
Real-Time Mosaic-Aided Aerial Navigation:

I. Motion Estimation

Vadim Indelman ∗ Pini Gurfil † Ehud Rivlin ‡

Technion - Israel Institute of Technology Haifa 32000, Israel

Hector Rotstein §

RAFAEL - Advanced Defense Systems Limited

This work presents a method for real-time mosaic-aided aircraft navi-

gation. The method utilizes an on-line mosaic image construction process

based on images acquired by a gimballed camera attached to an airborne

platform, which scans ground regions in the vicinity of the flight trajectory.

The images captured by the camera are used to update the mosaic image

while simultaneously estimating the platform’s motion. The work is divided

into two parts: The current paper addresses mosaic-based motion estima-

tion using a scanning camera and a concomitant mosaic construction pro-

cedure. Part II focuses on fusion of the motion estimation with a standard

navigation system. An extensive performance evaluation of the proposed

method was carried out, involving real imagery and an implementation of

the camera scanning and mosaic image construction processes. The current

paper, concerned with the motion estimation procedure, shows a significant

improvement of motion estimation in challenging scenarios, such as using a

narrow field-of-view camera and tracking low-texture scenes. The approach

proposed in this work is an alternative to Simultaneous Localization and

Mapping (SLAM) in the following sense: We assume that the mosaic image

construction is an independent process, to be utilized for improving the

navigation system. Therefore, the proposed architecture alleviates some of

the computational load associated with SLAM.

∗Doctoral Student, Faculty of Aerospace Engineering. email: ivadim@tx.technion.ac.il
†Senior Lecturer, Faculty of Aerospace Engineering, Associate Fellow AIAA. email: pgurfil@technion.ac.il
‡Professor, Department of Computer Science. email: ehudr@cs.technion.ac.il
§Chief Control Systems Engineer. email: hector@rafael.co.il

1 of 35

I. Introduction

Over the last few decades, considerable research efforts have been directed towards de-

veloping methods for navigation aiding of airborne platforms. Navigation aiding deals with

improving the performance of some basic inertial navigation system by fusing measurements

from auxiliary sensors or additional, possibly exogenous, sources of information. One of the

prevalent approaches for navigation aiding is using vision-based sensors such as on-board

cameras.

The current work describes a method for vision-aided navigation of an airborne plat-

form utilizing information from an on-line construction of a mosaic of images. We assume

that the airborne platform is equipped with a standard inertial navigation system and a

gimballed camera. During the flight, the camera scans ground regions in the vicinity of

the flight trajectory. The captured images are processed on-line to form a mosaic, and are

simultaneously used for motion estimation. The mosaic image construction process is ac-

complished by augmenting each image with a previously-constructed mosaic. The proposed

camera scanning pattern and the resulting mosaic construction process yield an increased

overlap between each new image and the preceding mosaic, which is key for improving mo-

tion estimation. The presentation of the proposed method is divided into two parts: The

current paper focuses on mosaic-based motion estimation, while Part II1 discusses fusion of

motion estimation with a standard navigation system.

The existence of overlapping regions between processed images is the common assump-

tion to all vision-based motion estimation techniques. A large overlapping region between

two images should allow a more accurate motion estimation relying on two-view geome-

try methods. If a mutual overlapping region for more than two images can be found, the

performance may be further enhanced by applying multi-view-geometry-based methods.

The two-view-geometry-based methods include Ref. 4, in which the velocity-to-height

ratio is estimated by real-time processing of visual cues captured by a stabilized camera.

Ref. 5 estimates the epipolar geometry between two given views, and expresses it in terms

of the fundamental matrix. This matrix is then used for extracting the motion parameters.6

Ref. 7 utilized epipolar constraints between tracked features of consecutive images. When

the observed scene is assumed planar, motion parameters can be calculated by estimating

the homography matrix.8–10

The multi-view-geometry-based methods, in contrast to two-view-geometry, use connec-

tions among several images, assuming that a common overlapping region exists. This results

in an increased observability and better estimation of the platform states. For example, in

Ref. 11, the authors derive constraints relating features that are observed in several consec-

utive images, thereby claiming to achieve optimal exploitation of the available information

2 of 35

in the observed scene. Ref. 12 proposed using multiple-view geometry for estimating the

motion of an unmanned helicopter during its landing phase. However, assuming that a

mutual overlapping region among several images exists, may be invalid in many airborne

applications. Violating this assumption usually degenerates the multi-view methods into the

two-view methods discussed above.

Another important factor in the context of motion estimation is the camera field-of-view

(FOV). Wide-FOV cameras encompass larger ground regions, which endows the images with

richer details, thereby allowing better motion estimation. This is crucial when flying over

regions that produce low-texture images. However, many airborne platforms use narrow-

FOV cameras; moreover, the typical trajectories and maneuvers of these platforms render

multi-view geometry methods useless. Ground footprints of narrow-FOV cameras can often

be considered planar, resulting in a homography relation between the captured images, due

to the fact that epipolar geometry is invalid in planar scenes.6 The current work focuses

on motion estimation using narrow-FOV cameras. To that end, a method for enlarging the

overlapping regions between images, based on a camera scanning pattern and on real-time

mosaic construction, is developed.

The mosaic construction may be performed using various algorithms.13–25 A basic mo-

saic construction process is performed according to the following steps: i) Motion model -

establishment of a mathematical relationships that map pixel coordinates from one image

to another (e. g. pure translation, rotation+translation, affine transformation, perspective

transformation); ii) Motion model state estimation - the most common approaches are direct

methods and feature-based methods. In the first approach, the images are shifted one relative

to another until a minimum of a predefined cost function is achieved. The second approach

involves feature extraction from each image and subsequent matching of these features to

establish the transformation between the images (i. e. motion parameters). Robust esti-

mation of the motion parameters is performed using one of the available random sampling

algorithms (e. g. RANSAC26 and LMedS27); iii) Image blending - integration of the images

into a single image according to the estimated motion model and by following one of the

available blending techniques.14,28

In many applications, a mosaic of the operational environment might not be available a-

priori, so the mosaic must be constructed during the flight. Thus, it is required to construct

a representation of the mission environment (e. g. construct a mosaic) and also utilize this

process for enhancing the performance of an existing navigation system. This approach is

known as Simultaneous Localization and Mapping (SLAM).29–35 The general approach for

solving the SLAM problem is to augment the platform’s state vector with parameters that

are used to describe the observed environment (e. g. features locations). When processing a

measurement, the augmented state vector yields an update both in the platform states (e. g.

3 of 35

position, velocity) and in the environment model. However, the SLAM framework has several

disadvantages: The most conspicuous is computational load, which does not allow real-time

performance once the augmented state has reached some critical size. Another difficulty is

feature initialization, which requires either metric information (e. g. an altimeter32) or at

least two significantly distinct camera positions,34 which constrains the platform trajectory.

Since there are various applications in which the aerial mosaic construction is the main

goal, in this work we assume that the mosaic image construction is an independent process,

to be utilized for improving the performance of an existing navigation system. Thus, our

architecture alleviates the computational load required by SLAM, as the state vector is not

augmented by the environment model representation. We propose to exploit the camera

scanning procedure and the mosaic construction process in order to improve vision-based

motion estimation, focusing on difficult scenarios of narrow-FOV cameras and low-texture

scenes, which was not discussed in previous studies.10 In addition, we design a method for

utilizing the mosaic-based motion estimation for reducing the accumulating inertial naviga-

tion errors of airborne platforms, thus estimating several platform states.

The rest of this paper is organized as follows: Section II overviews the main components

of the proposed method; Section III elaborates upon the camera scan and real-time mosaic

construction; Section IV develops motion estimation techniques and provides experimental

results for mosaic-based motion estimation; and Section V concludes the discussion. The

second part of this work1 discusses fusion of the mosaic-based motion estimation with a

standard navigation system.

