as well as the RHS update running time of UD-OTM-OO.
Our suggested paradigm not only outperforms iSAM in the
cumulative computation time, but also outperforms it for each
individual step. While Fig. 10a presents the difference in
average computation time per-step, Figs. f10b and f10c cap-
ture the reason for this difference as suggested in Sect. 4.1.2.
Figure 10c presents the number of added factors in iSAM
denoted by a green line, as opposed to in UD-OTM-OO
denoted by an orange line, and the number of new vari-
ables per step denoted by a black line. Figure 10b presents
the number of eliminations made during inference update in
bothmethods. Number of eliminations reflects the number of
involved variables in the process of converting FG into a BT
(see Appendix-B and Algorithm 1 line 11 for the equivalent
processes in iSAM and UD-OTM-OO accordingly).

After carefully inspecting both figures, alongside the
robot’s trajectory inFig. 9a, the followingobservations canbe
made. Even with the limitation over the planning paradigm,
both the number of new factors added and the number of
re-eliminations during the inference update stage, are sub-
stantially smaller than their iSAM counterparts. These large
differences are some of the reasons for UD-OTM-OO’s bet-
ter performance. Due to the limitation over the planning
paradigm, newobservation factors (i.e. new landmarks added
each step) in both iSAM and UD-OTM-OO are identical.
While in iSAM new observation factors constitute a small
fraction of total factors, for UD-OTM-OO, they constitute
more than half of total factors. After comparing the re-
elimination graph with the timing results for each of the
methods, it appears both trends andpeaks align, sowe assume
UD-OTM-OO as well as iSAM to be mostly sensitive to the
amount of re-eliminations (further analysis is required).

Both re-elimination and added factors amounts, can be
further reduced by smart reordering and relaxing the limita-
tion over the planning paradigm accordingly.

As observed in Sect. 4.1.2, our method seems to be more
resilient to loop closures. By inspecting the yellow � signs
in Fig. 10c, we can see that in both cases, iSAM intro-
duce around 50 factors of previously known variables (i.e.
the black line representing new variables is zeroed), while
UD-OTM-OO introduces no factors at all. These two loop
closure examples beautifully demonstrate the advantage of
using RUB Inference. For cases of consistent or par-
tially consistent DA, when encountering a loop closure (i.e.
observing a previously mapped landmark) our method saves
valuable computation time since loop closures are only cal-
culated once, in the planning stage (e.g. see timing response
for loop closure at the appropriate yellow� signs in Fig. 10a).

Our method also seems to be less sensitive to state dimen-
sionality. Inspecting steps 192 − 208 and 263 − 275 in
Fig. 10c, we observe there are no new factors, i.e. the
computation time is a result of motion factors; inspecting
Fig. 10a we observe that in spite of the aforementioned,
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Fig. 10 Per-step analysis of the simulation presented in Fig. 7. In 50%
of the steps, planning and succeeding inference are with consistent DA:
a Per-step timing results of iSAM performing standard Beysian infer-
ence in green, UD-OTM-OO performing RUB inference in orange
and the RHS update portion out of UD-OTM-OO in yellow. b Number

of eliminations per-step, in the inference update stage for both iSAM
and UD-OTM-OO. c Number of newly added factors in iSAM per step,
newly added factors in UD-OTM-OO per step, and the number of new
variables introduced to the belief per step

iSAM computation time is much larger than our method.
From this comparison we can infer our suggested method is
less sensitive to state dimensionality. As explained earlier,
this originates in the reduced number of re-eliminations and
state re-ordering in RUB inference when compared to
iSAM, e.g. when the amount of re-eliminations in Fig. 10b
is almost the same between the two (like in steps 171, 262,
310), the equivalent computation time in Fig. 10a is also
almost identical.

4.2 Real-world experiment using KITTI dataset

After the promising performance in a simulated environ-
ment, we tested our paradigm for inference update via BSP
in a real-world environment using KITTI dataset Geiger et
al. (2013). The KITTI dataset, recorded in the city of Karl-
sruhe, contains stereo images, Laser scans and GPS data. For
this work, we used the raw images of the left stereo camera,
from the Residential category file: 2011_10_03_drive_0027,
as measurements, as well as the supplied ground truth for
comparison.

In this experiment we consider a robot, equipped with a
single monocular camera, performing Active Full-SLAM in
the previously unknown streets of Karlsruhe Germany. The
robot starts with a prior over its initial pose and with no prior
over the environment.At time k the robot executesBSPon the
single step action sequence taken in the KITTI dataset at time
k +1. At the end of each BSP session, the robot executes the
chosen action, and receives measurements from the KITTI
dataset. Inference update is then being performed in two sep-
arate approaches, the first following the standard Bayesian
inference approach and the second following our proposed

RUB inference approach. The inference update follow-
ing each is compared for computation time and accuracy.

The following sections explain in-detail how planning and
perception are being executed in this experiment.

4.2.1 Experiment parameters

For the readers convenience, this section covers all the param-
eters used for this experiment and were not provided by
KITTI.

Prior belief standard deviation

[
1o · I3x3 0

0 1[m] · I3x3
]

Motion Model standard deviation

[
0.5o · I3x3 0

0 0.5[m] · I3x3
]

Observation Model standard deviation

[
1[px] 0
0 1[px]

]

Camera Aperture 90o

Camera acceptable Sensing Range between 2[m] and 40[m]

The motion and observation models that were used are
(6) and (7) appropriately, where h(.) is given by the pinhole
camera model, and the zero mean Gaussian noise is stated
above.

