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This paper presents a new method for vision-aided navigation of air-

borne platforms. The method is based on online mosaicking using images

acquired by an on-board gimballed camera, which scans ground regions in

the vicinity of the flight trajectory. The coupling of the scanning and mo-

saicking processes improves image-based motion estimation when operat-

ing in challenging scenarios such as narrow field-of-view cameras observing

low-texture scenes. These improved motion estimations are fused with an

inertial navigation system. The mosaic used for navigation is constructed in

two levels. A small mosaic based on recently captured images is computed

in real-time, and a larger mosaic including all the images is computed in

a background process. The low-level mosaic is used for immediate motion

estimation, while the higher-level mosaic is used for global navigation. The

correlation terms between the navigation system and the mosaic construc-

tion process are not maintained in the proposed approach. The advantage

of this architecture is the low computational load required for navigation

aiding. However, the accuracy of the proposed method could be compro-

mised compared to bearing-only Simultaneous Localization and Mapping

(SLAM). The new method was examined using statistical simulation runs

and experiments based on Google Earth imagery, showing its superior per-

formance compared to traditional methods for two-view navigation aiding.
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I. Introduction

During the last few decades, considerable research efforts have been directed towards

developing methods for navigation aiding of airborne platforms. Navigation aiding deals

with improving the performance of some basic inertial navigation system by fusing measure-

ments from auxiliary sensors or additional, possibly exogenous, sources of information. In

recent years, substantial attention has been devoted to using vision sensors such as on-board

cameras for navigation aiding. Indeed, vision-aided navigation (VAN) has been extensively

studied. A typical VAN algorithm uses the information extracted from an image registration

process, along with the information available from other sensors, for estimating the plat-

form’s states and possibly additional navigation parameters. For example, Ref. [1] proposed

integrating the velocity-to-height vision-based estimation with additional on-board sensors;

Ref. [2] applied the subspace-constraint approach [3] to partially estimate an airborne plat-

form’s states based on measurements from an image registration process injected into an

Implicit Extended Kalman filter; and Ref. [4] utilized epipolar constraints formulated for

each pair of matching features to aid the inertial navigation of a ground vehicle. All the

preceding methods rely only on information from inertial navigation sensors and an on-board

camera, without assuming any a-priori available information or additional external sensors.

This is also the approach adopted in the current work.

Various methods for vision-aided navigation have been proposed assuming some addi-

tional external sensors and a-priori information. Ref. [5] assumed that altimeter measure-

ments are used for scaling the imaging sensors in order to improve state estimation during

the landing phase of a space probe. Refs. [6] and [7] showed that absolute pose and motion

estimation is possible when assuming that a DTM is available. Another fusion approach

is map-based navigation, which assumes that a map of the operational area is given and

that the vehicle navigates by fusing inertial measurements, images of the environment and a

map [8–10]. For example, Refs. [9], [10] proposed vision-based navigation for an unmanned

underwater vehicle relying on a previously-constructed mosaic image of the ocean floor.

This paper describes a method for vision-aided navigation of an airborne platform uti-

lizing the information contained in the on-line construction of a mosaic from images that

are captured by an on-board camera. It is assumed that the airborne platform is equipped

with a standard, possibly low-quality, inertial navigation system and a camera mounted on

gimbals. No additional external sensors are assumed to exist, and no a-priori additional in-

formation is necessarily available. Consequently, the mosaic image that represents the map

of the overflown region has to be constructed during the flight. If an additional source of

information, e. g. GPS, is partially available, then the information of this sensor can be used

to provide an absolute geo-reference for the mosaic.
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This approach is related to Simultaneous Localization and Mapping (SLAM) [11–18], in

which the construction of the observed environment representation and the estimation of

the platform’s parameters are performed simultaneously. The general approach for solving

the SLAM problem is to augment the platform’s state vector with parameters describing

the observed environment (e. g. feature locations). When processing a measurement, the

augmented state vector yields an update both in the platform’s states (e. g. position, veloc-

ity) and in the environment model. Consequently, correlation between the platform’s states

and the environment parameters is consistently maintained. However, the computational

requirements are constantly increasing as the state vector grows in size. Several works have

proposed to overcome this computational bottleneck by neglecting low-correlation bonds in

the augmented state vector [17] or maintaining only currently-visible features in the state

vector [18].

This work suggests a variation of the SLAM framework for coping with the aforemen-

tioned challenge: Separating the environment recovery, represented in the current work by a

mosaic, from motion estimation. In order to do this, two types of mosaics are constructed: a

temporary or local mosaic and a main or global mosaic. The parameter estimation is based

on the first type of mosaic image, which is a small temporary mosaic constructed based on

recent incoming camera-captured images. Once the temporary mosaic image reaches a cer-

tain size, its contents are removed and used for updating the main mosaic image. The update

of the main mosaic image is performed in a background process, using various algorithms

[19–26] depending on the available computational resources.

The correlation terms between the navigation system and the mosaic construction process

are not maintained in the proposed approach. The advantage of this architecture is the low

computational load required for parameter estimation, since it involves processing a constant-

size state vector and only a portion of the temporary mosaic image. However, the accuracy

of the proposed method could be inferior to the accuracy of bearing-only SLAM methods.

Images registration and image-based motion estimation are important constituents in

all VAN methods. The existence of overlapping regions between processed images is the

common assumption to all vision-based motion estimation techniques. A large overlapping

region between two images should allow a more accurate motion estimation relying on two-

view geometry methods. If a mutual overlapping region for more than two images can be

found, the performance may be further enhanced by applying multi-view-geometry-based

methods.

The two-view-geometry-based methods include, for example, Ref. [27], in which the rel-

ative motion between two given views is extracted from an estimated essential matrix [26].

The motion parameters are then used for estimating the state vector, which is an augmented

vector comprised of the vehicle’s current pose and past poses for each captured image. When
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the observed scene is planar, the motion parameters can be calculated by estimating the ho-

mography matrix [10,28,30,32]. Having in mind the requirements for real-time performance

and a low computational load, in this work the estimated camera motion is related to a

constant-size state vector comprised of the vehicle’s current parameters only (in contrast to

Ref. [27]).

The multi-view-geometry-based methods, in contrast to two-view-geometry, use connec-

tions among several images, assuming that a common overlapping region exists. This results

in an increased observability and better estimation of the platform states. For example, in

Ref. [33], the authors derive constraints relating features that are observed in several consec-

utive images, thereby claiming to achieve optimal exploitation of the available information

in the observed scene. Ref. [35] proposed using multiple-view geometry for estimating the

motion of an unmanned helicopter during its landing phase. However, assuming that an over-

lapping region among several images exists may be invalid in many airborne applications.

Violating this assumption usually degenerates the multi-view methods into the two-view

methods discussed above.

Another important factor in the context of motion estimation is the camera field-of-view

(FOV). Wide-FOV cameras encompass large ground regions; thus, assuming that features are

distributed evenly over the whole FOV, gives rise to a benign geometry for the estimation

problem. On the other hand, wide-FOV’s also give rise to some hard problems that are

difficult to compensate for, such as increased optical image distortion and reduced resolution.

One is tempted to assume that reduced resolution is a non-issue for high-pixel sensors, but

this is only partially true since FOV, resolution and computing power are parameters that

must be traded-off when designing a practical system. It is worth mentioning that many

current airborne platforms use narrow-FOV cameras of up to a few degrees to obtain large-

zoom images with high resolution and feasible requirements on computational power. The

constellation of narrow-FOV cameras and compromised geometry presents a challenge for

estimating camera motion, and therefore for VAN; moreover, the typical trajectories and

maneuvers of these airborne platforms render multi-view geometry methods useless. The

current work focuses on motion estimation and VAN with narrow-FOV cameras. To mitigate

the difficulties mentioned before, a method for increasing the overlapping regions between

images, based on a camera scanning pattern and an online mosaic construction, is developed.

