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I. OVERVIEW

Semantic perception is the process of acquiring and
maintaining knowledge of the environment of a robot
(or more generally - embodied agent) beyond geometric
structure, i.e. capturing meaning - such as classes and
other high-level properties of visible scene elements - as
opposed to pure geometry. Semantic perception is essential
in allowing robots to operate in diverse, low-structured and
dynamic environments and alongside humans [7, 15, 37]. In
the past decade semantic information has become increas-
ingly available for robotics applications thanks to advances
in processing of streams of raw data such as images and
text, primarily using Machine Learning-based methods,
as well as a persistent increase in compute power [7].
However, while established methods exist for estimating
and maintaining the geometric structure of a partially
observable environment from local measurements (SLAM)
[15], these do not readily adapt to treating semantics:
Firstly, semantic measurements behave differently from
commonly used geometric ones - for example, violating
the common assumption of measurement independence
[12, 43, 44, 2]. Further, Machine-Learning based semantic
measurements and observation models commonly depend
on the training data, and cannot be safely assumed correct
[12, 41, 36, 22, 26]. Second, semantics often being cate-
gorical in nature leads to mixed - continuous and discrete
- inference problems that are intractable in their precise
form. Thirdly, there is a need in novel expressive state and
environment representations to capture the additional rich
semantic information in a way enabling high-level scene
understanding for downstream tasks [7, 37].

In my research I seek to address the above gaps in the
context of autonomous semantic perception and mapping,
focusing on ”object-centric” [38, 6, 40, 5] perception, with
semantic measurements taking the form of detections of
objects (or more general elements of the environment) ob-
served by the robot. In this setting, a viewpoint-dependent
model can be used to capture spatial variations in semantic
measurement vector s for for relative viewpoint x(rel) to
object of class c

P(s | c, x(rel)). (1)

Such models couple between inference of geometry and
semantics, permitting mutual disambiguation. They can be
represented using e.g. a Gaussian Process (GP) [43, 44] or
a Neural Network [19] fit offline to classifier responses for
a set of objects representative of each class.

In this context, the contributions of the current work are

• An approach [11, 12] for classification of an object

from multiple views under localization uncertainty,
accounting for statistical dependence among seman-
tic measurements and shift in data distribution w.r.t.
training set (model uncertainty [14, 17]).

• An approach and framework for data-association
aware object-centric semantic localization and map-
ping [42] via maintaining a mixed belief utilizing
viewpoint-dependent models.

Subsequently, it turned out that defining a viewpoint-
dependent model to be conditioned on a continuous object
representation rather than on a discrete class could both
resolve the need in the intractable mixed inference of se-
mantics and reduce the separate per-class models required
previously - to a single observation model, which can be
used as a continuous nonlinear factor in inference [8]. In
this formulation, each object is represented with an “object
embedding” - a continuous vector in a learned latent space,
and the predictive viewpoint-dependent model is learned
directly from object viewpoints. I am currently aiming to
show that a model learned in this way can be used for
inference of semantics occurring in the learned latent space,
jointly with localization / geometry. Thus, an additional
(currently ongoing) contribution is

• A novel formulation [13] of object-centric mapping
with inference over a learned continuous semantic
representation.

In the following, I provide a brief problem definition, then
additional detail on the directions described above, as well
as projected future directions.

II. PROBLEM FORMULATION AND CONTRIBUTED
APPROACHES

The general inference problem I address can be stated
as maintaining the posterior, or belief, at time k

b [k]
.
= P(X0:k,O, C | Hk), (2)

with X0:k the robot trajectory at time steps 0 . . . k, object
(semantic feature) poses and associated semantic properties
(e.g. classes) O, C respectively and Hk

.
= {U0:k−1,Z0:k}

history of user controls and raw observations (e.g. images)
respectively. Note that Eq. (2) can be split into:

b [k] = P(X0:k,O, | C,Hk) · P(C | Hk), (3)

which can be interpreted as a product of a hypothesis
over continuous variables X0:k,O, multiplied by hypothesis
weight. Generally the two terms need to be maintained
over time for each combination of object classes C to keep
track of possible perceptual aliasing, i.e. of all different
hypotheses that may have produced the measurements.