4.2.2 Planning using KITTI dataset

Our proposed approach for RUB inference, leverages
calculations made in the precursory planning phase to update
inference more efficiently. KITTI is a pre-recorded dataset
with a single action sequence, i.e. the “future” actions of the
robot are pre-determined. Nevertheless, we can still evaluate

123



Autonomous Robots

our approach by appropriately simulating the calculations
that would be performed within BSP for that specific (and
chosen) single action sequence. In other words, BSP involves
belief propagation and objective function evaluations for dif-
ferent candidate actions, followed by identifying the best
action via Eq. (12) and its execution.

In our case, the performed actions over time are read-
ily available; hence, we only focus on the corresponding
future beliefs for such actions given the partial information
available to the robot at planning time. Specifically, at each
time instant k, we construct the future belief b[Xk+1|k] via
Eq. (10) using the supplied visual odometry as motion model
and future landmark observations. Future landmark observa-
tions are generated by considering only landmarks projected
within the camera field of view using MAP estimates for
landmark positions and camera pose from the propagated
belief b[Xk+1|k]. As in this work the planning phase consid-
ers only the already-mapped landmarks, without reasoning
about expected new landmarks, each new landmark observa-
tion in inference would essentially mean facing inconsistent
DA.

To conclude, planning using the KITTI dataset is simu-
lated over a single action in the following manner: current
belief is propagated with future action, future measurements
are generated by considering already-mapped landmarks,
and future belief is solved. Since the “optimal” action is
pre-determined by the KITTI dataset there is no need for
an objective function evaluation.

4.2.3 Perception using KITTI dataset

After executing the next action, the robot receives a corre-
sponding raw image from the KITTI dataset. The image is
being processed through a standard vision pipeline, which
produces features with corresponding descriptors Lowe
(2004). Landmark triangulation is being made after the same
feature has been observed at least twice, while following dif-
ferent standard conditions designed to filter outliers. Once a
feature is triangulated, it is considered as a landmark, and is
added as a new state to the belief. Note that the robot has
access only to its current joint belief, consisting of the esti-
mated landmark locations, and the robot past and present
pose estimations. Once the observation factors (7) are added
to the belief, the inference update is being made in two dif-
ferent and separate ways. The first, used for comparison,
follows the standard Bayesian inference, by using the effi-
cient methodologies of iSAM2 in order to update inference.
The belief of the preceding inferenceb[Xk|k ] is being updated
with the new motion P(xk+1|xk, uk) and observation factors∏
j∈Mk+1|k+1

P(z jk+1|xk+1, l j ), thus obtaining b[Xk+1|k+1].
The second method follows our proposed paradigm for

RUB inference. The belief from the preceding planning

phase, b[Xk+1|k], which corresponds to uk|k+1 (see (26)), is
updated with the new measurements. This update is done
using UD-OTM-OO which consists of two stages, first using
our DA update method (Sect. 3.5.2) which updates the pre-
dictedDA to the actual DA, followed by the OTM-OOmethod
(Sect. 3.4.2) which updates measurement values.

4.2.4 Results - KITTI dataset

The robot travels 1400 steps in the unknown streets of
Karlsruhe Germany, while relying only on a monocular cam-
era for localization and mapping and without encountering
any substantial loop closures. Differently than Sect. 4.1.2 and
Sect. 4.1.3, where the landmarks were omnidirectional and
therefore can be spotted from every angle as long as they
were in sensing range, when using real world data the angle
from which we see a landmark would have crucial affect on
data association.Figure 11a presents the ground truth of the
robot’s trajectory in blue, the estimated robot’s trajectory in
dotted red and the estimated location of observed landmarks
in green. Both iSAM and UD-OTM-OO produce the same
estimation; therefore, the dotted red-line as well as the green
marks represents both iSAM and UD-OTM-OO estimations.

Figure 11b presents the total computation time of infer-
ence update throughout the experiment, for both iSAM, and
UD-OTM-OO. The importance of real-world data can be
easily noticed by comparing Figs. 9b and 11b. While the
RHS update portion of UD-OTM-OO secured its advantage
of two orders of magnitude over iSAM, it is not the case
with UD-OTM-OO as a whole. Although for real-world data,
UD-OTM-OO is still faster than iSAM, the difference has
decreased fromorder ofmagnitude in Fig. 9b, to less than half
the computation time in Fig. 11b. Since the samemachine has
been used in both cases, the difference must originate from
the data itself. As will be seen later in Fig. 13b, the number
of measurements per step is substantially higher when using
the real-world data, as well as the occurrences of inconsis-
tent DA. It is worth stressing that iSAM implementation for
inference update is C++ based, while UD-OTM-OO imple-
mentation consists of a mixture of MATLAB based and C++
based implementation, so under the use of the same platform
the computation time difference is expected to be higher.

We continue by discussing the estimation difference,
between iSAM and our method UD-OTM-OO. Although our
method is algebraically equivalent to estimation via iSAM,
for the reader’s assurance we also provide estimation error
comparison for both mean and covariance. Despite the alge-
braic equivalence, we expect to obtain small error values,
related to numerical noise, which are different from absolute
zero.

The estimation comparison results are presented inFig. 12:
the translationmean inFig. 12a, themean rotationof the robot
in Fig. 12b and the corresponding covariances in Figs. 12c,d
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Fig. 11 Experiment layout and
results: a The city of Karlsruhe,
Germany, provided by the
KITTI dataset. The robot
ground truth is denoted in blue,
the estimated trajectory denoted
in dotted red line and the
estimated landmark locations
are denoted in green. b Total
average running time of
inference update for each
method, when 100% of the steps
were with inconsistent DA
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accordingly. The mean translation error is calculated by
taking the norm of the difference between the two mean
translation vectors. The mean rotation error is calculated by
taking the norm of the difference between each of the mean
body angles. The covariance error is calculated by taking the
norm of the difference between the covariance determinants.
As can be seen in Fig. 12, the error has a noise like behav-
ior, with values of 10−14

[m] for translation mean, 10−11
[deg] for

mean rotation angles, 10−3
[m] for translation covariance and

10−2
[deg] for rotation angles covariance. For all practical pur-

poses, these values points to a negligible accuracy difference
between the two methods.