Consequently, the main contribution of this paper is the development of a coupling mech-

anism between a camera scanning process and a temporary mosaic image construction, which

provides motion estimation with improved accuracy for narrow-FOV cameras, while allowing

mapping of extended regions. Moreover, the proposed architecture, decoupling the construc-

tion of the main mosaic image from the platform’s parameter estimation process, requires

less computational resources compared to the SLAM approach. We also show that the im-
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provement in motion estimation precision is achieved without imposing any constraints on

the platform’s trajectory.

II. Method Overview

Figure 1 shows the main components of the architecture under consideration. The specific

system assumed in this work is an airborne platform equipped with a gimballed camera

and an inertial navigation system (INS). Throughout this work, a narrow-FOV camera is

assumed, since it is more realistic than wide-FOV camera for many cases of practical interest.

As mentioned in the Introduction, a narrow-field makes the VAN and the image-based motion

estimation problems more challenging. However, the proposed method is not restricted to

cameras with narrow FOV, and is valid for other cameras as well. In addition, it is assumed

that the observed ground area is sufficiently close to planar, or alternatively, that the flight

altitude above ground level is high relative to ground changes in elevationa.

The INS consists of an inertial measurement unit (IMU), a strapdown algorithm and

a navigation Kalman Filter. The strapdown algorithm integrates the accelerations and

angular rates (or rather, the velocity and angular increments) from the IMU to produce

a navigation solution, which is comprised of platform position, velocity and attitude. Due

to the unavoidable errors of the IMU sensors, the computed navigation parameters develop

errors which increase unboundedly over time. It is well-known that for relatively low-grade

inertial sensors, errors grow proportionally to time cubed, and hence an uncompensated

inertial solution becomes useless in a relatively short period of time.

During the flight, an on-board camera captures images of ground regions according to a

scanning procedure. The acquired images are directed to the image processing module that

is accountable for mosaic image construction and for relative motion estimation. While all

the images are used for updating the mosaic image, the motion estimation is performed at

a lower frequency, utilizing only some of the images.

The mosaic construction is coupled with the camera scanning procedure, and is processed

in two phases: 1) The camera-captured images are used for constructing a small temporary

mosaic image. This temporary mosaic image is used for motion estimation at appropriate

time instances. 2) After each motion estimation event, the temporary mosaic image is

emptied and initialized to the most recent camera-captured image, while the removed images

from the temporary mosaic image are used to update the main mosaic image in a background

process.

aThis assumption is made due to the construction process of the mosaic image, which is based on the
homography transformation. However, the proposed approach for fusing image-based motion estimations
and navigation data may be also applied without constructing a mosaic image, in which case non-planar
scenes can be handled as well [37].
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The image-based motion estimation is reformulated into measurements, which are then

injected into the navigation Kalman Filter in order to update the navigation system and

thereby arrest the development of inertial navigation errors. In this way, the platform can

navigate for long periods of time even with low-grade sensors.

Throughout this paper, the following coordinate systems are used:

• E - Earth-fixed reference frame, also known as an Earth-centered, Earth-fixed (ECEF)

coordinate system. Its origin is set at the center of the Earth, the ZE axis coincides

with the axis of rotation, XE goes through the point latitude 0o, longitude 0o, and YE

completes a Cartesian right-hand system.

• L - Local-level, local-north (LLLN) reference frame, also known as a north-east-down

(NED) coordinate system. Its origin is set at the platform’s center-of-mass. XL points

north, YL points east and ZL is aligned with the plumb-bob vertical to complete a

Cartesian right-hand system.

• B - Body-fixed reference frame. Its origin is set at the platform’s center-of-mass. XB

points towards the nose tip, YB points toward the right wing and ZB completes the

setup to yield a Cartesian right-hand system.

• C - Camera-fixed reference frame. Its origin is set at the camera center-of-projection.

XC points toward the FOV center, YC points toward the right half of the FOV and ZC

completes the setup to yield a Cartesian right-hand system, as shown in Figure 2(b).

Notice that the camera is mounted on gimbals and performs pan and tilt movements

with respect to the platform; the yaw and pitch angles between B and C are denoted by ψC

and θC , respectively.

III. Camera Scanning Procedure and Mosaic Construction

Method

This section presents a detailed description of the camera scanning and mosaic construc-

tion procedures. Each procedure by itself is simple and several variations have appeared

in the literature before. The section hence focuses on the coupling between scanning and

mosaic image construction, in particular on the aspects that allow improving the accuracy of

the motion estimation in challenging scenarios such as narrow-FOV cameras and low-texture

scenes. In addition, it will be shown that relatively large ground areas may be represented

in the mosaic image without restricting the trajectory of the platform. More sophisticated

camera scanning methods may be considered, for instance those exploiting the coupling with

the platform trajectory or maximizing the ground coverage, but are left for future studies.
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Figure 1. Overview of the system concept.

A. Scanning Procedure

During flight, the onboard camera captures images of the ground according to commands

either from a human operator, an autonomous tracking algorithm of some features on the

ground, or a scanning procedure. Figure 2(a) shows a schematic illustration of the imple-

mented scan procedure. When captured, each new frame is processed and used to update

the mosaic image of the flight area. A detailed discussion of the on-line mosaic construction

appears in Section III-B.

As can be seen, each image partially overlaps the preceding image as well as images from

the previous scan stripe. The existence of overlapping regions is essential for performing

image matching between captured images. In addition, and as opposed to most motion-

from-structure methods, the additional overlapping region, provided by the camera scanning

procedure, enables enhancement of motion estimation, as will be seen in Section IV. The

proposed scan pattern also allows implementation of improved mosaic construction methods.

We assume that the scanning procedure modifies the pan angle of the camera, ψc, while

keeping the camera tilt angle constant, as shown in Figure 2(b). Given camera angles at the

current time instant, the calculation of camera angles for the next time instant is performed

in two steps. First, the line-of-sight (LOS) vector for the next camera aiming point in the

body-fixed reference frame, r̂B, is determined according to

r̂B = TC
B (ψc)

[f, d · CCDYC
/2, 0]T∥∥∥[f, d · CCDYC
/2, 0]T

∥∥∥
(1)
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Figure 2. (a) A schematic illustration of the scanning procedure. (b) Definition of the camera
coordinate system and a schematic illustration of camera angles during the scan procedure.

where TC
B (ψc) is the directional cosines matrix (DCM) transforming from the camera refer-

ence frame to the body frame, computed based on current camera angles; f is the camera

focal length; d is the scan direction, so that d = 1 for increasing the camera pan angle and

d = −1 for decreasing the camera pan angle; and CCDYC
is the size of the camera charged

coupled device (CCD) in pixels along the YC axis.

The next step is to compute the new camera angles from r̂B. The DCM transforming

from B to C can be written as

TB
C (ψc) =




0 sin ψc cos ψc

0 cos ψc − sin ψc

−1 0 0


 (2)

Since the aiming point vector in C is, by definition, [1 0 0]T , one can write

r̂B = TC
B (ψc)

[
1 0 0

]T

=
[
0 sin ψc cos ψc

]T

(3)

hence

ψc = tan−1

[
r̂B(2)

r̂B(3)

]
(4)

The scanning direction, d, is switched once the camera pan angle, ψc, reaches a certain pre-
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specified level; this level is constrained by the correspnding gimbal limit but may be smaller

than this mechanical limit.

For simplicity, it is assumed implicitly that the velocity-over-height ratio and the camera

sampling frequency provide sufficient overlapping regions between each two adjacent images

along the flight direction. Thus, the proposed scan methodology moves the camera only

in a direction perpendicular to the flight trajectory. Notice that in a practical application

this imposes a complex trade-off among flying altitude over ground, platform speed, FOV,

scanning slant angle and resolution. However, the method presented here may be adjusted

to work with a relaxed version of the assumption. Note also that no additional or a-priori

information is required.