A. Bayesian Viewpoint-Dependent Classification

While semantic measurements are often distinct across
viewpoints (e.g. an object is detectable from different direc-
tions), they are generally viewpoint-(and inter-viewpoint-)
dependent - two identical or similar views do not generally
contribute information, violating standard assumptions in
(geometric) observation models of statistical independence
among measurements, and leading to over-confident in-
ference [43, 12]. In addition, detector/classifier responses
may differ across viewpoints. This variation, which in
viewpoint-independent models is essentially modeled as
noise [1, 30] can actually benefit robot localization if
captured by the model [19]. However, related methods
generally ignore viewpoint dependence, and the few that
do model it ([44], [43]) do not handle partial observability,
in particular uncertainty in robot pose. Further, as semantic
information is commonly extracted from raw measurements
(e.g. images) using Machine Learning based algorithms,
difference in deployment environment w.r.t. the training
set may lead to out-of-distribution measurements and al-
gorithm failure. This phenomenon known as dataset shift
[35, 3] is closely related to AI safety in robotics. It can be
addressed by considering model uncertainty in semantic
measurements, as provided by Bayesian Deep Learning
methods [14, 18, 20, 31, 21, 23, 28], which however is
not done by previous semantic mapping methods.

In an initial work [11, 12] we address classification of
a single object under model and localization uncertainty.
We assume semantic measurements to carry information
of model uncertainty, and use Gaussian Processes as class
models, to capture spatial inter-dependence of class mea-
surements. For the resultant classification scheme, both
synthetic simulation results and subsequent experiments
with rendered images show a marked reduction in confident
mis-classifications compared to not taking said sources of
uncertainty into account.

B. Data-Association Aware Semantic Mapping

In inference over discrete semantics (e.g. classification),
belief (Eq. (2)) becomes mixed - over continuous and
discrete variables. Inference over such a belief, particularly
when attempting to simultaneously address data associa-
tion, produces mixture models which can quickly become
intractable [32, 33]. In subsequent work [42], we addressed
semantic mapping in a scene containing multiple objects
with unknown data association, expanding over previous
work that either assumed data association is given [11, 6,
38], or resorted to approximations such as E-M and similar
[27, 5] and the later [9] or max-mixture [10] - the latter
being dependent on initialization and limited in their ability
to cope with perceptual aliasing, i.e. ambiguity due to
different states producing similar observations. In contrast,
we show how to maintain the full joint hybrid belief over
robot state and object localization, classification and data
association, directly controlling approximation accuracy
through pruning. In initial experiments on synthetic data we
found that utilizing semantic measurements to jointly infer
classes and data associations indeed reduced the number
of non-negligible components w.r.t. [33], quickening data
association disambiguation.

C. Continuous Learned Semantic Representation through
a Viewpoint-Dependent Observation Model

Replacing the discrete class variable c in the viewpoint-
dependent model Eq. (1) with a per-object continuous
embedding vector e, the mixed posterior of Eq. (2) be-
comes a continuous distribution over geometry and con-
tinuous semantic description vectors, P(X0:k,O, E | Hk),
with E = {e} the set of object semantic representations. As
shown in [13] this can be developed to allow joint learning
of the model P(Zk | e,X (rel)

k ) and the representations E
of the training set objects. Following the work of Pirk
et al. [34], an N-Pairs loss could be used to encourage
organization of the latent space according to photometric
(and thus emergently, semantic) similarity. Since the learn-
ing of the viewpoint-dependent model does not in itself
require ground truth semantic information, the implication
would be that semantic mapping can be performed without
(semantic) ground truth, in particular with no candidate
class hierarchy defined in advance or a labeled dataset
- solely using detections based on objectness [34, 13].
Semantics could then ideally be recovered from the latent
representation using a few user-tagged examples and a
simple classification scheme, such as nearest-neighbors.

Bloesch et al. [4] and Sucar et al. [39] equally perform
inference in a learned latent space, however, in both the
latent space represents shape, or depth measurements -
no attempt is done to infer semantics. In particular, the
closer related [39] relies on shape prediction to be able
to keep pose transformations outside of the deep model,
whereas our approach aims to directly model viewpoint-
dependent variations in measurements. Thus the proposed
representation of semantics is novel w.r.t. to the commonly
used per-object classification vectors [29, 10] or dense
(surface or volumetric) representations [25, 24] which are
the alternative (however it’s not immediately clear how
a dense representation will be adapted to a non-static
environment).

III. FUTURE DIRECTIONS

As long as no two object instances have similar seman-
tic properties, an assumption of locally correct odometry
suffices to learn the model defined in Sec. II-C with no
(additional) ground truth data. Further, as described in [13],
a re-formulation of the model for conditioning on change in
relative pose could further relax ground-truth requirements
by eliminating the need for an origin to be defined for every
object instance. A subsequent research goal therefore is to
demonstrate the ability to learn the viewpoint-dependent
model from data collected online with no ground-truth then
employ it for semantic SLAM. A still longer-term goal, and
an important application, is the use of the semantic object
descriptors to resolving data association, especially in the
context of a dynamic environment. An additional related in-
teresting avenue could be active semantic disambiguation,
or Belief Space Planning [16] using the learned model.
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