Figure 13a presents the per-step computation time for
inference update of UD-OTM-OO and iSAM, as well as
the RHS update portion out of UD-OTM-OO for reference.
The RHS Update timing of UD-OTM-OO, denoted by a
yellow line, represents the per-step computation timeof infer-
ence update through RUB inference for consistent DA,
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Fig. 13 Per-step analysis of computation time and added factors
amount. a Inference update computation time per-step comparison
between: iSAM - traditional Bayesian inference and UD-OTM-OO -
inference update using belief from precursory planning. For reference
the RHS update portion out of UD-OTM-OO is denoted in yellow. b
Number of added factors per step. Number of all factors added in iSAM

during inference at time k+1, denoted in blue. Number of factors added
in iSAM during inference at time k + 1 and relate to known variables,
denoted in red. Number of factors that were originaly calculated during
planning at time k + 1|k and were added by UD-OTM-OO in inference
at time k + 1, denoted in yellow

i.e. computation time for updating the RHS with the cor-
rect measurement values after the DA has been updated.
UD-OTM-OO represents the per-step computation time of
inference update through RUB inference for the entire
process - DA update followed by RHS update. The differ-
ence in computational effort between the two, as seen in
Fig. 13a, is equivalent to the computation time of the DA
update, which represents the need to deal with inconsistent
DA between belief from planning b[Xk+1|k] and succeed-
ing inference b[Xk+1|k+1]. The difference in computational
effort between UD-OTM-OO and iSAM is attributed to the
re-use of calculations made during the precursory planning.
This calculation re-use manifests in salvaging factors that
have already been considered during the precursory plan-
ning.

The reason for the considerable computational time differ-
ences between UD-OTM-OO and iSAM is better understood
when comparing the factors involved in the computations of
each method.

Figure 13b presents the sum of added factors per-step.
In blue, the sum of all factors added at time k + 1|k + 1,
as part of standard Bayesian inference update. In red, the
portion of the aforementioned factors that relate to states
which are already part of the belief b[Xk|k]. In yellow, the
amount of factors added in time k+1 as part of UD-OTM-OO
and are shared by both beliefs, b[Xk+1|k] and b[Xk+1|k+1],
i.e. the amount of factors thatwere originally calculated in the
precursory planning time, and were reused by UD-OTM-OO.
It is worth stressing the noticeable difference between the
number ofmeasurements per step in Fig. 13bwhen compared
to Fig. 10c. The former is exceeding the latter by an order of
magnitude.

The difference between the yellow and blue lines in
Fig. 13b represents the amount of factors “missing” from
the belief b[Xk+1|k] in order to match b[Xk+1|k+1] (see
Sect. 3.5.2), e.g. for step 725 only 142 have been reused
(yellow line) while 675 were eventually added (blue line),
leaving 533 new factors to be added during the DA update
phase of UD-OTM-OO. This difference can be divided into
factors containing only existing states and factors contain-
ing new states. Since the red line represents all factors of
existing states, the difference between the red and blue lines
represents all factors containing new states per time step, e.g.
for step 725, out of the 675 factors added during inference
(blue line), only 236 are related to previously known states
(red line). As mentioned earlier in Sect. 4.2.2, in this exper-
iment the prediction of future factors does not involve new
states, apart from the next future pose(s). For that reason, the
amount of factors added during planning has an upper bound
represented by the red line, e.g. for step 725, the maximum
number of factors that could have been utilized from precur-
sory planning is 236 (red line). Future work can consider a
prediction mechanism for new states, such work would set
the upper bound somewhere between the red and blue lines.

The difference between the yellow and red lines, both
related to factors of existing states, is attributed to the pre-
diction accuracy of the planning stage. Since the factors
represented by the red line are already part of the belief
in planning time k, a perfect prediction mechanism would
have added them all to the belief b[Xk+1|k], e.g. for step
725, while there are 236 factors related to previously known
states (red line), planning predicted only 142 of them (yel-
low line). Since the prediction is inherently imperfect (see
Sect. 3.2), there would always be some difference between
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Fig. 14 Inference update computation time analysis betweeniSAM and
UD-OTM-OO. The left vertical blue axis, represents the inference update
computation time difference between iSAM and UD-OTM-OO, where
positive values suggest tiSAM > tUD-OTM-OO. The right vertical orange
axis, represents the number of factors per step added by UD-OTM-OO
that were not reused from planning

the two. Reducing the gap between the red and yellow lines
is a function of the prediction mechanism, while closing the
gap further up to the blue line is a function of predicting new
variables during planning.