B. Mosaic Construction Method

We shall now present a detailed description of the mosaic construction method using the

camera scanning method described in Section III-A. During the scan, images are captured

using varying camera angles. While all the images contribute to the construction of a mosaic,

in the current implementation only images taken while the camera was pointing downwards

are used for motion estimation. These images are referred to as downward-looking images.

Figure 3 provides a block diagram of the implemented mosaic construction process. Two

mosaic representations are constructed in the proposed approach: a temporary mosaic image

that is used for motion estimation, and the main mosaic image which is the final mosaic image

constructed based on the captured images.

The temporary mosaic image is initialized to a downward-looking image, once such an

image is captured, and is updated with new non-downward-looking images. When a new

downward-looking image is captured, it is matched to a relevant region in the temporary

mosaic image, which is calculated utilizing information from the navigation system. Next,

motion estimation is performed, as will be discussed in Section IV.

The temporary mosaic image is expressed in the preceding downward-looking image sys-

tem, defined as the coordinate system C of the previous downward-looking image. Therefore,

the estimated motion describes the relative motion performed by the camera between two ad-

jacent downward-looking images. This estimation will be used to correct developing inertial

navigation errors (cf. Section V).

Due to the coupling between the scanning procedure and the mosaic construction process,

an enlarged overlapping area between the new downward-looking image and the temporary

mosaic image is achieved. This, and the quality of the constructed temporary mosaic image,

are the two factors that allow better motion estimation in certain scenarios, as will be

demonstrated in Section VI-A.

After motion estimation is performed, the temporary mosaic image is reset and initialized
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Figure 3. Diagram of the proposed mosaic construction method.

to the new downward-looking image. The images that were removed from the temporary

mosaic image are then used for updating the main mosaic image. Since the main mosaic

image is not used for motion estimation, it may be updated in a background process. This

may be performed by applying various algorithms [19–26, 31], depending on the available

computational resources.

It should be noted that loop scenarios may be also handled in this background process

yielding an improved main mosaic image. In case of a loop in the trajectory, motion estima-

tion and navigation aiding are performed based on the temporary mosaic image, following

the method suggested herein. However, a different approach is required for utilizing the

full potential of the available information in such an event (e. g. three overlapping images),

which is the subject of an ongoing research.

An example of the mosaic image construction process, based on real images acquired

using the scanning procedure described above, is given in Figure 4 and Figure 5. The images

were extracted from Google Earth, as detailed in Section VI. Figures 4(a)-4(d) show the

construction of the temporary mosaic image, involving a camera scanning procedure that is

comprised of two non-downward-looking images in each direction. The temporary mosaic

image is initialized with a downward-looking image (Figure 4(a)) and is updated with images
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until a new downward-looking image is acquired (Figure 4(e)). One can easily notice the

enlarged overlapping region between this new downward-looking image and the temporary

mosaic image (Figures 4(d) and 4(e)). Figures 5(a) and 5(b) show the update of the main

mosaic image, based on images from the temporary mosaic image, once a new downward-

looking image was captured: Figure 5(a) is the main mosaic image before the update; Figure

5(b) shows the main mosaic image after the update.

The following sections further elaborate on several aspects of the mosaic images con-

struction process. The first step is to briefly review a standard method for estimating a

homography matrix; this is followed by additional implementation details of the mosaic

construction process.

1. Homography Matrix Estimation

The homography matrix [26] is a transformation that relates two images of a planar scene

for a general camera motion. The homography relation is also valid for a three-dimensional

scene if the camera performs a pure rotation, although this is hardly relevant for fixed-wing

aerial platforms. Given some point x in the first image and a matching point x′ in the

second image, both expressed in homogeneous coordinates [26], the following constraint can

be written for the homography matrix, H: x′i ∼= Hxi.

The homography matrix is used for updating the mosaic with each new image frame,

and also for performing relative motion estimation between these images. There are various

methods for estimating the homography matrix given two partially-overlapping images. The

method used herein relies on Ref. [26]: First, Scale Invariant Feature Transform (SIFT) [39]

features and their descriptors are computed for each of the images. If one of the images is a

mosaic image, an overlapping area between the two images is estimated based on information

extracted from the navigation system, and the computation of SIFT features is performed

only on this part of the mosaic image. Next, features from the two images are matched

based on the minimum Euclidean distance of their descriptor vectors, which yields a set of

matched points, S.

As the set S may contain wrong matches (outliers), a robust estimation technique is

applied, which provides a refined set of matched points, R ⊆ S. This is performed by

applying the Random Sample Consensus (RANSAC) algorithm [40] for robust estimation of

the homography matrix [26]. The final step in the homography estimation algorithm is to

perform least-squares (LS) homography estimation based on the subset R of feature matches

[26].
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2. Non Downward-Looking Images

If the new image is a non downward-looking image, the homography estimation is incremen-

tal, as described below. The purpose of the incremental estimation is the reduction of the

accumulated alignment errors in the temporary mosaic image, while updating the mosaic

with new non downward-looking images.

The method proposed here is an adaptation of the procedure suggested by Refs. [29],[30]

for the camera scanning method used herein. Denote by r the index of the most recent

downward-looking image, defining the reference frame in which the current temporary mosaic

image is expressed. Each new image Ik, which is a non downward-looking image, is matched

against the previous image Ik−1, yielding a homography between these two images Hk→k−1.

The next step is to calculate an intermediate homography matrix between the new image Ik

and the current temporary mosaic image, relying on information computed for the previous

image Ik−1:

HI
k→r = Hk−1→r ·Hk→k−1 (5)

where Hk−1→r is the homography matrix transforming from the previous image, Ik−1, to the

current temporary mosaic image. This homography matrix was calculated and saved while

processing image Ik−1. Once this homography is available, the new image Ik is warped to-

wards the temporary mosaic image using the homography matrix HI
k→r, yielding the warped

image Ĩr
k .

Ideally, the warped image and the temporary mosaic image should be aligned; however,

this is usually not true in practice due to homography estimation errors. To improve the

estimation, a correction homography between the warped image, Ĩr
k , and the current tempo-

rary mosaic image, is estimated by applying the standard homography estimation technique

discussed in Section III-B.1 on these two images. This homography, Hcorr, is used to correct

the estimated intermediate homography matrix between the new image and the temporary

mosaic image,

Hk→r = Hcorr ·HI
k→r (6)

Finally, the new image, Ik, is warped towards the current temporary mosaic image using the

improved homography matrix, Hk→r, followed by an integration of the two images into an

updated mosaic, using one of the available techniques [19], [26]. In addition, Hk→r is saved

for future use with new non downward-looking images. The process repeats for an each new

image that was not taken when the camera was looking downward.
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3. Downward-Looking Images

Once a new downward-looking image, Id, is captured, a direct estimation of the homography

matrix (cf. Section III-B.1 ) relating this new image to the current temporary mosaic image

is performed. During this process, only part of the temporary mosaic image is used, based

on the current platform heading and altitude (known from the navigation system). The

estimated homography matrix is then used for motion estimation (cf. Section IV). The next

step is to remove all the images from the temporary mosaic image and to initialize it with

Id.

Let r denote the index of the previous downward-looking image. Now, the images

{Ii}d
i=r+1 should be used for updating the main mosaic image. This may be performed

in a background process, using various approaches, since the main mosaic image is not re-

quired for motion estimation. The approach that was implemented in this work is to use

the incremental homography estimation technique, discussed above, for adding the images

{Ii}d
i=r+1 to the main mosaic image.

(a) (b) (c)

(d) (e)

Figure 4. Mosaic images construction example. (a)-(d) Temporary mosaic image construction.
(e) A new downawrd-looking image. An enlarged overlapping area between this image and
the temporary mosaic image is shown in (d) and (e).