II. Method Overview

Figure 1 shows the main components of the proposed architecture. The specific system

assumed in this work is an airborne platform equipped with a gimballed camera and a

standard inertial navigation system (INS).

The INS consists of an inertial measurement unit (IMU) and a strapdown block. The

latter processes measurements from the IMU and produces a navigation solution, which is

comprised of platform position, velocity and attitude. Due to the imperfectness of the IMU

sensors, the computed navigation parameters develop errors over time.

During the flight, an on-board camera captures images of ground regions according to

a scanning procedure. The acquired images are directed to the image processing module,

where they are used to construct the mosaic image, while simultaneously using some of the

images for relative motion estimation.

The motion estimation is reformulated into measurements, which are then injected into

the Kalman filter in order to update the navigation system and thereby arrest the develop-

4 of 35

ment of inertial navigation errors. This is the main focus of Part II of this work.1

Throughout this paper, the following coordinate systems are used:

• E - Earth-fixed inertial reference frame, also known as an Earth-centered, Earth-fixed

(ECEF) coordinate system. Its origin is set at an arbitrary point on the Earth’s surface

at sea level. XE points north, YE points east and ZE completes the setup to yield a

Cartesian right hand system.

• L - Local-level, local-north (LLLN) reference frame, also known as a north-east-down

(NED) coordinate system. Its origin is set at the platform’s center-of-mass. XL points

north, YL points east and ZL completes the setup to yield a Cartesian right hand

system.

• B - Body-fixed reference frame. Its origin is set at the platform’s center-of-mass. XB

points towards the nose tip, YB points toward the right wing and ZB completes the

setup to yield a Cartesian right hand system.

• C - Camera-fixed reference frame. Its origin is set at the camera center-of-projection.

XC points toward the FOV center, YC points toward the right half of the FOV and ZC

completes the setup to yield a Cartesian right hand system, as shown in Figure 2(b).

The camera is rigidly attached to the platform and performs pan and tilt movements,

which are denoted by ψC and θC , respectively.

Strapdown

Camera

Mosaic

construction

Motion

Estimation

Scanning

Procedure

Camera

Angles

Inertial Navigation System

Image Processing Module

Image

Kalman

Filter

IMU

measurements

Pos

V

 
 
 
 Ψ 

r

r

r

Figure 1. Overview of the system concept.

5 of 35

III. Camera Scanning Procedure and Mosaic Construction

Method

In this section, a detailed presentation of the camera scanning and mosaic construction

procedures is given. Experimental results of mosaic-aided navigation, which involve imple-

mentation of these procedures on real imagery are given in Part II of this work.1

A. Scanning Procedure

During flight, the onboard camera captures images of the ground according to commands

either from a human operator, an autonomous tracking algorithm of some feature on the

ground, or a scanning procedure. This section elaborates upon the scanning procedure that

was implemented in this work using real imagery. Each new captured image is processed

and used to update the mosaic image of the flight area. A detailed discussion of the on-line

mosaic construction appears in §III-B.

Figure 2(a) shows a schematic illustration of the implemented scan procedure. As can be

seen, each image partially overlaps the preceding image as well as images from the previous

scan stripe. The existence of overlapping regions is essential for performing image matching

between captured images. However, the additional overlapping region, provided by the

camera scanning procedure, enables enhancement of motion estimation, as will be seen in

Section III-B. The proposed scan pattern also allows implementation of improved mosaic

construction methods.

We assume that the scanning procedure modifies the camera’s pan angle, ψc, while keep-

ing the camera tilt angle constant, as shown in Figure 2(b). Given camera angles at the

current time instant, the calculation of camera angles for the next time instant is performed

in two steps. First, the line-of-sight (LOS) vector for the next camera aiming point in the

body-fixed reference frame, r̂B, is determined according to

r̂B = TC
B (ψc)

[f, d · CCDYC
/2, 0]T∥∥∥[f, d · CCDYC
/2, 0]T

∥∥∥
(1)

where TC
B (ψc) is the directional cosines matrix (DCM) transforming from camera reference

frame to the body frame, computed based on current camera angles; f is the camera focal

length; d is the scan direction, so that d = 1 for increasing the camera pan angle and d = −1

for decreasing the camera pan angle; and CCDYC
is the size of the camera charged coupled

device (CCD) in pixels along the YC axis.

The next step is to compute the new camera angles from r̂B. The DCM transforming

6 of 35

Ground

footprint

Flight

direction
Camera

aiming point

(a)

Flight

direction

Camera

optical axis

t1

t2

t3

t4

...
Xc

Yc

Zc

Camera

CCD plane

Xc

Xc

Xc

Xc

f

(b)

Figure 2. (a) A schematic illustration of the scanning procedure. (b) Definition of camera
coordinate system and a schematic illustration of camera angles during the scan procedure.

from B to C can be written as

TB
C (ψc) =




0 sin ψc cos ψc

0 cos ψc − sin ψc

−1 0 0


 (2)

Since the aiming point vector in C is, by definition, [1 0 0]T , one can write

r̂B = TC
B (ψc)

[
1 0 0

]T

=
[
0 sin ψc cos ψc

]T

(3)

hence

ψc = tan−1

[
r̂B(2)

r̂B(3)

]
(4)

The scanning direction, d, is switched to −1 once the camera pan angle, ψc, reaches a certain

pre-specified limit.

The proposed scan methodology moves the camera in a direction perpendicular to the

flight trajectory. We implicitly assume that the velocity-over-height ratio and the camera

sampling frequency provide sufficient overlapping regions between each two adjacent images

along the flight direction. The proposed scanning methodology differs the one suggested in

Ref. 3, since in the proposed method there is no need for any external information, whereas

7 of 35

in Ref. 3 it was assumed that the altitude was given. An example of real mosaic images,

constructed based on images acquired during the camera scanning procedure, is given in

Figure 4.

B. Mosaic Construction Method

Mosaic construction has several merits. It is capable of showing the whole flight region in a

single image, a feature that constitutes an important aid to surveillance, communication and

mission operation. Moreover, as will be shown herein, the mosaic image and its construction

process can be utilized for enhancing the precision of image-based motion estimation. We

shall now present a detailed description of the mosaic construction method using the scanning

method described in Section III-A.

1. Homography Matrix Estimation

Given a newly-captured image and the current mosaic, the first step in the mosaic construc-

tion process is finding how one image is aligned relative to the other. This may be achieved

by estimating the homography matrix between the two images, assuming that the observed

scene is planar. The homography relation is also valid for a three-dimensional scene if the

camera performs a pure rotation. However, this is not typical to fixed-wing aerial platforms.

The homography matrix is used for updating the mosaic image given a new image, and

also to perform relative motion estimation between these images, as will be explained in

the sequel. To define the homography matrix, we first recall the definition of homoge-

nous coordinates : A homogeneous representation of a point (x, y) ∈ R2 is the vector

x = [x1, x2, x3]
T ∈ R3, which is defined up to scale. The homogeneous point (x1, x2, x3)

represents the point (x1/x3, x2/x3) ∈ R2. In particular, the homogeneous point (x, y, 1) rep-

resents the point (x, y). Homogeneous points with x3 = 0 represent points which lie on a

plane at infinity.6

Given some point x in the first image and a matching point x′ in the second image,

both expressed in homogeneous coordinates, the following constraint can be written for the

homography matrix, H:

x′i ∼= Hxi (5)

Explicitly, 


x′1

x′2

x′3


 ∼=




h11 h12 h13

h21 h22 h23

h31 h32 h33







x1

x2

x3


 (6)

where∼= denotes equality up to scale. The entries of H are related to the observed scene-plane

8 of 35

parameters and to the translational and rotational motion.8 Assuming that x = [x, y, 1]T ,

the second image coordinates (x′, y′) may be computed based on the inhomogeneous form of

Eq. (6) as follows:6

x′ =
x′1
x′3

=
h11x + h12y + h13

h31x + h32y + h33

(7)

y′ =
x′2
x′3

=
h21x + h22y + h23

h31x + h32y + h33

(8)

There are various methods for estimating the homography matrix given two partially

overlapping images. The method used herein relies on Ref. 6 and is summarized in Algo-

rithm 1: First, Scale Invariant Feature Transform (SIFT)36 features and their descriptors

are computed for each of the images. If one of the images is a mosaic image, an overlapping

area between the two images is estimated based on information extracted from the naviga-

tion system, and the computation of SIFT features is performed only on this part of the

mosaic image. The motivation to use SIFT and not the Harris detector with correlation

correspondence stems from the fact that the camera may perform unconstrained relative

motion between two images, especially in a scan scenario. This is better handled by SIFT

(a brief description of SIFT is given in Appendix B).