After better understanding the meaning of Fig. 13b,
comparing the two graphs in Fig. 13, reveals the connec-
tion between the added factors and the computation time,
demonstrated by comparing steps 725 and 803 across the
aforementioned. For time step 725, we have 675 new fac-
tors added in iSAM at inference, while only 142 factors that
have been reused by UD-OTM-OO, this difference resulted
in inference update running time of 4.2[s] to UD-OTM-OO
and 6.1[s] to iSAM. For time step 803, we have 145 new fac-
tors added in iSAM at inference, while only 33 factors that
have been reused by UD-OTM-OO, this difference resulted in
inference update running time of 0.33[s] to UD-OTM-OO and
6.9[s] to iSAM. Although 6825 new landmarks were added
to the state vector between steps 725 and 803 (calculated
by the cumulative difference between the blue and red lines
between steps 725 and 803), the time difference between
UD-OTM-OO and iSAM increased, while UD-OTM-OO run-
ning time dropped. This increase in relative running time,
in-spite of the substantial growth of the state vector, can be
attributed to the drop in the number of factors needed to be
added by the DA update phase of UD-OTM-OO.

As anticipated, the larger the gap between b[Xk+1|k]
and b[Xk+1|k+1], i.e. more DA corrections to b[Xk+1|k] are
required in order to match b[Xk+1|k+1], the smaller the com-
putation time difference between RUB inference and
standard Bayesian inference, as demonstrated in Fig. 14. The
left vertical axis (denoted in blue) presents the computation
time difference between iSAM and UD-OTM-OO such that

positive values suggest tiSAM > tUD-OTM-OO. From this blue
graph we notice that the time difference between iSAM and
UD-OTM-OO is strictly positive and ascending up to fluc-
tuations. While some of these fluctuations can be attributed
to machine noise of the measurement process, we provide
some explanation for the large time difference drops, i.e. the
steps in which the computation difference between iSAM
and UD-OTM-OO diminished. The number of factors added
by UD-OTM-OO and were not reused from precursory plan-
ning are denoted by the orange line in Fig. 14. We can see
correlation between large spikes in the number of factors
added during the DA update phase of UD-OTM-OO (orange
line), and the drops in the time difference between iSAM
and UD-OTM-OO computation time difference (blue line),
e.g. steps 554 − 591 and 720 − 746.

In contrast to previous experiments over synthetic data,
we can better see here some dependency over the size of the
belief in the UD-OTM-OO method. This dependency seems
to be in correlation with that of iSAM2 although less intense,
as can be seen by comparing the two methods in Fig. 13a.
As in Fig. 10, we can attribute this correlation to the number
of re-eliminations performed per step, which are a function
of the newly added factors for iSAM and the DA update in
UD-OTM-OO (see Sect. 3.5). As mentioned earlier, in each
step UD-OTM-OO encounters inconsistent DA, judging by
the difference between the blue and yellow lines in Fig. 13b,
each step UD-OTM-OO deals with at least 100 factors that
were not reused from planning. Since UD-OTM-OO makes
use of iSAM2methodologies in order to update inconsistent
DA, as does iSAM2 to update inference, they share similar
computational sensitivities, which manifest in similar com-
putation time trends. This similarity sensitivity is attributed
in our opinion to the elimination process required in order to
introduce new factors into the belief. Future work for reduc-
ing eliminations by anticipating required ordering, would
break this dependency and provide additional improvement
in computation time as well as in reducing the sensitivity to
state dimensionality.

5 Broader perspective

In this section we briefly discuss the motivation for
RUB Inference, provide some broader perspective to
possible future usage and discuss its usage outside iSAM2.
Asmentioned earlier, theRUB Inference paradigmdeals
with inference update within a plan-act-infer framework. By
re-using calculations from the precursory planning session,
it offers reduced computation time without affecting estima-
tion accuracy.

Decision making under uncertainty in high dimensional
state spaces is computationally intractable, and as such
the majority of the plan-act-infer computation time can be
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ascribed to it. For example, let us consider BSP under the
simplified Maximum Likelihood (ML) assumption, with a
planning horizon of three lookahead steps and three candi-
date actions per step. The first level of the belief tree would
consist of three future beliefs, one for each candidate action,
each of which is propagated with each of the three candidate
actions, resulting in nine future beliefs in the second level of
the belief tree, and again for the last lookahead step with 27
future beliefs in the third and last level of the belief tree. This
would result in total of 39 future beliefs that constitute the
belief tree, i.e. 39 belief updates, whereas only a single belief
update is required during inference update. In this toy exam-
ple the computational load of inference update constitutes
therefore only 2.5% of the plan-act-infer framework (assum-
ing all belief updates have the same computational load). So
why should we bother with the efficiency of the inference
update process in the first place?

The answer to this question is twofold, the first part deals
withRUB Inference paradigm as a stand-alone approach
for inference update, and the second with its possible contri-
bution to future research.

Althoughwe presentRUB Inference as part of a plan-
act-infer system, it can also be used in the passive case, i.e.
not as part of a plan-act-infer system. Imagine a set of can-
didate beliefs, calculated offline and stored away for future
usage.When in-need to perform belief update, we can search
this set of candidate beliefs for the belief closest to last pos-
terior as well as to the newly received information. Once
we locate this closest belief, we use RUB Inference to
update it to match current information thus saving com-
putational load without affecting accuracy. The reason we
consider in this work RUB Inference as part of a plan-
act-infer system, lies within the problem of locating the
closest candidate belief. By using beliefs from precursory
planning as candidates we have a small set of candidates to
look through, moreover we can ensure that in the worst case
scenario (i.e. all predictions from precursory planning are
wrong) we would match Bayesian inference performance,
thus averting from the complicated problem of searching
within belief space. For the general case of having a set of
previously calculated beliefs, used as candidates for re-use
under RUB Inference, one would need to deal with few
issues some of which are: how to store the beliefs to facil-
itate an efficient search, how to efficiently search the set of
candidate beliefs, what high-dimensional belief-distance to
use, how to interpret belief-distance into computational load
i.e. what will be considered as close enough. It goes with-
out saying that the computational load of locating the closest
belief should be small enough for RUB Inference to still
have a computational advantage.