IV. Image-Based Motion Estimation

In this section, we discuss a method for image-based motion estimation based on a

previously-estimated homography matrix. The camera motion between any two views of
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(a)

(b)

Figure 5. Mosaic images construction example. (a) Previous main mosaic image. (b) Updated
main mosaic image based on images from the temporary mosaic image (Figure 4(d)) and the
new downward-looking image (Figure 4(a)).

a planar scene, related by a homography matrix H, is encoded in H according to [28]:

H = K ′
[
R− t

z
nT

]
K−1 (7)

where K ′, K are the calibration matrices at two image time instances, assumed to be known,

t is the translation vector, R is the rotation matrix, z is the scene depth and n is a unit

vector normal to the scene plane. Since the process of motion estimation is based only on

the information provided by the camera, the translation motion between two images can be

estimated only up to scale (i. e. only the translation direction can be estimated).

A method for extracting the motion parameters from Eq. (7) was suggested in Ref. [28],

where it was proven that there are at most two valid sets of solutions (t, R,n). The correct
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solution out of these two alternatives can be chosen based on n while relying on previous

estimates [28]. The implementation of the estimation process in this work involves yet

another phase, which will be described in the next section. This phase allows improved

precision motion estimation assuming a standard approach for estimating the homography

matrix (cf. Section III-B.1 ).

It should be noted that any two views of a non-planar scene are related through the more

complex epipolar geometry, from which relative motion parameters may be extracted as well

[26] via, e.g., the fundamental matrix. However, when assuming a narrow-FOV camera,

the epipolar geometry method tends to become ill-conditioned, due to the limited ground

information captured by the camera, resulting in a semi-planar scene.

A. Implementation of Motion Estimation Assuming a Planar Scene

As mentioned in Section III-B.1, the homography estimation process involves the RANSAC

algorithm for robust outliers rejection. The output of this algorithm is a subset R =

{(xi,x
′
i)}NR

i=1 of feature matches that are considered to be inliers. These are then used for LS

estimation of the homography matrix. When considering ideal features, this process yields

the same results when executed several times. However, the solution varies from one execu-

tion to another for noisy data (for a given threshold value), since each execution may yield a

different features subset group, and hence a different estimation of the homography matrix

(and motion parameters).

More specifically, assume that the extracted SIFT features image coordinates are cor-

rupted by noise. As a consequence, the computed set of all point matches S = {(xi,x
′
i)}NS

i=1,

R ⊆ S, is also corrupted by noise, and in addition may contain false matches (outliers). In

each iteration of the RANSAC algorithm, four point matches are drawn and used to compute

a homography matrix, which is then utilized to construct a subset T of point matches that

are consistent with this homography matrix. Thus, a pair of point correspondences (x,x′)

is chosen if

dE(x, H−1x′)2 + dE(x′, Hx)2 < t2threshold (8)

where dE(., .) is the Euclidean distance between two points in the same image, and tthreshold

is a predefined threshold.

Consider such two different iterations yielding the subsets T1 and T2, and assume that

these subsets do not contain any false matches. In each of these subsets, the homography

matrix was computed based on a different set of drawn 4 point matches. These two homog-

raphy matrices, H1 and H2, are expected to be different, despite the fact that they were

computed based on inlier point matches, since all the features in S, and in particular the

drawn features, are corrupted by noise.

15 of 39



In the next step of the RANSAC algorithm, all point matches in S are checked for

consistency with the homography matrix, Hi, i = {1, 2}, according to Eq. (8). Only point

matches that agree with the condition (8) are added to the subset Ti. Since both homography

matrices are legitimate but different, it is obvious from Eq. (8) that the two subsets T1 and

T2 will be identical for a sufficiently large value of tthreshold. However, decreasing the value

of tthreshold will yield different subsets T1, T2, starting from some critical value. This critical

value is influenced by the image features noise characteristics, and is therefore a function of

the observed scene: high-texture scenes are likely to be corrupted with less noise compared

to low-texture scenes, since in the former case the features can be localized with improved

precision. Thus, a specific value of tthreshold might yield identical subsets T1, T2 in certain

scenarios, and different subsets in other scenarios.

The above conclusion is valid also for the output from the RANSAC algorithm (the

inliers subset, R), as it is merely one of the subsets constructed during its iterations. Thus,

sequential activation of the RANSAC algorithm might give different subsets of R, meaning

that the LS homography estimation will yield a number of different homography matrices

{Hi}, and consequently, a set of motion parameters extracted from each homography matrix

Hi. This process of homography matrix estimation, involving a sequential execution of the

RANSAC algorithm, is denoted in this section as sequential homography estimation.

Given the set of motion parameters, {(ti, Ri,ni)}N
i=1, obtained from the sequential homog-

raphy estimation process, one can employ different logic for automatically choosing the most

accurate motion estimation. The logic implemented in this work consists of the following

steps.

Denote |q| =
∣∣ [q1, . . . , qn]T

∣∣ , [|q1|, . . . , |qn|]T . Define the mean unit vector normal to a

scene plane, based on the normal unit vectors {nprev
i }Nprev

i=1 from estimates of Nprev previous

images, as

nprev
µ =

Σ
Nprev

i=1 |nprev
i |∥∥∥Σ

Nprev

i=1 |nprev
i |

∥∥∥
(9)

Compute a score for each available solution (ti, Ri,ni) based on the proximity of its normal

unit vector ni to the mean unit vector nprev
µ :

si = | < nprev
µ ,ni > | (10)

where < ., . > is the inner product operator. Calculate the mean and the standard deviation

(sµ, sσ) of the set {si}N
i=1, and reject all the solutions whose score is lower than sµ − sσ.

Denote by N1 the number of remaining solutions.

Next, a translation matrix Λ = (λ1,λ2, λ3) is constructed from the absolute values of
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the translation motion estimation vectors in the set of remaining solutions (Λ ∈ RN1×3):

Λ = (λ1,λ2,λ3) ≡




|tT
1 |

|tT
2 |
...

|tT
N1
|




(11)

Each of the Λ columns is examined for outliers based on the distribution of its values.

More specifically, a histogram of the vector λi is computed over N1 slots in the range

[min(λi), max(λi)], followed by a rejection of entries in λi which do not appear in clus-

ters. Denote by N2 the number of remaining solutions after this step was applied on all

three columns of Λ.

Finally, a solution is chosen among the remaining-solutions set {(ti, Ri,ni)}N2

i=1, whose

normal is the closest to nprev
µ , i. e., a solution with the highest score si.

If the mean normal vector from previous images is unavailable, a solution (t, R,n) is

chosen whose normal vector n is the closest to the mean normal vector of all the other

solutions in {(ti, Ri,ni)}N2

i=1, i. e., a solution i that maximizes < ni,nµ > where nµ is defined

as

nµ =
ΣN2

i=1|ni|∥∥ΣN2
i=1|ni|

∥∥ (12)

The sequential estimation process of the motion parameters described above is sum-

marized in Algorithm 1. The improvement in the estimation precision is demonstrated in

Section VI-A.

Algorithm 1 Sequential Estimation of the Motion Parameters

1: Run N times the homography estimation routine, given in Section III-B.1, and calculate
the solution set from the estimated homography matrices: {(ti, Ri,ni)}N

i=1.
2: if At least one image was already processed then
3: Compute a score si for each solution, based on Eqs. (9,10).
4: Reject solutions whose score is lower than sµ − sσ, where (sµ, sσ) are the mean and

standard deviation values of the computed set of scores {si}N
i=1.

5: end if
6: Construct a translation matrix Λ based on Eq. (11) and examine each of its columns for

outliers. Solutions that contain outliers are rejected, yielding a refined set {(ti, Ri,ni)}N2

i=1

of solutions.
7: if At least one image was already processed then
8: Choose a solution (t, R,n) ∈ {(ti, Ri,ni)}N2

i=1 with the highest score.
9: else

10: Choose a solution (t, R,n) ∈ {(ti, Ri,ni)}N2

i=1 which maximizes < n,nµ >, where nµ is
computed according to Eq. (12).