Next, the features from the two images are matched based on the minimum Euclidean

distance of their descriptor vectors, which yields a set of matched points, S. Features with

duplicate image coordinates in this set are removed. Each SIFT feature is represented by 4

parameters {x, y, σ, θ}, where (x, y) are the image coordinates of the feature, and (σ, θ) are

the feature scale and orientation values, respectively, computed by the SIFT algorithm (cf.

Appendix B). After the matching has been performed, the features image coordinates are

the only parameters calculated in upcoming computations, and thus features with the same

image coordinates and with other varying parameters, e.g. {x, y, σ1, θ1}, {x, y, σ2, θ2}, are in

fact the same representation of a single feature, and are therefore discarded.

Algorithm 1 Homography Estimation Algorithm

1: Extract features from both images using the SIFT algorithm:{xi}N
i=1 and {x′i}N ′

i=1.
2: Match features from both images based on their descriptor vectors, to produce the set
S = {(xi,x

′
i)}NS

i=1.

3: Apply Algorithm 2 for robust rejection of outliers in S, yielding a set R = {(xi,x
′
i)}NR

i=1

of inliers matched points.
4: Perform homography least-squares (LS) estimation based on the matched points set R.

As the set S may contain wrong matches (outliers), a robust estimation technique is

applied, which provides a refined set of matched points, R ⊆ S. This is performed by

9 of 35

applying the Random Sample Consensus (RANSAC) algorithm,26 which is summarized in

Algorithm 2 for the case of homography matrix estimation.6

First, four feature matches are drawn from the available features set S, based on which

the homography matrix, H, is calculated. This homography matrix is then used to choose

a subset of feature matches T ⊆ S that lie within a predefined threshold, tthreshold. More

specifically, a pair of point correspondences (x,x′) is chosen if

dE(x, H−1x′)2 + dE(x′, Hx)2 < t2threshold (9)

where dE(., .) is the Euclidean distance between two points in the same image. The number

of iterations, M , should be high enough to guarantee with some probability p that at least

one of the subsets {Ti}M
i=1 is free from outliers (usually p = 0.99). Let w be the probability

that any chosen feature match is an inlier. Taking into account the fact that in each iteration

4 feature matches are drawn, the following equation may be written:

(
1− w4

)M
= 1− p (10)

Let ε = 1 − w, i. e. ε is the probability that any chosen feature match is an outlier.

Substituting ε into the above equation and performing some algebraic operations yields an

expression for M :

M =
log (1− p)

log
(
1− (1− ε)4) (11)

Since ε is unknown, it is evaluated at each iteration based on the believed number of inliers,

which is the cardinality the subset T , and the overall number of matched points (the car-

dinality of the set S). Let the respective number of matched points in T and S be LT and

LS . Thus, ε is calculated at each iteration according to

ε = 1− LT
LS

(12)

and is then used to update the parameter M based on Eq. (11).

After M iterations, the subset with the maximum number of point matches is chosen

among {Ti}M
i=1. This subset, denoted by R, contains the set of point matches that were

identified by the RANSAC algorithm as inliers.

The final step in the homography estimation algorithm is to perform least-squares (LS)

homography estimation based on the subset R of feature matches. Assuming x′i = (x′i, y
′
i, w

′
i)

and xi are a pair of matched points inR, and denoting by hjT the j-th row of the homography

10 of 35

Algorithm 2 RANSAC Algorithm for Homography Estimation

1: Initialization: M = ∞, Counter = 0.
2: while M > Counter do
3: T = φ.
4: Draw 4 feature matches from S and compute the homography matrix H based on

these matches.
5: Construct a subset T of feature matches which are consistent with H: Each feature

match, (x,x′) ∈ S, for which Eq. (9) holds is added to T .
6: Calculate ε according to Eq. (12).
7: Update M based on the calculated ε according to Eq. (11). Assume p = 0.99.
8: Counter ← Counter + 1.
9: end while

10: Choose a subset R ∈ {Ti}M
i=1 which has a maximum number of feature matches among

{Ti}M
i=1.

matrix H, Eq. (5) yields the following two independent linear equations:6

Aih = 0 (13)

where

Ai =


 0T −w′

ix
T
i y′ix

T
i

w′
ix

T
i 0T −x′ix

T
i


 (14)

and h =
[
h1T h2T h3T

]T
. Thus, from the NR point matches of the subset R, a system of

linear equations can be written, Ah = 0, where the matrix A is composed from the rows of

Ai, A ∈ R2NR×9.

The LS estimation of H is accomplished by performing a singular value decomposition

of the matrix A:

A = UDV T (15)

where U and V are orthogonal matrices and D is a diagonal matrix containing the singular

values of the matrix A. Assuming the singular values are arranged in descending order in

the matrix D, h is set to the last column of V and is then used to construct the homography

matrix H (cf. Ref. 6).

It is also possible to estimate the fundamental matrix, F ∈ R3×3, given a set of matched

points. The fundamental matrix will be used in one of the examined methods for motion esti-

mation (Section IV) based on regular camera captured images (and not mosaic images). The

fundamental matrix represents the epipolar constraint, expressed for a pair of corresponding

points x = (x, y, 1)T and x′ = (x′, y′, 1)T as

x′T Fx = 0 (16)

11 of 35

or in the explicit form6

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0 (17)

where fij = F (i, j).

By letting f ∈ R9 denote a 9-dimensional vector constructed from the entries of F ,

Eq. (17) can be written as

[x′x, x′y, x′, y′x, y′y, y′, x, y, 1] f = 0 (18)

When n matched points are available, the following set of linear equation may be formed

Ãf = 0 (19)

where

Ã =




x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1


 (20)

Since each pair of corresponding points contributes a single equation, a minimum of 8 feature

matches is required for calculating the fundamental matrix (in contrast to 4 feature matches

in the case of homography computation).

The estimation process of F is similar to the estimation process of H, which is summarized

in Algorithm 1, with the following exceptions:6

• In Step 4 of Algorithm 2, 8 feature matches instead of 4 matches are drawn.

• Eq. (9) used in Step 5 of Algorithm 2, is replaced with

(x′T Fx)2

(Fx)2
1 + (Fx)2

2 + (Fx′)2
1 + (Fx′)2

2

< t2threshold (21)

where (Fx)2
j is the j-th entry of the vector Fx.

• The LS estimation in Step 4 of Algorithm 1 is computed based on the matrix Ã defined

in Eq. (20).

It is important to note that the fundamental matrix cannot be estimated if one of the

two examined images is a homography-constructed mosaic, because any two views of a scene

are related by a homography relation (Eq. (5)) only in the case of a planar scene or a pure

rotation; in these scenarios, however, the epipolar geometry is undefined.6

12 of 35

2. Mosaic Construction Logic

The mosaic construction process and the camera scanning procedure are coupled. During

the scan, images are captured using varying camera angles. While all the images contribute

to the construction of a mosaic, only images taken while the camera was pointing downwards

are used for motion estimation. These images are referred to as downward-looking images.