Secondly, the paradigm shift suggested by RUB
Inference provides a pathway to new and exciting
research directions. For example, RUB Infe-

Fig. 15 Visualization of JIP, a novel approach to address both infer-
ence and belief space planning under a single process. Here b[Xk+1|k ]
stands for the belief of the joint state in time instance k + 1 while cur-
rent time is k and each row stands for a different planning horizon. The
relations between different beliefs in the graph are denoted by differ-
ent arrows. a Inference; b Planning step; c Updating Inference with
precursory planning (this paper); d Update planning with precursory
planning

rence is a key building block in the new concept of Joint
Inference and belief space Planning (JIP), first presented
in Farhi and Indelman (2017) and later in Farhi and Indel-
man (2019b), which strives to create a unified framework that
deals with both inference and BSP under the same govern-
ing system, thus allowing to maximize the calculation re-use
potential available in both inference and planning.

Fig. 15 provides a graphical illustration of JIP. The joint
inference and belief space planning approach incorporates
both inference and decision making stages into a single pro-
cess. Each node in the graph represents a belief, i.e. b[Xk+1|k ]
denotes the joint belief of state X at a future time instant k+1
given that the current time is k. The right facing arrows (a)
denote inference at sequential time instances i.e. standard
Bayesian inference. The diagonal arrows (b) represent opti-
mal controls and future measurements that lead up to the
appropriate beliefs. The upward facing arrow (c) represents
our current work on RUB Inference, as it denotes infer-
ence update using precursory planning session. The upward
facing arrow (d) represents our continued work named Incre-
mental eXpectation BSP (iX-BSP) Farhi and Indelman
(2019a), as it denotes updating a future belief using some
previously calculated planning session. For the reader’s con-
venience this JIP illustration is presented in 2D, but in-fact
this 2D pattern is repeating itself in the 3D space to represents
all possible future beliefs along with all possible candidate
actions and future measurements, simply visualize rotating
Fig. 15 around the top row representing inference.

While RUB Inference provides efficient inference
update, denoted by (c) in Fig. 15, it is also relied upon to
facilitate calculation re-use between different planning ses-
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sions, denoted by (d) in Fig. 15. As part of BSP, it is required
to create a belief tree, as deep as the planning horizon, where
each node in the said tree represents a future belief with spe-
cific candidate actions and future measurements. In Farhi
and Indelman (2019a) we make use of RUB Inference
paradigm in order to incrementally update the belief tree as
part of planning, thus saving valuable computation time from
the planning stage.

Consequently, apart from being a more computationally
efficient approach for inference update, the paradigm shift
suggested by RUB Inference provides a basis for excit-
ing new research, i.e. RUB Inference is the building
block that facilitates the JIP concept as a whole.

This entire paper is tightly entwined with iSAM2, yet
we coin it as a general paradigm shift. How can it be used
on different inference methods, if any? As stated in the
Problem Statement (see Sect. 2.3), the paradigm shift sug-
gested by RUB Inference is impervious to any specific
paradigm used for inference or planning: The principle of
RUB Inference (as laid out in Fig. 1b) involves updat-
ing a belief from a previous planning session as opposed
to Bayesian inference where we update the last posterior
belief. The motivation for this is the inherent similarities
between inference and BSP (as seen in Sect. 3.3), which
are not related to any specific inference method being used.
In this work we chose to implement the principle suggested
by RUB Inference over the iSAM2 method, i.e. creat-
ing a version of iSAM2 that follows RUB Inference
rather than Bayesian inference. In order to implement
RUB Inference on different inferencemethods, onemust
only implement the two building blocks (Fig. 1b) - updating
DA, updating the actual measurements. While the presented
implementation is in-fact iSAM2 specific, it can be easily
translated to other factor-based methods with little to no
work. Different non-factor-based methods may require more
adjusting, yet the paradigm of RUB Inference remains
the same.

6 Conclusions

Conventional Bayesian inference updates the belief from a
previous time step with new incoming information. In this
work we introduced an alternative paradigm, utilizing the
similarities between inference and planning to efficiently
update inference using information from precursory plan-
ning phase. Given a future belief from precursory planning
and newly acquired data, we appropriately update the former
with the latter while taking into consideration data asso-
ciation inconsistencies which might occur. The resulting
approach, RUB inference, saves valuable computation
time in inference without affecting the estimation accuracy.

We evaluated our approach in simulation and using real-
world data from theKITTI dataset, considering active SLAM
as application, and compared it against iSAM2, a state-
of-the-art incremental Bayesian inference approach. Results
from real-world evaluation indicate that our approach ismore
efficient computationally by at least a factor of two com-
pared to iSAM2, without affecting the solution accuracy.
The improvement magnitude is in direct correlation with the
quality of the prediction mechanism being used in planning,
meaning a better prediction mechanism would increase the
approach’s efficiency. A particular appealing aspect of our
method, that we demonstrated using synthetic data, is that
loop closures computational burden during inference is ele-
vated, thanks to the utilization of similar calculations already
made during precursory planning. When loop closures were
correctly predicted during the planning phase, our method
utilized these calculations instead of re-calculating them in
inference, resulting in reducing computation time by a factor
of two orders of magnitude in the shown results.