11: end if
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V. Fusion of Image-Based Relative Motion Estimation with a

Navigation System

In this section we present a method for fusing the image-based estimated camera relative

motion with a navigation system of an aerial platform. A measurement model is developed

that relates the image-based estimated relative motion with the accumulating navigation

errors of a standard inertial navigation system (INS). The data fusion is performed using

an indirect Implicit Extended Kalman Filter (IEKF) [36] that estimates the navigation

parameter errors instead of the parameters themselves. These estimated errors are then used

for correcting the navigation parameters. The state vector to be estimated is comprised of

navigation errors and of inertial sensor errors. The state vector used in this work is defined

as

X =
[
∆PT ∆VT ∆ΨT dT bT

]T

(13)

where ∆P ∈ R3, ∆V ∈ R3, ∆Ψ ∈ SO(3) are the position, velocity and attitude errors,

respectively, and (d,b) is the parametrization of errors in the inertial sensor measurements:

d ∈ R3 is the gyro drift, and b ∈ R3 is the accelerometer bias. The first 9 components of X

are given in LLLN coordinates, while the last 6 are written in a body-fixed reference frame.

Once an estimate of the state vector is available, the vector is used both to correct the

output of the navigation system, and to provide a feedback to the inertial sensors (cf. Figure

1): The estimated position, velocity and attitude errors are used to correct the INS output.

These components in the state vector are then reset, since they have been incorporated into

the navigation system, i. e. the first 9 components of the a-posteriori estimation at some time

instant tk, X̂k|k, are set to zero. The covariance matrix is not changed, so it represents the

uncertainty in the platform’s navigation parameters estimation, i. e. the navigation errors.

In addition, the IMU measurements readings are corrected with the most recent available

estimations of drift and bias parameters at the frequency of the inertial sensors readingsb,

which is much higher than the frequency of the IEKF updates.

It is worth stressing that the state vector is a constant-size vector, X ∈ R15. Another

possible approach is to use a direct data-fusion technique and relate the vision-based esti-

mated motion to an augmented state vector comprised of the platform current parameters

(e. g. position, velocity) and past poses for each captured image [27]. Yet, as in the case of

SLAM methods, this approach requires increasing computational resources (since the state

vector size increases with time), and therefore the use of the indirect fusion approach with

a constant-size state vector is preferred.

bAnother possible variation of this is to estimate the residual bias and drift values, while maintaining the
estimations of actual bias and drift parameters outside the filter. In this case the whole state vector should
be reset after each update step [37].
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It is assumed here that the relative motion parameters between each two image time

instances, t = t1 and t = t2, were already extracted by the image processing module. Thus,

the camera relative rotation matrix, RC2
C1

, transforming from the camera axes at time t2 to

the camera axes at time t1, is known. In addition, the relative translation, tC2
1→2, is known

up to some scale, γ.

The estimated relative motion is reformulated into residual measurements ztranslation,

zrotation, which are injected into the filter:

ztranslation = [PosNav(t2)−PosNav(t1)]
L2 × TC2

L2,Navt̂
C2

1→2 (14a)

zrotation =




tan−1
[

D(3,2)
D(3,3)

]

− sin−1 [D(1, 3)]

tan−1
[

D(1,2)
D(1,1)

]


 D

.
= TC2

C1,Nav

[
R̂C2

C1

]T

(14b)

where TC2
L2

is the directional cosines matrix (DCM) transforming from C to LLLN at the

time instance t = t2; TC2
C1

is the DCM transforming from C at t = t2 to C at t = t1; and Pos

is the platform’s position. The subscript Nav denotes the parameters that are taken from

the navigation data.

The state vector and the residual measurements are related via a measurement equation

Z
.
=


ztranslation

zrotation


 = HX +


vtr

vrot


 (15)

where H is the measurement matrix

H =


03×3 H tr

∆V H tr
∆Ψ H tr

d H tr
b

03×3 03×3 Hrot
∆Ψ Hrot

d 03×3


 , (16)

vtr is given by

vtr = [PosTrue(t2)−PosTrue(t1)]
L2 ×

[
TC2

L2,Nav t̂
C2

1→2 − TC2
L2,T ruet

C2
1→2,T rue

]
, (17)

and vrot represents rotation motion estimation errors and linearization errors. Note that

since an IEKF formulation is used, the measurement noise terms are not necessarily white

[2]. The development of the above measurement equation and the explicit expression for H

are given in Appendix A.

The estimated state vector is initialized to zero, since the actual initial navigation errors

are unknown, while the estimation error covariance matrix is set to the believed levels of

navigation errors. Although these values are usually known from the performance specifica-
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tions of the inertial sensors, in all practical applications the initial covariance and process

noise covariance matrices are adjusted during the tunning process.

The propagation step involves computation of an a-priori covariance matrix Pk+1|k ac-

cording to

Pk+1|k = Φd(k + 1, k)Pk|kΦ
T
d (k + 1, k) + Qk (18)

where Φd(k + 1, k), Pk|k, Qk are the process discrete system matrix, a-posteriori covariance

matrix, and the process noise covariance matrix, respectively. The discrete system matrix

Φd is computed using Φd = eΦc∆t, where ∆t is the propagation step time interval, and Φc

the continuous system matrix [37].

The propagation of the state vector is given by

X̂k+1|k = Φd(k + 1, k)X̂k|k (19)

However, since the first 9 components of X̂k|k are used for correcting the strapdown inte-

gration (see above) after the update step and then reset, and the other 6 components are

random constants (i. e., X̂k|k = [01×9 dT bT ]T ), Eq. (19) is equivalent to X̂k+1|k = X̂k|k.

After performing the propagation step, a measurement update is performed given the

motion estimation (tC2
1→2, R

C2
C1

) from the image processing module. First, the Kalman filter

gain matrix is computed according to

Kk+1 = Pk+1|kH
T
k+1

[
Hk+1Pk+1|kH

T
k+1 + Rk+1

]−1
(20)

The matrix Rk+1 in Eq. (20) is a measurement noise covariance matrix, which is of the

following block-diagonal form:

Rk+1 =


Rtr

k+1 03×3

03×3 Rrot
k+1


 (21)

where Rtr, Rrot are the translation and rotation measurement noise covariance matrices,

respectively. While Rrot is a constant matrix, an adaptive translation measurement noise

covariance matrix Rtr is calculated based on Eq. (17):

Rtr = − [
PosL2

Nav(t2)−PosL2
Nav(t1)

]∧
Rest

[
PosL2

Nav(t2)−PosL2
Nav(t1)

]∧
(22)

where Rest is a 3× 3 tuning matrix that represents the level of accuracy in the vision-based

estimation of the translation direction and (.)∧ denotes the matrix cross-product equivalent.

For example, in the experiments with real imagery presented in Section VI-B, it was assumed

to be close to I3×3. It should be noted that the matrices Rest, Rrot may also be estimated as
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part of the image-based motion estimation procedure [32].

Once the gain matrix K is available, a-posteriori values of the state vector and covariance

matrix are computed using the standard IEKF formulas [36],[2]:

X̂k+1|k+1 = X̂k+1|k + Kk+1Zk+1 (23)

Pk+1|k+1 = [I −Kk+1Hk+1] Pk+1|k [I −Kk+1Hk+1]
T + Kk+1Rk+1K

T
k+1 (24)

Some of the errors in the image-based relative motion estimation may be projected onto

the unobservable states and yield poor estimation performance even when compared with

the pure inertial case. In order to mitigate this phenomenon, several heuristic methods may

be considered. For the current implementation, a fictitious ideal velocity measurement was

used in addition to the relative motion measurements to overcome the scaling ambiguity, so

that

(VL
true)

T ∆V = 0, (25)

Namely, the velocity errors in the direction of the flight are assumed to be zero, and hence

errors from the image-processing block are essentially not projected onto this direction. The

term VL
true refers to the true value of the platform velocity in the LLLN system. Since this

velocity is unknown, it is replaced by the platform velocity VL taken from the navigation

system.