Figure 3 provides a block diagram of the implemented mosaic construction process. The

mosaic image is expressed in the current downward-looking image coordinate system, defined

as the coordinate system C of the most current downward looking image. Thus, a new

non downward-looking image is warped towards the mosaic image based on the homography

estimation between these two images, whereas if the new image is a downward-looking image,

the mosaic image is warped towards the new image. The latter process is required since the

observations that are derived from the homography matrix describe camera motion between

time instances of successive downward-looking images (cf. Ref. 1). The increased overlap

between the warped mosaic image and the new downward-looking image (cf. Figs. 2(a) and

4), and the quality of the estimated homography matrix, are the two factors that allow better

motion estimation in certain scenarios, as will be demonstrated in Section IV-B.

Warping the mosaic image is a computationally-extensive operation; the computational

effort increases with time due to growth of the mosaic image size. Other variations of this

process may be considered to alleviate the computational load. One possible approach is to

construct the mosaic image in a constant reference frame, and to warp relevant regions from

the mosaic towards the previous downward-looking image frame once motion estimation is

required. After the relevant image has been warped, the two images are blended using one

of the available image integration techniques.13,14,23

An example of the mosaic image construction process, based on real images acquired using

the scanning procedure described above, is given in Fig. 4. The images were captured using

Google Earth, as detailed in Section IV-B. One can easily notice the increased overlapping

region in the mosaic image (Figure 4(b)) and the new downward-looking image (Figure 4(c)).

Non Downward-Looking Images

If the new image is a non downward-looking image, the homography estimation is in-

cremental, as described below. The purpose of the incremental estimation is reducing the

accumulation of alignment errors in the mosaic image, while updating it with new non

downward-looking images.

The proposed method is an adaptation of the procedure suggested by Refs. 37,10 for the

camera scanning method used herein. Denote by r the index of the most recent downward-

looking image, defining the reference frame in which the current mosaic image is expressed.

Each new image Ik, which is a non-downward-looking image, is matched against the previous

image Ik−1, yielding a homography between these two images Hk→k−1. The next step is to

13 of 35

Downward-Looking

Image ?

New Image

YesNo

Motion

Estimation

Homography

Estimation

Warp Previous

Mosaic Image

Images

Fusion

Updated

Mosaic Image

Incremental

Homography

Estimation

Warp New

Image

Previous

Mosaic Image
New Image

Images

Fusion

Figure 3. Block diagram of the implemented mosaic construction method.

calculate an intermediate homography matrix between the new image Ik and the current

mosaic image, relying on information computed for the previous image Ik−1:

HI
k→r = Hk−1→r ·Hk→k−1 (22)

where Hk−1→r is the homography matrix from the previous image, Ik−1, to the current mosaic

image. This homography matrix was calculated and saved while processing image Ik−1.

Once this homography is available, the new image Ik is warped towards the mosaic image

using the homography matrix HI
k→r: Every point xi in Ik is transformed to x′i = HI

k→r · xi

while maintaining its intensity level, I(x′i) = I(xi). The set of these transformed points,

along with the intensity levels, {x′i, I(x′i)}, constitute a warped image Ĩr
k .

Ideally, the warped image and the mosaic image should be in perfect alignment; however,

due to homography estimation errors, this does not happen. To improve the estimation,

a correction homography between the warped image, Ĩr
k , and the current mosaic image, is

estimated by applying the standard homography estimation technique given in Algorithm 1

on these two images. This homography, Hcorr, is used to correct the estimated intermediate

homography matrix between the new image and the mosaic image,

Hk→r = Hcorr ·HI
k→r (23)

Finally, the new image, Ik, is warped towards the current mosaic image using the improved

homography matrix, Hk→r, followed by an integration of the two images into an updated

14 of 35

mosaic. In addition, Hk→r is saved for future use with new non downward-looking images.

The process repeats for an each new image that was not taken when the camera was looking

downward.

Downward-Looking Images

Once a new downward-looking image, Id, is captured, a direct estimation of the homog-

raphy matrix relating this new image to the previous mosaic is performed. The mosaic

image is warped towards the new image using this homography, and the two images are

integrated into an updated mosaic. As a result of the warping operation, the new mosaic

image is expressed in the coordinate system of Id (i.e. the reference index r is changed to

d), and the homography matrix that relates the current image to the mosaic is set to the

identity matrix, i.e. Hr→r = I. From here on, each new non downward-looking image will

be matched against mosaic images expressed in the updated reference frame, until another

downward-looking image is received.

15 of 35

(a)

(b) (c)

(d)

Figure 4. Mosaic Image Incremental Construction and Camera Scan Example. The images
were acquired from Google Earth with a narrow FOV camera of 5o × 3o. The camera scan
procedure is comprised of taking two non downward-looking images in each direction (cf.
Figure 2(a)), while the images that are located in the middle of the mosaic image are the
downward-looking images. (a) A mosaic image from previous steps. (b) Inclusion of a new
non downward-looking image into the mosaic image. (c) A new downward-looking image. (d)
Inclusion of a new downward-looking image (c) into the mosaic image (b), and relative motion
estimation between these two images. Notice the increased overlapping region (marked by a
dotted line) between the previous mosaic image (b) and the new downward-looking image (c).

16 of 35

IV. Image-Based Motion Estimation

In this section, two methods for motion estimation are discussed. In both cases, it is

assumed that the calibration matrices are known, and that there are no additional sensors

or information except the information provided by the camera. Thus, the translation motion

between two images can be estimated only up to scale (i. e. only the translation direction

can be estimated).

The first method assumes some general scene and a translation motion of the camera, a

scenario that can be described by means of epipolar geometry (see, e. g. Ref. 6). Estima-

tion of the fundamental matrix, F , (cf. Section III-B.1) enables extraction of the motion

parameters according to the following relationship:

F = K ′−T t∧RK−1 (24)

where K ′, K are the calibration matrices at two images time instances, t is the translation

vector, R is the rotation matrix and (·)∧ is the matrix cross-product equivalent defined for

some vector a = [a1, a2, a3]
T as

a∧ =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 (25)

The calibration matrix of a CCD camera, assuming square pixels, can be written as6

K =




f s px

0 f py

0 0 1


 (26)

Here f is the camera focal length, px, py are the principal point coordinates relative to the

camera system origin, and s is a skew parameter. The extraction procedure of the motion

parameters from Eq. (24), given the matrices F, K, K ′, is given in Chapter 8.6 of Ref. 6.

When a planar scene or a pure rotation motion is considered, the method described above

cannot be applied because the epipolar geometry is undefined. As explained by Ref. 6, the

two views are related in this case by a homography matrix, H, which can be written as:8

H = K ′
[
R− t

z
nT

]
K−1 (27)

where z is the scene depth and n = (a, b, c)T is a unit vector normal to the scene plane (both

17 of 35

are unknown). A 3D point (x, y, z)T is located on the scene plane if

ax + by + cz = 1 (28)

A method for extracting the motion parameters from Eq. (27) was suggested in Ref. 8,

where it was proven that there are at most two valid sets of solutions (t, R,n). The correct

solution out of these two alternatives can be chosen based on n while relying on previous

estimates.8 If one of the processed images is a mosaic image, the principal point coordinates

in its calibration matrix (Eq. (26)) should be updated with the location of the most current

downward-looking image in the mosaic. The implementation of the estimation process in

this work involves yet another phase, which will be described in the next section.

The experimental results of motion estimation, which are presented in Section IV-B, are

based on both methods discussed above. However, when assuming a narrow-FOV camera,

the epipolar geometry method tends to become ill-conditioned, due to the limited ground

information captured by the camera, resulting in a semi-planar scene. In addition, estimation

of the fundamental matrix cannot be performed in a mosaic-based framework (cf. Section III-

B.1). Thus, in case of a narrow-FOV, only the homography-based motion estimation method

is relevant. This method was applied on two motion estimation frameworks: The traditional

two-view framework, in which the two images are regular camera-captured images, and the

mosaic framework, in which one of the images is a mosaic image from the previous time step.

The next section describes the implemented method for motion estimation in a planar

scene. Section IV-B focuses on the performance of the motion estimation techniques de-

scribed above, using the mosaic framework viz-à-viz the traditional two-view framework.