This paper suggests a novel general concept for leverag-
ing calculations from the decision making stage for efficient
inference update, thus enabling to reduce inference computa-
tion time without affecting accuracy. Based on this concept,
under the assumption of high-dimensional Gaussian beliefs,
we developed approaches based on the square root infor-
mation matrix, to efficiently update inference. We strongly
believe this novel concept is applicable for more general
distributions in any autonomous system involving both infer-
ence and decision making under uncertainty. Based on our
findings, we strongly believe this paradigm shift opens new
research directions and can be further extended in various
ways, e.g. our ongoing work on ix-BSP - incremental
expectation BSP Farhi and Indelman (2019a) leverages RUB
Inference to reuse calculations across different planning
sessions.

Appendix A: Derivation of equation (14)

In this appendixwe complete the derivation of Eqs. (14) from
(13). Let us consider the NLS presented in Eq. (13)

X�
k|k = argmin

Xk

‖x0 − x�
0‖2�0

+
k∑

i=1

⎡

⎣‖xi − f (xi−1, ui−1|k)‖2�w
+

∑

j∈Mi |k
‖z ji |k − h(xi , l j )‖2�v

⎤

⎦ .

In general, the motion model f (·) and the measurement
model h(·) are non-linear functions. A standard way to solve
this problem is the Gauss-Newton method, where a single
iteration involves linearizing about the last known estimate,
calculating the delta around this linearization point, and
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updating the latter with the former. This process should be
repeated until convergence.

We start by linearizing the terms in (13) using first order
Taylor approximation around the best estimate we have for
the joined state X̄k|k−1 which is the state estimate for time k
before including measurements, i.e. X∗

k|k−1.
The prior term yields,

x0 − x�
0 = x̄0 + �x0 − x�

0 = �x0. (68)

The motion model term yields,

xi − f (xi−1, ui−1|k) = x̄i − f (x̄i−1, ui−1|k) − �
− 1

2
w Fi

[
�xi−1

�xi

]

(69)

where �
− 1

2
w Fi represents the Jacobian matrix of the motion

model at time i , around the linearization point x̄i−1:i . The
measurement model term yields,

z ji |k − h(xi , l j ) = z ji |k − h(x̄i , l̄ j ) − �
− 1

2
v Hi, j

[
�xi
�l j

]
(70)

where �
− 1

2
v Hi, j represents the jacobian matrix of the mea-

surement model at time i around the linearization point[
x̄i , l̄ j

]T
.

In order to re-write (13) into the common form of Least
Squares Ax = b, we introduce Eqs. (68–70) back to (13),

�X�
k|k = argmin

�Xk

‖�− 1
2

0 �x0‖2

+
k∑

i=1

⎡

⎣‖�− 1
2

w �xi − Fi�xi−1 − b̆Fi ‖2 +
∑

j∈Mi |k
‖Hi, j

[
�xi
�l j

]
− b̆Hi ‖2

⎤

⎦ ,

where the RHS terms b̆Fi and b̆Hi are given by

b̆Fi = �
− 1

2
w

(
f (x̄i−1, ui−1|k) − x̄i

)
,

b̆Hi = �
− 1

2
v

(
z ji |k − h(x̄i , l̄ j )

)
.

We now make use of the fact that the minimum sum
of quadratic expressions is the minimum of each quadratic
expression individually and is equal to zero. Thus enabling
us to stack up all equations to form,

�X�
k|k = argmin

�Xk

‖Ak|k�Xk − bk|k‖2,

where the Jacobian matrix and the RHS are given by,

Ak|k =
⎡

⎢⎣
�

− 1
2

0
F1:k|k
H1:k|k

⎤

⎥⎦ , bk|k =
⎡

⎢⎣
0

b̆F1:k|k
b̆H1:k|k

⎤

⎥⎦ .

Appendix B: Inference as a graphical model

The inference problem can be naturally represented and effi-
ciently solved using graphical models such as factor graph
(FG) Kschischang et al. (2001) and Bayes tree (BT) Kaess
et al. (2010). Since FG and BT graphical models pose key
components in the suggested paradigm, the theoretical foun-
dation is supplied next. We use Fig. 4 as illustration to belief
representation in graphical models. Figure 4a and b are FG
representations for the beliefs b(Xk+1|k) and b(Xk+1|k+1),
respectively. BT representation of the belief is obtained
through an elimination process, Fig. 4d presents the BT of
b[Xk+1|k] for the elimination order x0 · · · li → xk−1 →
xk → l j → xk+1, while Fig. 4e presents the BT of
b[Xk+1|k+1] for the elimination order x0 · · · li → xk−1 →
xk → l j → lr → xk+1.

A FG is a bipartite graphwith two node types, factor nodes
{ fi } and variable nodes {θ j } ∈ �. All nodes are connected
through edges {ei j }, which are always between factor nodes
to variable nodes. A factor graph defines the factorization of
a certain function g(�) as

g(�) =
∏

i

fi (�i ), (71)

where �i is the set of variables {θ j } connected to the factor
fi through the set of edges {ei j }. After substituting � with
our joint state X and the factors { fi } with the conditional
probabilities from Eq. (4) we receive the definition of the
belief b(Xt |k) in a FG representation.

Through bipartite elimination game, a FG can be con-
verted into a BN, this elimination is required for solving the
Inference problem (as shown in Kaess et al. (2012)). After
eliminating all variables the BN pdf can be defined by a prod-
uct of conditional probabilities,

P(�) =
∏

j

P(� j |S j ), (72)

where S j is addressed as the separator of � j , i.e. the set of
variables that are directly connected to � j . In order to ease
optimization and marginalization, a BT can be used Kaess et
al. (2012). By converting the BN to a directed tree, where the
nodes represent cliques {Cr }, we receive a directed graphical
model that encodes a factored pdf. Bayes Tree is defined
using a conditional density per each node.