A Kalman filter gain matrix, K, is computed according to Eq. (20) based on an a-priori

covariance matrix Pk+1|k, an augmented measurement matrix, Haug = [HT , HT
v ]T , and an

augmented measurement noise covariance matrix, Raug, where

Hv =
[
01×3 (VL)T 01×3 01×3 01×3

]
(26)

and H is the measurement matrix of Eq. (16).

The augmented measurement noise covariance matrix Raug is given by

Raug =


 R 0

01×3 Rv


 (27)

where R is given in Eq. (22) and Rv is the fictitious velocity (FV) measurement noise

covariance matrix, which constitutes a tuning parameter. Small-valued entries in Rv indicate

that this additional measurement is reliable, and therefore other measurements will have a

minor influence on the entries of the gain matrix K, corresponding to position and velocity

along the flight heading. This, in turn, prevents from erroneous image-based relative motion

measurements to affect the unobservable states.
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Once K is computed, the column related to the fictitious velocity measurement is dis-

carded; in this way, the measurement limits the corrections in the direction of the flight

but does not render the problem inconsistent, since the measurement is not actually per-

formed. The advantage of using the FV measurement is demonstrated in Ref. [37]; thus, all

the results of VAN presented in this paper were obtained with the FV measurement active.

Moreover, since the FV measurement is homogeneous, it can be weighted into the Kalman

Filter formulas, thereby providing an additional design parameter to trade-off estimation

quality with projections onto the unobservable subspace. Note that the FV measurement

does not limit the platform’s motion to any specific type. This is in contrast, for example, to

nonholonomic constraints that may be applied only for land vehicles [38]. In addition, due to

the varying quality of the image measurements (cf. Section VI-A), a measurement-rejection

mechanism must also be used to avoid fusion of low-quality measurements or other outliers.

A. Computational Requirements

The overall computational requirements of the proposed navigation aiding architecture con-

sist of applying a standard Kalman Filter for constant-size state and measurement vectors

of 15 and 6 elements, respectively, and of the image processing phase. The latter consists of

a temporary mosaic image construction, which is limited to a few images (4 in the current

example), and of motion estimation. The main mosaic image is not used in the navigation

aiding scheme.

As discussed earlier, the inclusion of a new image into a temporary mosaic image involves

the computation of SIFT features, estimation of the homography matrix, warping the new

image and fusing the two images. Only a partial area in the temporary mosaic image is used

for calculating SIFT features. These operations require modest computational resources and

pose no difficulties for real-time operation.

In conventional SLAM, as opposed to the proposed method method, the state vector is

augmented with relevant data from each captured image, and thus the whole state vector

needs to be updated each time. Denoting by d the number of elements that are added to

the state vector once a new image is acquired, SLAM generates, after 100 seconds of flight

(assuming the same image sampling frequency of 5 Hz) a state vector of 15 + 500d elements

that should be processed in real time, which is far more demanding than applying a Kalman

Filter to a 15-element state vector and constructing a temporary mosaic imagec (cf. Section

III-B.A), as suggested in the new approach.

cThe construction of the main mosaic image in a background process may involve different algorithms.
However, while some of them may be computationally expensive (such as global optimization), they are to be
applied only in case of a loop in a trajectory, or in some low frequency. This is in contrast to the constantly
increasing high-computational requirements of the update step in the SLAM approach.
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VI. Results

This section contains simulation results of the developed mosaic-aided navigation method.

The simulation is comprised of the following modules: A navigation module, a camera

scanning module, and an image processing module.

The navigation phase consists of the following steps: (a) Trajectory generation; (b) ve-

locity and angular velocity increments extraction from the created trajectory; (c) IMU error

definition and contamination of pure increments by noise; and (d) strapdown calculations.

The strapdown mechanism provides, at each time step, the calculated position, velocity and

attitude of the platform. In parallel to the strapdown calculations, at a much slower rate,

Kalman filter calculations are performed based on the available measurements. At the end

of each filter cycle, the strapdown output is updated with the estimated state vector of the

filter.

The camera scanning module provides camera angle commands that yield a continuous

scan, according to the camera scanning procedure discussed in Section III-A.

The image processing module constructs mosaic images and performs motion estimation

each time a downward-looking image is acquired (cf. Sections III-B and IV). The inputs

to this module are real images obtained from Google Earthd based on the proposed camera

scanning procedure. In addition, the module is capable of calculating an ideal real motion

based on the true platform trajectory taken from the navigation module, without actually

using any real images. Naturally, in this mode of operation the mosaic images are not

constructed. The ideal motion estimations are used as baseline for evaluating the best

possible performance of the proposed method, since motion estimation based on real images

will be imperfect.

The experiments are based on real image sequences acquired using Google Earth, which

contains 3D geo-data of Earth based on real imagery, i. e. a 3D environment based on

real images and a digital terrain model (DEM). For this purpose, we developed an interface

that bridges between the navigation simulation and Google Earth, allowing to obtain images

from Google Earth at specified camera position and attitude. Further details regarding the

interface to Google Earth are provided in Appendix B.

It should be noted that any two images of the same ground region observed from different

viewpoints will yield a correct relative image transformation. However, this approach does

not mimic real-world images perfectly, since it lacks the effect of lighting variations when

some region is observed from different directions. Yet, since the trajectories presented in this

paper do not involve loops, the implemented camera scanning procedure will take different

images of the same ground region under similar conditions. Thus, the effect of varying

dhttp://earth.google.com/index.html, last accessed June 2009.
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lighting conditions is expected to be marginal.

The experiments presented in this paper were conducted while the platform performed

a straight-and-level north-heading trajectory, whose initial conditions are given in Table 1.

The observed scene along this trajectory is of a planar nature with about 50 m elevation

above sea level.

Table 1. Trajectory Parameters

Parameter Description Value Units

λ Initial latitude 32.8285005298 deg

Λ Initial longitude 35.1479222075 deg

alt Initial altitude above sea level 1500 m

VL Velocity in LLLN system (100, 0, 0)T m/s

Ψ Platform attitude (0, 0, 0)T deg

We begin our presentation of the results by demonstrating an improved image-based mo-

tion estimation for a narrow-FOV camera observing a low-texture scene, when applying the

newly-proposed coupling algorithm between the camera scanning and mosaic construction

processes. The following section then provides results of mosaic-aided navigation. Additional

results are given in Refs. [37], [41].

A. Mosaic-based Motion Estimation

Before presenting the results for mosaic-based motion estimation, we demonstrate the im-

provement in the precision of motion estimation when applying the sequential estimation

procedure, summarized in Algorithm 1. In the current implementation, this routine was

executed with N = 10.

Figure 6 presents the results of translation motion estimation when a low-texture scene

is observed by a narrow-FOV camera. A pair of such images are shown in Figures 6(a) and

6(b).

The improvement in the estimation precision is clearly evident in Figure 6(c), where the

same pair of images was used to perform motion estimation with and without the sequential

estimation procedure. The figure presents a cumulative distribution function (CDF) of errors

in the estimation of the translation direction; the x-axis values represent different thresholds

of errors (in degrees), while the y-axis represents the percentage of estimations with an

estimation error lower than the threshold values.

The results in Figure 6(c) were obtained by retrieving motion parameters from a conventionally-

estimated homography matrix (cf. Section III-B.1 ) and by applying the sequential estima-

tion procedure of motion parameters (Algorithm 1). Both of the methods were executed 100
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times on a pair of low-texture images taken with a 7o × 4o-FOV camera (Figures 6(a) and

6(b)). The advantage of the sequential estimation method is significant. For example, nearly

80% of the estimation errors were below 20o when applying sequential estimation, compared

to only 50% with a standard homography estimation.