First, results of motion estimation based on the two-view framework are given and analyzed

for the case of a wide-FOV camera. Second, the performance of the mosaic framework and

the two-view framework is evaluated for a narrow-FOV camera and various scene types. It is

shown that the mosaic framework yields considerably better results in the case of low-texture

scenes.

A. Implementation of Motion Estimation Assuming a Planar Scene

As mentioned in Section III-B.1, the homography estimation process involves the RANSAC

algorithm for robust outliers rejection. The output from this algorithm is a subset R of

feature matches that are considered to be inliers. These are then used for LS estimation

of the homography matrix. When considering ideal features, this process yields the same

results when executed several times. However, the solution does differ from one execution

to another for noisy data (for a given threshold value), since each execution may yield a

different features subset group, and hence a different estimation of the homography matrix

18 of 35

(and the motion parameters).

More specifically, assume that the extracted SIFT features image coordinates are cor-

rupted with some noise. As a consequence, the computed set S of all point matches (step

2 in Algorithm 1) is also corrupted with noise, and in addition may contain false matches

(outliers). In each iteration of the RANSAC algorithm, four point matches are drawn and

used to compute a homography matrix which is then utilized to construct a subset T of

point matches that are consistent with this homography matrix (Step 5 in Algorithm 1).

Consider such two different iterations yielding the subsets T1 and T2, and assume that

these subsets do not contain any false matches. In each of these subsets, the homography

matrix was computed based on a different set of drawn 4 point matches. These two homog-

raphy matrices, H1 and H2, are expected to be different, despite the fact that they were

computed based on inlier point matches, since all the features in S, and in particular the

drawn features, are corrupted by noise.

In the next step of the RANSAC algorithm, all point matches in S are checked for

consistency with the homography matrix, Hi, i = {1, 2}, according to Eq. (9):

dE(x, H−1
i x′)2 + dE(x′, Hix)2 < t2threshold (29)

Only point matches that agree with the above condition are added to the subset Ti. Since

both homography matrices are legitimate (as they were calculated based on inlier point

matches) but different, it is obvious from Eq. (29) that the two subsets T1 and T2 will be

identical for a sufficiently large value of tthreshold (which should still reject false matches).

However, decreasing the value of tthreshold will yield different subsets T1, T2, starting from

some critical value.

This critical value is influenced by the image features noise characteristics, and is therefore

a function of the observed scene: Images of high-texture scenes are likely to be corrupted

with less noise compared to images of low-texture scenes, since in the former case the features

are localized with improved precision. Thus, a specific value of tthreshold might yield identical

subsets T1, T2 in certain scenarios, and different subsets in other scenarios.

The above conclusion is valid also for the output from the RANSAC algorithm (the

inliers subset, R), as it is merely one of the subsets constructed during its iterations (cf.

Algorithm 2). Thus, sequential activation of the RANSAC algorithm might give different

subsets of R, implicating that the LS homography estimation (Step 4 in Algorithm 1) will

yield a number of different homography matrices {Hi}, and consequently, a set of motion

parameters extracted from each homography matrix Hi. This process of homography matrix

estimation, involving a sequential execution of the RANSAC algorithm, is denoted in this

section as sequential homography estimation.

19 of 35

Given the set of motion parameters, {(ti, Ri,ni)}N
i=1, obtained from the above described

sequential homography estimation process, one can employ different logic for automatically

choosing the most accurate motion estimation. The logic implemented in this work consists

of the following steps.

Denote |q| =
∣∣ [q1, . . . , qn]T

∣∣ , [|q1|, . . . , |qn|]T . Define the mean unit vector normal to a

scene plane, based on the normal unit vectors {nprev
i }Nprev

i=1 from estimates of Nprev previous

images, as

nprev
µ =

Σ
Nprev

i=1 |nprev
i |∥∥∥Σ

Nprev

i=1 |nprev
i |

∥∥∥
(30)

Compute a score for each available solution (ti, Ri,ni) based on the proximity of its normal

unit vector ni to the mean unit vector nprev
µ :

si = | < nprev
µ ,ni > | (31)

where < ., . > is the inner product operator. Calculate the mean and the standard deviation

(sµ, sσ) of the set {si}N
i=1, and reject all the solutions whose score is lower than sµ − sσ.

Denote by N1 the number of remaining solutions.

Next, a translation matrix Λ = (λ1,λ2, λ3) is constructed from the absolute values of

the translation motion estimation vectors in the set of remaining solutions (Λ ∈ RN1×3):

Λ = (λ1,λ2,λ3) ≡




|tT
1 |

|tT
2 |
...

|tT
N1
|




(32)

Each of the Λ columns is examined for outliers based on the distribution of its values.

More specifically, a histogram of the vector λi is computed over N1 slots in the range

[min(λi), max(λi)], followed by a rejection of entries in λi which do not appear in clus-

ters. Denote by N2 the number of remaining solutions after this step was applied on all

three columns of Λ.

Finally, a solution is chosen among the remaining-solutions set {(ti, Ri,ni)}N2

i=1, whose

normal is the closest to nprev
µ , i. e., a solution with the highest score si.

If the mean normal vector from previous images is unavailable, a solution (t, R,n) is

chosen whose normal vector n is the closest to the mean normal vector of all the other

solutions in {(ti, Ri,ni)}N2

i=1, i. e., a solution i that maximizes < ni,nµ > where nµ is defined

as

nµ =
ΣN2

i=1|ni|∥∥ΣN2
i=1|ni|

∥∥ (33)

20 of 35

The sequential homography estimation process described above is summarized in Algo-

rithm 3. In the current implementation, this routine was executed with N = 10, i. e. a

single execution of the sequential homography estimation procedure consists of running the

standard homography estimation given in Algorithm 1 10 times. The improvement in the

precision of estimation is clearly evident in Figure 5(c), where the same pair of images was

used to perform motion estimation with and without a sequential homography estimation.

The figure presents a cumulative distribution function (CDF) of errors in the estimation of

the translation direction; the x-axis values represent different thresholds of errors (in de-

grees), while the y-axis represents the percentage of estimations with an estimation error

lower than the threshold values.

Algorithm 3 Sequential Homography Estimation Algorithm

1: Run N times Algorithm 1 for homography matrix estimation, and calculate the solution
set from the estimated homography matrices: {(ti, Ri,ni)}N

i=1.
2: if At least one image was already processed then
3: Compute a score si for each solution, based on Eqs. (30,31).
4: Reject solutions whose score is lower than sµ − sσ, where (sµ, sσ) are the mean and

standard deviation values of the computed set of scores {si}N
i=1.

5: end if
6: Construct a translation matrix Λ based on Eq. (32) and examine each of its columns for

outliers. Solutions that contain outliers are rejected, yielding a refined set {(ti, Ri,ni)}N2

i=1

of solutions.
7: if At least one image was already processed then
8: Choose a solution (t, R,n) ∈ {(ti, Ri,ni)}N2

i=1 with the highest score.
9: else

10: Choose a solution (t, R,n) ∈ {(ti, Ri,ni)}N2

i=1 which maximizes < n,nµ >, where nµ is
computed according to Eq. (33).

11: end if

The results in Figure 5(c) were achieved by executing a standard homography estimation

(Algorithm 1) and a sequential homography estimation (Algorithm 3) 100 times on a pair of

low-texture images taken with a 7o×4o-FOV camera (Figures 5(a) and 5(b)), i. e., executing

the homography estimation procedure described in Section III-B.1 100 times, and executing

the sequential homography estimation procedure 100 times. The advantage of the sequential

homography estimation is significant. For example, nearly 80% of the estimation errors

were below 20o when applying sequential estimation, compared to only 50% with a standard

homography estimation.