P(�) =
∏

r

P(Fr |Sr ), (73)

where Sr is the separator, definedby the intersectionCr
⋂

	r

of the clique Cr and the parent clique 	r . The comple-
ment to the variables in the clique Cr is denoted as Fr , the
frontal variables. Each clique is therefor written in the form
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(a) (b)

(c) (d)

Fig. 16 The relations between different problem representations. a
Factor graph b Jacobian matrix A with RHS vector b c Bayes Tree
d Factorized Jacobian matrix R with equivalent RHS vector d

Cr = Fr : Sr .
The correspondence between matrix and graphical represen-
tation is conveniently demonstrated in Fig. 16. The first rows
of R are equivalent to the deepest cliques in the BT, when the
last rows of R equivalent to the root of the tree. The elimina-
tion order that created the BT is identical to the ordering of
R state vector, and fill-ins in R equivalent to the connectivity
of the corresponding BT.

Appendix C: Non-Zeros in Qmatrix

In this appendix we discuss the number of non zeros in the
rotation matrix Qk+1|k+1, in order to do so we first cover the
creation of Qk+1|k+1, and later get to an expression for the
number of non zeros and analyze it to gain better understand-
ing over the governing parameters.

The rotation matrix Qk+1|k+1 is created as part of the
factorization of the Jacobian, designed to rotate the Jaco-
bian into a square upper triangular form (e.g. Eqs. (17) and
(25)). As such, we can deduce an expression for the num-
ber of non zeros in Qk+1|k+1 as a function of the state size
and the size of added factors, but first let us review how
Qk+1|k+1 is being created. Figure 17a illustrates a simple
example for the Jacobian matrix AR

k+1|k+1, where the pre-
cursory factorized Jacobian is denoted by Rk|k , the newly
added factors by Ak+1|k+1 and the columns denote the dif-
ferent states. The involved variables inAk+1|k+1 are marked
with light blue and orange. As can be deduced from Fig. 17a,
the number AR

k+1|k+1 columns equals the joint state size at

time k + 1, and the number of AR
k+1|k+1 rows equals the

sum of the joint state size plus the number ofAk+1|k+1 rows.
The purpose of factorization is to rotate AR

k+1|k+1 to a square
upper triangular formwithout loosing information, i.e. so that

AR
k+1|k+1

T
AR
k+1|k+1 = Rk+1|k+1

T Rk+1|k+1. While there are

many different factorization algorithms, we would consider
for simplicity without affecting generality the Given’s Rota-
tion (see Golub and Loan (1996)). Given’s rotation creates
Qk+1|k+1 by a series of simple one cell rotations. For the
simple case presented in Fig. 17, two rotations are required
as presented in Fig. 17b. First the left-most non zero entry
inAk+1|k+1, denoted by light blue, is addressed. The appro-
priate rotation matrix, consists of two off-diagonal non zeros
denoted by dark blue, is denoted in Fig. 17b as the light blue
Qk+1|k+1. Next we are left to address the orange non zero
entry inAk+1|k+1, while its appropriate rotation matrix, also
consists of two off-diagonal non zeros denoted by dark red,
is denoted in Fig. 17b as the orange Qk+1|k+1. From Fig. 17b
we can see that each sequential rotation matrix has the same
number of non zeros, diag

(
Qk+1|k+1

) + 2, but due to the
multiplication between them we get more non zeros as seen
in Fig. 17c. For some intuition we marked the entries of the
equivalent Qk+1|k+1 presented in Fig. 17c, in accordance to
the color coding in Fig. 17b.

Now that we understand that the number of non zeros in
Qk+1|k+1 is affected by the size of the joint state, the size
of the newly added factors and the location of the left-most
involved state, we are in position to formulate the expres-
sion for the number of non zeros in Qk+1|k+1. We invite the
reader to refresh his memory regarding the notations used in
this analysis using Fig. 3, nevertheless all notations are also
defined here.

Let j be the column index of the left-most involved state in
the newly added factorsAk+1|k+1, ns be the size of the state
vector (i.e. number of states multiplied by the state dimen-
sion), and n f be the number of rows ofAk+1|k+1 (i.e. number
of factors multiplied by the factors’ dimension). The number
of non zeros can be defined as the sum of three values: the
number of diagonal entries equal to 1, the contribution of the
Jacobian line with the left-most state to the non zeros, and
the contribution of the rest of the Jacobian lines.Wewill now
calculate each of them.

As can be seen from Fig. 17b, the incremental rotation
matrix (i.e. colored Qk+1|k+1) created to rotate an entry in
the i th column, would have i − 1 diagonal entries equal to
1. Since the left-most state is located in the j th column the
number of diagonal entries equal to 1 in Qk+1|k+1 would be

j − 1, (74)

where j is bounded by the size of the state such that

j ∈ [1, ns]. (75)

The rotation matrix Q for rotating an entire Jacobian row
located in the i th , with a left-most non zero located in the j th

column, would have non zeros in the i th row from column j
up to the last column and an fully dense upper triangle of non
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(a) (b)

(c)

Fig. 17 a A Jacobian matrix at time k + 1, consisting of the previously
factorized Jacobian from time k and the linearized newly added factor
from time k+1. The RHS visualize the non zeros of the aforementioned
Jacobian. bVisualizing the factorization procedure of the Jacobian in a
using two Given’s rotation matrices. The light and dark colors represent

the cosine and sine values respectively, attributed to each of the orig-
inal non zeros in a. c Visualizing the non zeros in the rotation matrix
required to factorize the Jacobian a, this rotation matrix is the product
of the twomatrices in b, as such the non zeros are affected by the cosine
and sine values in b

zeros over the same columns. This means that rotating the
row with the left-most index in column j would contribute
the following number of non zeros to Qk+1|k+1

n2 − n

2
+ n + n − 1 = n2

2
+ 3

2
n − 1, (76)

where n is defined by

n = ns + n f − j + 1. (77)