(a) (b)
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Figure 6. (a),(b) Images of a low-texture scene captured from Google Earth by a 7o× 4o FOV
camera. (c) Motion sequential estimation vs. standard estimation over the pair of images
presented in (a),(b): CDF of the translation direction estimation error. Significantly improved
estimation accuracy in favor of sequential estimation.

Next, we examine the performance of the proposed mosaic-based motion estimation

method for cameras with a narrow FOV, compared to estimations of a standard two-view

method, in which the motion estimation is based on camera-captured images, without our

new camera scanning and mosaicking procedures. In both cases the motion parameters

are estimated using the proposed sequential estimation method. Image sequences were ac-

quired from Google Earth, using the same trajectory, for each of the examined motion

estimation methods: Images for the traditional two-view motion estimation method were

captured using a constant downward-looking camera at a 1 Hz frequency, while images for

the mosaic-based motion estimation method were captured according to the camera scanning

procedure at a 5 Hz frequency. Among all the images acquired during the camera scanning,

the downward-looking images were captured every second, and therefore motion estimation

in the mosaic-based method was also applied at a 1 Hz frequency (cf. Figure 3).
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The results are presented in Figure 7, showing the CDF of the translation direction esti-

mation error and of the rotation estimation error. The shown rotation error is the maximum

value of the error in the estimated rotation vector, i. e.

∆η , max(|∆φ| , |∆θ| , |∆ψ)| (28)

where ∆φ, ∆θ, ∆ψ are the Euler angle errors of the estimated rotation matrix, computed

from the DCM Rerr:

Rerr ≡ Rtrue ·RT (29)

Here Rtrue and R are the true and estimated values of the rotation matrix, respectively.

It is important to understand when the mosaic-based method is expected to outperform

the two-view-based method. In the context of motion estimation, the two methods differ

only in the size of the image overlap region. Due to the camera scanning process, the con-

structed mosaic image contains an enlarged overlapping region compared to the overlapping

region between two regular images. This region is comprised of the original overlapping area

between two regular images and an additional overlapping region - see a schematic illustra-

tion in Figure 2(a) and a mosaic example image in Figure 4 and Figure 5. However, since

the mosaic construction process is by itself affected by errors, features from the additional

overlapping area tend to be of lower-quality compared to those from the original overlapping

region, while features from the original overlapping region are of the same quality in both

cases (the camera-captured image and the mosaic image), due to the mosaic construction

process (cf. Section III-B). Thus, there is an inherent tradeoff: On one hand, the mosaic

provides an increased number of features, while on the other hand, part of the features are

of a lower quality. Hence, the performance of the mosaic-based method is expected to be

superior over the two-view framework in “difficult” scenarios, in which either the overlapping

region between two captured images yields a small number of high-quality features or the

geometry underlined by the line-of-sight direction to the features is close to singular. In

other words, it is expected that the mosaic will outperform the two-view method for the

narrow-FOV camera and low-texture scenes.

The above observation is clearly evident in Figure 7, which describes the scenario of a

narrow-FOV camera (5o×3o) and a low-texture scene. This relatively small FOV is common

in many airborne applications. It can be seen that the mosaic-based motion estimation yields

considerably better results compared to the two-view motion estimation. For example, in

case of translation direction estimation (Figures 7(a)), 50% of the estimates using the mosaic

method are provided with an accuracy better than 15o, compared to only 20% using the two-

view method. As will be seen in the next section, these motion estimations can be effectively

utilized for improving the performance of navigation systems.
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Figure 7. Image-based motion estimation accuracy for a low-texture scene and a narrow-FOV
camera of 5o×3o (CDF). The mosaic framework significantly improves the estimation accuracy
compared a traditional two-view method.

B. Mosaic-Aided Navigation

This section contains simulation results of the developed mosaic-aided navigation method

following the fusion technique discussed in Section V. First, we present navigation results as-

suming an ideal motion estimation (without using any real images). Next, results of mosaic-

aided navigation are presented. These results are compared to two-view aided navigation.

We note that the simulation runs were performed without a captive flight stage.

The assumed 1σ values of IMU errors and initial navigation errors are given in Table 2.

Actual values of initial navigation errors and IMU errors in the statistical simulation runs

are determined by drawing samples from a zero-mean normal distribution with a standard

deviation σ, that is, the value of some parameter si is drawn according to si ∼ N(0, σsi
).

The IMU errors are then used for contaminating the pure IMU readings, while the initial

input to the strapdown module is set according to initial platform parameters and initial

navigation errors (cf. Section VI).

Table 2. Initial Navigation Errors and IMU Errors

Parameter Description Value Units

∆P Initial position error (1σ) (100, 100, 100)T m

∆V Initial velocity error (1σ) (0.3, 0.3, 0.3)T m/s

∆Ψ Initial attitude error (1σ) (0.1, 0.1, 0.1)T deg

d IMU drift (1σ) (1, 1, 1)T deg/hr

b IMU bias (1σ) (1, 1, 1)T mg
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1. Navigation Performance Using Ideal Motion Estimation

Figure 8 and Figure 9 show Monte-Carlo results for a straight and level north-heading tra-

jectory, in which the measurements based on an ideal motion estimation were injected into a

Kalman filter at a 1 Hz frequency. Each figure contains 4 curves: mean (µ), mean+standard

deviation (µ+σ), and the square root of the filter covariance, defined for the i-th component

in the state vector X as
√

P (i, i), where P is the a-posteriori covariance matrix. In addition,

a comparison is provided to an inertial scenario (µ + σ inertial).

The velocity errors are presented in Figure 8(b). Velocity errors normal to the flight

heading are significantly reduced relative to the inertial scenario; however, they are not

nullified due to errors introduced by expressing the translation measurement in the LLLN

system (cf. Appendix A). It can also be seen that these errors are constant and do not grow

with time. As a consequence, position errors (Figure 8(a)) normal to the flight heading are

considerably reduced compared to an inertial scenario. Velocity errors and position errors

along the flight heading are not reduced due to lack of observability.

The roll angle error ∆Φ (Figure 9(a)) is partially estimated and is kept constant relative

to the increasing error obtained in an inertial scenario. While the pitch and yaw angles errors

(∆Θ, ∆Ψ) are not estimated, the error growth is restrained relative to the inertial scenario.

This is due to a precise estimation of the drift state d = (dx, dy, dz)
T (Figure 9(b)), that was

obtained since ideal rotation motion estimation is used. However, the precision of rotation

motion estimation when real images are used is insufficient for estimating the drift state [37].

The bias state, b = (bx, by, bz)
T , is estimated in the z-direction (Figure 9(b)). In general,

the filter covariance is consistent with the actual 1σ errors.

0 50 100 150 200
0

1000

2000

N
or

th
 [m

]

 

 

0 50 100 150 200
0

500

1000

E
as

t [
m

]

0 50 100 150 200
0

100

200

A
lt 

[m
]

Time [sec]

µ µ+σ Filter µ+σ Inertial

(a) Position errors.

0 50 100 150 200
−5

0
5

10
15

V
N
 [m

/s
]

 

 

0 50 100 150 200

0

1

2

V
E
 [m

/s
]

0 50 100 150 200

0

1

2

V
D
 [m

/s
]

Time [sec]

µ µ+σ Filter µ+σ Inertial

(b) Velocity errors.