It is important to note that the sequential estimation procedure was applied for both

the mosaic-based and two-view motion estimation methods. Furthermore, implementation

of more sophisticated methods for homography estimation (such as bundle adjustment),

21 of 35

if enough computational resources are available, are expected to improve the estimation

accuracy and also to eliminate the need in the sequential estimation procedure described in

this section. However, the sequential estimation procedure provides significant improvement

in precision, given the standard estimation technique given in Algorithm 1 is used.

B. Image-Based and Mosaic-Based Motion Estimation - Performance Evalua-

tion for Different Camera FOVs

This section presents a performance evaluation of the mosaic-based motion estimation method,

summarized in Algorithm 4, for different camera FOVs and different scene types. The results

of the mosaic-based estimation are compared to the traditional two-view motion estimation.

The experiments are based on real image sequences acquired using Google Earth,38 which

contains 3D geo-data of Earth based on real imagery and thus may be used as a substitute for

complicated test setups in which the camera captures 3D scenes. Further details regarding

the interface to Google Earth are provided in Appendix A.

Algorithm 4 Mosaic-Based Motion Estimation

1: Input: Image Ik and previous mosaic image Mk−1.
2: if Image Ik is a downward-looking image then
3: Perform motion estimation between image Ik and mosaic image Mk−1 following Algo-

rithm 3.
4: end if
5: Calculate camera angles for next image according to Section III-A.
6: Update the mosaic image Mk−1 with image Ik according to Section III-B.

Due to the different accuracy levels of the estimated motion parameters given different

images, and the need to evaluate the overall performance, the results are presented in terms of

a cumulative distribution of the estimated motion parameters error along the image sequences

that were used during the examinations.

We begin by examining the accuracy of the translation direction estimation in the case of a

wide-FOV camera. Given a non-flat scene and a camera with a wide FOV, one can estimate

the fundamental matrix, since the epipolar geometry is well defined (as long the camera

performs some translation motion), and then extract the motion parameters (rotation and

up-to-scale translation). Figure 6 shows the accuracy of the translation direction estimation

for the two-view motion estimation method. It can be seen that more than 70% of the

estimates yield accuracy better than 5o, and that more than 90% of the estimates provide

accuracy better than 15o.

The more interesting and challenging scenarios, however, are those involving a camera

with a narrow FOV and low-texture scenes, which result in low-quality and very few features.

Such scenarios are common in many airborne applications. The combination of a narrow FOV

22 of 35

and low-texture scenes raises significant hurdles when trying to estimate the fundamental

matrix, because the epipolar geometry is ill-conditioned. A common remedy in these cases

is to assume a planar scene and to perform homography matrix estimation8,12) followed by

a motion parameters extraction (see Section IV).

Next, we examine the performance of the proposed mosaic-based motion estimation

method for cameras with a narrow FOV, compared to estimations of the two-view frame-

work. In both cases the motion parameters are extracted from an estimated homography

matrix. However, in the mosaic framework only the downward-looking images participate in

the motion estimation (cf. Algorithm 4).

To evaluate the performance of the proposed mosaic framework for motion estimation,

several experiments were carried out using real image sequences acquired from Google Earth.

An aerial platform equipped with a gimbaled camera was assumed to perform a straight-

and-level north-heading trajectorya, whose details are given in Table 1. The observed scene

along this trajectory is of a planar nature with about 50 m elevation above sea level. Image

sequences were acquired from Google Earth, using the same trajectory, for each of the

examined motion estimation methods: Images for the traditional two-view motion estimation

method were captured using a constant downward looking camera at a 1 Hz frequency,

while images for the mosaic-based motion estimation method were captured according to

the camera scanning procedure, discussed in Section III-A, at a 5 Hz frequency.

Table 1. Trajectory Parameters

Parameter Description Value Units

λ Initial latitude 32.8285005298 deg

Λ Initial longitude 35.1479222075 deg

alt Initial altitude above sea level 1500 m

VL Velocity in LLLN system [100, 0, 0]T m/s

Ψ Platform attitude [0, 0, 0]T deg

The experiments are different in the camera FOV (7o × 4o and 5o × 3o) and in the scene

type captured by the camera. Two scene types were examined. In the first scene type, the

captured images were usually high-textured and thus had numerous high-quality features, as

opposed to the second scene type, which is characterized by low-texture images and a small

number of features. Examples of typical images of these two scene types are given in Figure

7.

Figures 8 and 9 present the experimental results: Figure 8 depicts the cumulative dis-

aThe same trajectory and image sequences were used in experiments of mosaic-aided navigation, presented
in Part II of this work.1

23 of 35

tribution of the translation direction estimation error, while Figure 9 shows the cumulative

distribution of the rotation estimation error. The shown rotation error is the maximum value

of the error in the estimated rotation vector, i. e.

∆η , max(|∆φ| , |∆θ| , |∆ψ)| (34)

where ∆φ, ∆θ, ∆ψ are the Euler angle errors in the estimated rotation matrix, that were

computed from the DCM Rerr:

Rerr ≡ Rtrue ·RT (35)

Here Rtrue and R are the true and estimated values of the rotation matrix, respectively.

Each of these figures describe the performance of the examined motion estimation meth-

ods for the following four scenarios:

• FOV 7o × 4o, high-texture scene.

• FOV 7o × 4o, low-texture scene.

• FOV 5o × 3o, high-texture scene.

• FOV 5o × 3o, low-texture scene.

The platform performed the same trajectory for each scene type. Thus images that were

taken by the two examined camera FOVs in high-texture scenes are different only due to

the change in the camera FOV only, and not because of a different platform trajectory (the

same applies to low-texture scenes as well).

As expected, for both methods the estimated motion precision deteriorates when a smaller

FOV camera is assumed. For example, the percentage of translation direction estimations

with estimation errors below 15o is around 60% in case of a 7o × 4o FOV (Figure 8(d)),

dropping to 20% for the narrow FOV of 5o × 3o (Figure 8(b)).

The same applies to rotation estimations. Around 90% of the estimates are provided

with an estimation error below 10o in the case of a 7o × 4o FOV (Figure 9(d)), compared

to 20%-40% in the other case (Figure 9(b)). As will be seen in Part II of this work,1 these

motion estimations can be effectively utilized for improving the performance of navigation

systems.

The precision of motion estimation is better for the high-texture scenes compared to

low-texture scene due to the larger number of high-quality features This can be seen by

comparing Figure 8(d) to Figure 8(c). However, the low-texture scenes are common in many

airborne applications; it is in these scenarios that the mosaic provides improved motion

estimation.

24 of 35

It is important to understand when the mosaic-based method outperform the two-view-

based method. In the context of motion estimation, the two methods differ only in the size

of the image overlap region. Due to the camera scanning process, the constructed mosaic

image contains an enlarged overlapping region compared to the overlapping region between

two regular images. This region is comprised of the original overlapping area between two

regular images and an additional overlapping region - see a schematic illustration in Figure

2(a) and a mosaic example image in Figure 4. However, since the mosaic construction

process is imperfect, features from the additional overlapping area tend to be of lower-

quality compared to those from the original overlapping region, while features from the

original overlapping region are of the same quality in both cases (the camera-captured image

and the mosaic image), due to the mosaic construction process (cf. Section III-B). Thus,

there is an inherent tradeoff: On the one hand, the mosaic provides an increased number

of features, while on the other hand, part of the features are of a lower quality. Hence,

the performance of the mosaic-based method is expected to be superior over the two-view

framework in “difficult” scenarios, in which the overlapping region between two captured

images cannot yield a large number of high-quality features, i. e., a narrow-FOV camera and

low-texture scenes.

The above finding clearly evident in Figures 8(a) and 9(a), which describe the scenario

of a narrow-FOV camera (5o × 3o) and a low-texture scene. It can be seen that the mosaic-

based motion estimation yields considerably better results compared to the two-view motion

estimation. For example, in case of translation direction estimation (Figures 8(a)), 50%

of the estimates using the mosaic method are provided with an accuracy better than 15o,

compared to only 20% using the two-view method. In the case of rotation estimation, the

mosaic-based motion estimation yields improved results for the narrow FOV camera in both

scene types (Figures 9(a) and 9(b)). As for the other examined scenarios, there is some

advantage in favor of the two-view framework, since in these cases the set of high-quality

features that can be extracted from the overlapping region between the two captured images

is sufficiently large, while the inclusion of lower-quality additional features only deteriorates

the estimation precision.