Assuming the left-most state in the Jacobian is located in
the j th column, rotating the rest of the rows of the Jacobian
will only add non zeros at the appropriate rows in Q, with-
out adding new non zeros to the appropriate upper triangle.
The remaining n f − 1 rows will contribute to Qk+1|k+1 the
following number of non zeros

n f −1∑

i=1

(
ns + n f − i + 1

)
=

(
n f − 1

) (
ns + n f + 1

)

−n f
(
n f − 1

)

2
= (n f − 1)(ns + n f

2
+ 1). (78)

Evidently, the number of non zeros in Qk+1|k+1 is given by

j − 1︸ ︷︷ ︸
i

+ n2

2
+ 3

2
n − 1

︸ ︷︷ ︸
i i

+ (n f − 1)(ns + n f

2
+ 1)

︸ ︷︷ ︸
i i i

, (79)

where term (i) in Eq. (79) denotes the number of diagonal
entries equal 1, term (ii) in Eq. (79) denotes the non zeros

added after factorizing the factor with the left-most state j,
term (iii) in Eq. (79) denotes the non zeros added after fac-
torizing the rest of the factors. It is worth stressing that the
value of j is acutely affected by the ordering of the joint state
vector. For better ordering, j would receive larger values.

Now that we have an expression to the number of non
zeros in Qk+1|k+1, we would like to investigate which part
of it is dominant. In the sequel we reformulate Eq. (79) into a
sum of quadratic terms, and then find conditions to determine
which term is dominant.

We start by introducing (77) into Eq. (79) and using simple
arithmetics in order to get quadratic forms,

1

2
ns2 + n f 2 + 2nsn f + 3

2
ns − ns j + 3n f − n f j + 1

2
j2 − 3

2
j − 1 (80)

1

2

(
ns + n f − j + 3

2

)2

+ 1

2
n f 2 + 3

2
n f + nsn f − 17

8
(81)

1

2

(
ns + n f − j + 3

2

)2

︸ ︷︷ ︸
a

+ 1

2

(
n f + 3

2

)2

︸ ︷︷ ︸
b

+ nsn f
︸ ︷︷ ︸

c

− 26

8
. (82)

We have three candidates to be the dominant part of Eq. (82),
denoted by terms (a) (b) and (c). Let us examine them to
decide which is the dominant one and under what conditions.
First we can see that term (b) in (82) is a special case of term
(a) in (82) where j = ns . Subsequently we are left with
comparing terms (a) and (c) in (82), i.e. we would like to
check when

(
ns + n f − j + 3

2

)2

> nsn f , (83)
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we define a � ns − j + 3
2 and get

a2 + 2an f + n f 2 − nsn f > 0. (84)

So we can say term (a) in (82) is bigger than term (c) in (82)
when

(
ns − j + 3

2
>

√
nsn f − n f

)
∪

(
ns − j + 3

2
< −

√
nsn f − n f

)
.

(85)

Considering Eq. (75), we can dismiss ns − j + 3
2 <

−√
nsn f − n f because the smallest the LHS can be is 3

2 ,
which will always be greater than the non positive number
−√

nsn f − n f , so the condition on j so that term (a) is the
dominant part of (82) is

ns −
√
nsn f + n f + 3

2
> j, (86)

which after considering Eq. (75) is true if and only if

−
√
nsn f + n f + 3

2
> 0. (87)

We can now solve the aforementioned to get a condition to
assure (86) holds,

n f + 3

2
>

√
nsn f (88)

n f 2 − (ns − 3) f + 9

4
> 0 (89)

(
n f >

ns − 3

2
+

√
ns2 − 6ns

2

)

∪
(
0 < n f <

ns − 3

2
−

√
ns2 − 6ns

2

)
, (90)

where ns−3
2 −

√
ns2−6ns

2 is non negative ∀ns , and both condi-
tions are defined forns ≥ 6which for a 6DOFproblemmeans

a single state. For a value of ns = 6, n
s−3
2 −

√
ns2−6ns

2 = 1.5

and for ns = 7, ns−3
2 −

√
ns2−6ns

2 < 1 so affectively this
condition is irrelevant ∀ns �= 6, so we are left with

(
n f >

ns − 3

2
+

√
ns2 − 6ns

2

)
∪ (

ns ≥ 6
)
. (91)

Although this is the exact condition to insure term (a) is the
dominant part of (82), in order to provide a more convenient
condition we suggest an upper bound in the simple form of

Fig. 18 Illustrating the effectiveness of the bound for ns−3
2 +

√
ns 2−6ns

2
in the form of the error between the two as a function of different state
sizes ns

n f > ns .. Fig. 18 illustrates the effectiveness of the suggested
bound in the form of the distance

Error = ns − ns − 3

2
+

√
ns2 − 6ns

2
. (92)

For ns = 6 the distance is 4.5, and for ns = 8 it is already
3.5, which makes this bound very affective for simplicity
reasons.

To conclude, term (a) is the dominant part of (82) if and
only if the following holds

(
n f >

ns − 3

2
+

√
ns2 − 6ns

2

)
∩ (

ns ≥ 6
)
, (93)

or for simpler upper bound

n f > ns ≥ 6. (94)

Otherwise, term (c) is the dominant part of (82), i.e. given
simply the size of the state and the number of rows of the
newly added factors we can determine what will be the gov-
erning expression for determining the number of non zeros
in Qk+1|k+1.
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