The performance of the mosaic-based motion estimation method can be further enhanced

by implementing more sophisticated methods of mosaic construction, such as adjusting the

estimated homography matrices of images from consecutive scan stripes by means of global

optimization. This should not be a very expensive operation due to the small number

of features in each image (because of the assumed narrow-FOV camera and a low-texture

scene) and the limited number of images that constitute each scan stripe (5 images in the

current implementation). In addition, the performance of both methods can be improved by

following more powerful homography estimation methods. The reader is referred to Ref. 6

25 of 35

for further details.

26 of 35

(a) (b)

5 10 15 20 25 30
0

20

40

60

80

100

Error in translation direction [Deg]

C
D

F
 [%

]

Standard estimation
Sequantial estimation

(c)

Figure 5. (a),(b) Images of a low-texture scene captured from Google Earth by a 7o× 4o FOV
camera. (c) Motion sequential estimation vs. standard estimation over the pair of images
presented in (a),(b): CDF of the translation direction estimation error. The improvement in
favor of sequential estimation can be clearly seen. For example, nearly 80% of the estimations
errors were below 20o when applying sequential estimation, compared to only 50% in case
sequential estimation is not applied.

27 of 35

0 5 10 15 20
20

30

40

50

60

70

80

90

100

Error in translation direction [Deg]

C
D

F
 [%

]

Figure 6. CDF of the translation direction estimation error based on two-view framework,
wide camera FOV (about 30o). The translation motion was extracted from an estimated
fundamental matrix. More than 90% of the estimates are at least 15o-accurate.

(a) (b)

Figure 7. Images taken by a camera with a 7o×4o FOV: (a) High-texture scene; (b) Low-texture
scene.

28 of 35

5 10 15 20 25
0

10

20

30

40

50

60

C
D

F
 [%

]

Error in translation direction estimation [Deg]

Mosaic framework
2−view framework

(a) FOV 5o × 3o, low-texture scene type

5 10 15 20 25
0

10

20

30

40

50

60

Error in translation direction estimation [Deg]

M
C

D
F

 [%
]

Mosaic framework
2−view framework

(b) FOV 5o × 3o, high-texture scene type

5 10 15 20 25
0

10

20

30

40

50

60

70

80

C
D

F
 [%

]

Error in translation direction estimation [Deg]

Mosaic framework
2−view framework

(c) FOV 7o × 4o, low-texture scene type

5 10 15 20 25
0

20

40

60

80

100

C
D

F
 [%

]

Error in translation direction estimation [Deg]

Mosaic framework
2−view framework

(d) FOV 7o × 4o, high-texture scene type

Figure 8. Translation direction estimation accuracy for different scene types and camera
field of views (CDF). The mosaic framework improves the accuracy of translation direction
estimation for a narrow FOV of 5o × 3o, while dealing with low-texture type scenes.

29 of 35

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Max error in rotation estimation [Deg]

C
D

F
 [%

]

Mosaic framework
2−view framework

(a) FOV 5o × 3o, low-texture scene type

0 5 10 15 20 25
0

10

20

30

40

50

60

70

Max error in rotation estimation [Deg]
C

D
F

 [%
]

Mosaic framework
2−view framework

(b) FOV 5o × 3o, high-texture scene type

0 5 10 15 20 25
0

20

40

60

80

100

Max error in rotation estimation [Deg]

C
D

F
 [%

]

Mosaic framework
2−view framework

(c) FOV 7o × 4o, low-texture scene type

0 5 10 15 20 25
20

30

40

50

60

70

80

90

100

Max error in rotation estimation [Deg]

C
D

F
 [%

]

Mosaic framework
2−view framework

(d) FOV 7o × 4o, high-texture scene type

Figure 9. Rotation estimation accuracy for different scene types and camera field of views
(CDF). The mosaic framework improves the accuracy of rotation estimation for a narrow
FOV of 5o× 3o, in both low and high texture scene types. Similar estimation accuracy in both
methods for camera with 7o × 4o FOV, with some advantage in favor of two-view framework.

30 of 35

V. Conclusions

This paper developed a method for improving vision-based motion estimation utilizing an

on-line mosaic image construction process. The system considered in this work consisted of

an airborne platform equipped with a standard navigation system and a gimballed camera,

which scanned ground regions during flight. The camera-captured images were processed

on-line by the mosaic construction procedure into a single mosaic image. In parallel, part of

these image were also used for motion estimation.

The improvement in precision of mosaic-based motion estimation was due to the en-

larged overlapping regions between the camera-captured image and the most recent mosaic

image. The proposed mosaic-based method for motion estimation was examined using real

image sequences acquired from Google Earth, which demonstrated its superiority over the

traditional two-view motion estimation method for difficult scenarios, such as cameras with

narrow field-of-views and low-texture scenes.

In particular, a 5o × 3o FOV camera was examined in a low-texture scene scenario, for

which it was shown that about 50% of the translation estimations achieved using the mosaic-

based motion estimation method were with a better accuracy than 15o, compared to only

20% when a traditional two-view method was applied.

Appendix A: Google Earth Interface

Figure 10 schematically depicts the interface to Google Earth. Given a platform tra-

jectory and measurement settings (such as measurement frequency), a command is sent to

Google Earth throughout the interface to display a region at a specified position (latitude,

longitude and altitude) and inertial orientation. These are computed based on the current

platform position, attitude and camera angles. In addition, special care was taken to allow

roll motion in Google Earth, as this type of motion is not supported by the current version

of Google Earth.

In the current implementation, the image acquisition through Google Earth is performed

offline, i. e., this command is sent according to the measurement’s frequency and the acquired

images are saved into some repository. The images are injected into the image processing

module in the simulation at appropriate instants. Examples of images acquired from Google

Earth are given throughout the paper (e. g. Figure 7).

31 of 35

Platform Trajectory

Time Position Velocity Attitude

M MMM M

KMeasurements

Settings

- Frequency

- Start Time

- End Time

...

Measurement #i

Parameters

Position

Attitude

Camera Angles

Google EarthImage #i

Kml file

Figure 10. A schematic illustration of an interface between the platform trajectory and Google
Earth

32 of 35

Appendix B: Scale Invariant Feature Transform (SIFT)

Scale Invariant Feature Transform (SIFT) [36] is a method for extracting features from

images, which are then can be used for matching the same scene observed from different

views. The features are invariant to image scaling and rotation, and provide robust matching

to a variety of other transformations that an image object might undergo (such as change of

illumination, affine transformations, change in viewpoint).36 They are also highly distinctive,

i. e., a specific feature can be correctly found among a large set of different features.

The computation of SIFT features is performed in several steps. First, a scale-space

representation of the image is generated by smoothing the original image with a Gaussian

kernel, followed by an extrema detection of this scale-space representation. This step yields

a set of candidate points {(x, y, σ)} for SIFT features, where (x, y) are the image coordinates

of the feature, and σ is the width of the Gaussian kernel for which the extrema were found.

Low-contrast candidate points and the candidate points that are positioned along edges are

rejected for improved stability, yielding a reduced set of features. The next step is to assign

orientation θ based on local image properties for each feature, which ensures invariance

of the feature to image rotation. In the last step of the SIFT algorithm, each extracted

SIFT feature is attached with a descriptor vector, which encodes information regarding this

feature and is used to distinguish this specific feature from other features. In a default SIFT

implementation,39 this vector contains 128 elements.

Thus, a SIFT feature is represented by 4 parameters {x, y, σ, θ}, and by a 128-length

descriptor vector, which is used for matching a specific SIFT feature with other SIFT features

(from other images). The matching of a specific feature i with a set of other features is based

on computation of Euclidean distances between the descriptor vector of feature i and the

descriptor vectors of the features in the set. The matched feature is chosen as the feature in

the set for which a minimum Euclidean distance was obtained.

References

1Indelman, V., Gurfil, P., Rivlin, E. and Rotstein,H., Real-Time Mosaic-Aided Aircraft Navigation: II.
Sensor Fusion, AIAA GN&C Conference, USA, 2009.

2Indelman, V., Gurfil, P., Rivlin, E. and Rotstein,H., Navigation Performance Enhancement Using
Rotation and Translation Measurements from Online Mosaicking , AIAA GN&C Conference, SC, USA, 2007.

3Indelman, V., Gurfil, P., Rivlin, E. and Rotstein,H., Navigation Aiding Using On-Line Mosaicking ,
IEEE/ION PLANS, California, USA, 2008.

4Merhav, S. and Bresler, Y., “On-Line Vehicle Motion Estimation from Visual Terrain Information Part
1: Recursive Image Registration,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 22, No. 5,
1986, pp. 583–587.

5Eustice, R., Pizarro, O. and Singh, H., “Visually Augmented Navigation in an Unstructured Envi-

33 of 35

ronment Using a Delayed State History,” IEEE International Conference on Robotics & Automation, April
2004, pp. 25–32.

6Hartley, R. and Zisserman, A., Multiple View Geometry , Cambridge University Press, 2000.
7Diel, D., DeBitetto, P. and Teller, S., “Epipolar Constraints for Vision-Aided Inertial Navigation,”

Proceedings of the IEEE Workshop on Motion and Video Computing , Vol. 2, January 2005, pp. 221–228.
8Tsai, R., Huang, T. and Zhu, W., Estimating Three-Dimensional Motion Parameters of a Rigid Planar

Patch, II: Singular Value Decomposition, IEEE Transactions on Acoustics, Speech and Signal Processing ,
Vol. 30, No. 4, August 1982, pp. 525–534.

9Gracias, N. and Santos-Victor, J., “Underwater Video Mosaics as Visual Navigation Maps,” Computer
Vision and Image Understanding , Vol. 79, 2000, pp. 66–91.

10Caballero, F., Merino, L., Ferruz, J. and Ollero, A., Improving Vision-based Planar Motion Estimation
for Unmanned Aerial Vehicles through Online Mosaicing , IEEE International Conference on Robotics and
Automation, Orlando, Florida, May 2006, pp. 2860–2865.

11Mourikis, A. and Roumeliotis, I., “A Multi-State Constraint Kalman Filter for Vision-aided Inertial
Navigation,” International Conference on Robotics and Automation, April 2007, pp. 3565–3572.

12Shakernia, O., Vidal, R., Sharp, C., Ma, Y. and Sastry, S., Multiple View Motion Estimation and Con-
trol for Landing an Unmanned Aerial Vehicle, IEEE International Conference on Robotics and Automation,
May 2002, pp. 2793–2798.

13Peleg, S. and Herman, J., “Panoramic mosaics by manifold projection,” In CVPR, 1997, pp. 338–343.
14Szeliski, R., Image alignment and stitching: A tutorial , Tech. Rep. MSR-TR-2004-92, Microsoft Re-

search, 2005.
15Fleischer, S., Wang, H., and Rock, S., “Video Mosaicking Along Arbitrary Vehicle Paths,” Proceedings

of the Symposium on Vehicle Technology , 1996, pp. 293–299.
16Gracias, N., Costeira, J., and J.Santos-Victor, Linear Global mosaic For Underwater Surveying ,

IAV2004, 2004.
17Kanazawa, Y. and Kanatani, K., “Image Mosaicing by Stratified Matching,” Image and Vision Com-

puting , Vol. 22, 2004, pp. 93–103.
18Peleg, S., Rousso, B., Rav-Acha, A., and Zomet, A., “Mosaicing on Adaptive Manifolds,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 10, 2000, pp. 1144–1154.
19Shum, H. and Szeliski, R., “Systems and Experiment Paper: Construction of Panroamic Image Mosaics

with Global and Local Alignment,” International Journal of Computer Vision, Vol. 36, No. 2, 2000, pp. 101–
130.

20Zelnik-Manor, L. and Irani, M., “Multiview Constraints on Homographies,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 24, No. 2, 2002, pp. 214–223.

21Richmond, K. and Rock, S., “An Operational Real-Time Large-Scale Visual Mosaicking and Navigation
System,” OCEANS , September 2006, pp. 1–6.

22Ferrer, J., Elibol, A., Delaunoy, O., Gracias, N. and Garcia, R., “Large-Area Photo-Mosaics Using
Global Alignment and Navigation Data,” OCEANS , September 2007, pp. 1–9.

23Irani, M., Anandan, P., and Hsu, S., “Mosaic Based Representations of Video Sequences and Their
Applications,” Proc. of IEEE ICCV , 1995, pp. 605–611.

24Zhang, P., Milios, E. E., and Gu, J., Graph-based Automatic Consistent Image Mosaicking , IEEE
International Conference on Robotics and Biomimetics, Shenyang, China, Paper no. 332, 2004.

34 of 35

25Zhu, Z., Hanson, A., and Riseman, E., “Generalized Parallel-Perspective Stereo Mosaics from Airborne
Video,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, No. 2, 2004, pp. 226–237.

26Fischler, M. and Bolles, R., “Random Sample Consensus: a Paradigm for Model Fitting with Ap-
plication to Image Analysis and Automated Cartography,” Commun. Assoc. Comp. Mach., Vol. 24, 1981,
pp. 381–395.

27Rousseeuw, P., “Least Median of Squares Regression,” Journal of the American Statistical Association,
Vol. 79, 1984, pp. 871–880.

28Kang, S., Szeliski, R., and Uyttendaele, M., Seamless Stitching using Multi-Perspective Plane Sweep,
Tech. Rep. MSR-TR-2004-48, Microsoft Research, 2004.

29Garcia, R., A proposal to estimate the motion of an underwater vehicle through visual mosaicking ,
Phd thesis. University of Girona, Spain, 2002.

30Garcia, R., Nicosevici, T., Ridao, P., and Ribas, D., “Towards a Real-Time Vision-Based Navigation
System for a Small-Class UUV,” Conference on Intelligent Robots and Systems, Vol. 1, 2003, pp. 818–823.

31Garcia, R., Puig, J., Ridao, P., and Cufi, X., “Augmented State Kalman Filtering for AUV Navigation,”
IEEE Proceedings on International Conference Robotics and Automation, Vol. 4, 2002, pp. 4010– 4015.

32Davison, A.J., Reid, I.D. and Molton, N.D., “MonoSLAM: Real-Time Single Camera SLAM,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 6, 2007.

33Bryson, M. and Sukkarieth, S., “Active Airborne Localization and Exploration in Unknown Environ-
ments using Inertial SLAM,” IEEE Aerospace Conference, 2006.

34Bryson, M. and Sukkarieth, S., “Bearing-Only SLAM for an Airborne Vehicle,” Australasian Confer-
ence on Robotics and Automation, 2005.

35Kim, J. and Sukkarieth, S., “6DoF SLAM aided GNSS/INS Navigation in GNSS Denied and Unknown
Environments,” Journal of Global Positioning Systems, Vol. 4, No. 1-2, pp. 120–128, 2005.

36Lowe, D., “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Com-
puter Vision, Vol. 60, No. 2, November 2004, pp. 91–110.

37Negahdaripour, S. and Xu, X., Mosaic-Based Positioning and Improved Motion-Estimation Methods
for Automatic Navigation of Submersible Vehicles, IEEE Journal of Oceanic Engineering , Vol. 27, No. 1,
January 2002, pp. 79–99.

38http://earth.google.com/index.html.
39Vedaldi, A., “An open implementation of the SIFT detector and descriptor,” UCLA CSD Technical

Report 070012 , 2007.

35 of 35