Figure 8. Navigation errors statistics vs. filter covariance (Monte-Carlo run) using ideal motion
estimation. (a) Position errors. Errors normal to the flight heading are reduced, errors along
the flight heading are not diminished due to lack of observability. (b) Velocity errors. Errors
normal to the flight heading are significantly reduced relative to the inertial scenario, and are
kept constant.
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Figure 9. Navigation errors statistics vs. filter covariance (Monte-Carlo run) using ideal motion
estimation. (a) Euler angle errors. Roll angle error, ∆Φ, is partially estimated and is kept
constant relative to the inertial scenario; pitch and yaw angles errors (∆Θ, ∆Ψ), development
is arrested. (b) Drift and Bias estimation errors. Full drift estimation due to ideal relative
rotation measurement. The bias in the z direction is estimated after about 50 sec.

2. Navigation Performance Using Mosaic-Based Motion Estimation

This section demonstrates the superior performance of mosaic-aided navigation over two-

view motion estimation. The examined scenario consists of a narrow-FOV camera (5o × 3o)

and a low-texture scene. The platform performs a straight and level north-heading flight, as

discribed in Section VI.

The experiment consisted of 50 sec of inertial flight, followed by a 50 sec of vision-aided

phase, during which the mosaic- and two-view-based motion estimations were injected into

the navigation system. The last phase is another inertial navigation flight segment for 50 sec.

Figure 10 and 11 provide the experimental results, comparing the navigation performance for

the two examined methods (mosaic and two-view). In addition, the development of inertial

navigation errors is given for reference.

The enhanced performance of mosaic-aided navigation can be clearly seen. During the

vision-aided phase, the position and velocity errors (Figures 10(a) and 10(b)) perpendicular

to the flight heading are significantly reduced. The mosaic-based aiding yields better results

than two-view-based aiding, due to more accurate vision-based motion estimation. It can

be concluded from these graphs that the number of measurements accepted by the filter

is considerably higher in case of the mosaic framework (between 60 sec and 80 sec, all the

measurements in the two-view method were rejected by the filter). As for the roll angle error

(Figure 11(a)), although this error is smaller with the two-view method, it is expected to
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reach higher values if more measurements were accepted by the filter.

When examining the behavior of navigation errors in an inertial segment (after the vision-

aided phase), one can notice the slow development of inertial errors when using mosaic aiding.

The reason for this is the improved bias estimation compared to the estimation using the

two-view method, as shown in Figure 11(b): bz is almost exactly estimated and thus it does

not contribute to the growth of inertial position and velocity errors in the down axis. The

drift state was not estimated at all, because all the relative rotation measurements were

rejected by the filter due to their low quality.

The relative motion measurements have another interesting effect: Although the position

error does not have a representation in the translation measurement matrix (cf. Eq. (37)),

the measurements still reduce the position errors (Figure 10(a)), due to the developing cross-

covariance terms in the covariance matrix of the state vector.

Figure 12 and Figure 13 compare the filter covariance to the actual developed errors. As

seen, the covariance is consistent. However, in the last segment of the inertial flight (after

t=100 sec), the covariance development rate does not match the actual rate of the developing

inertial navigation errors. After the vision-aided segment, part of the IMU error parameters

are estimated by the filter (e. g. bz) and are used to correct the actual IMU measurements.

As a consequence, the actual IMU measurements injected into the navigation system are

corrupted by the residual IMU parameters only, resulting in a much slower development

of navigation errors. One possible alternative to account for this behavior is to perform

a dynamic adjustment of the filter noise covariance matrix Q as a function of the actual

covariance values of the estimated IMU states.
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Figure 10. Vision-aided navigation: Mosaic aiding vs. two-view framework. (a),(b) Position
and velocity errors, respectively. Inertial error development in the north direction due to
lack of observability. Reduced errors in the east and down directions, with a significant
improvement in favor of the mosaic aiding.
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Figure 11. Vision-aided navigation: Mosaic aiding vs. two-view framework. (a) Euler angle
errors. Roll angle error estimation for both motion estimation methods. Pitch and yaw angles
errors are not reduced due to lack of observability. (b) Bias estimation errors. Considerably
improved bz estimation in favor of mosaic-aided navigation.

VII. Conclusions

This paper presented a method for vision-aided navigation for an airborne platform

equipped with an inertial navigation system and a camera with a relatively small field-

of-view. The camera was mounted on gimbals so that it could scan the over-flown ground

regions during flight. The images captured by the camera were used for both constructing

a mosaic image and performing motion estimation. Motion estimation was fused with the

inertial navigation using an Implicit Extended Kalman Filter.

The main idea of the new method was to combine camera scanning and online mosaic

construction, which yielded enlarged overlapping areas. Due to the imperfectness of the

mosaic construction process, features from the additional overlapping area tend to be of

a lower quality compared to those from the original overlapping area. Consequently, the

proposed method allowed to obtain improved-precision image-based motion estimation when

the original overlapping area between the captured images contains only a small set of high-

quality features, which is the case when observing planar low-texture ground regions.

Two types of mosaic images were constructed. The first type is a small mosaic image

that was used for motion estimation and constructed in real time. The second type is the

main mosaic image, constructed in a background process from all the captured images. This

architecture breaks the ‘curse of dimensionality’ of Simultaneous Localization and Mapping

methods, and allows to reduce the computational load in a significant manner.

The proposed method was examined using a statistical simulation study assuming ideal

motion estimations, and experiments involving realistic scenarios based on real imagery

from Google Earth. These experiments included implementation of camera scanning and
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Figure 12. Actual navigation errors vs. filter covariance - Mosaic aiding. (a) Position Errors.
(b) Velocity Errors. A consistent overall behavior of filter covariances, compared to the actual
errors.

mosaic construction. Superior performance was demonstrated compared to traditional two-

view methods for motion estimation and navigation aiding for challenging scenarios, such as

cameras with narrow field-of-views and low-texture scenes. In particular, it was shown that

estimation of position and velocity errors normal to the flight heading, as well as of the roll

angle, can be significantly improved.

Appendix A: Development of the Measurement Equation

This appendix presents a development of a measurement model that relates between

the image-based estimated camera relative motion tC2
1→2, R

C2
C1

and the developing navigation

errors of a standard INS and the parameters that model the IMU errors. The state vector

is defined in Eq. (13):

X =
[
∆PT ∆VT ∆ΨT dT bT

]T

(30)

Under ideal conditions, viz. when there are no navigation errors and tC2
1→2, RC2

C1
are

perfectly estimated, the following can be written:

PosL2
True(t2)−PosL2

True(t1) = γTC2
L2,T ruet

C2
1→2,T rue (31a)

TC2
C1,T rue = RC2

C1,T rue (31b)

where TC2
L2

is the directional cosines matrix (DCM) transforming from C to LLLN at the

time instance t = t2; TC2
C1

is the DCM transforming from C at t = t2 to C at t = t1; and

PosL(t2)(t1) is the platform’s position at t = t1 expressed in the LLLN system at t = t2,
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Figure 13. Actual navigation errors vs. filter covariance - Mosaic aiding. (a) Euler Angles Er-
rors. (b) Bias Estimation Errors. A consistent overall behavior of filter covariances, compared
to the actual errors.

so that PosL(t2)(t1) = T
L(t1)
L(t2) PosL(t1)(t1). The subscript (·)True in Eq. (31) indicates ideal

conditions as defined above.

The DCM TC2
L2

is required since the extracted translation tC2
1→2 is given in the camera

reference frame, while the left side of Eq. (31a) is expressed in the LLLN system.

A. Translation Measurement Equation

In an ideal situation, with no navigation and image processing errors, the two sides of

Eq. (31a) constitute parallel vectors. Thus, this equation yields the following constraint:

[
PosL2

True(t2)−PosL2
True(t1)

]× TC2
L2,T ruet

C2
1→2,T rue = 0 (32)

In reality, there are navigation errors that increase with time, moreover, the estimated

camera matrix contains errors due to image noise. Thus, Eq. (32) no longer holds. Denoting

by Nav parameters that are taken from the navigation data and by t̂
C2

1→2 the actual estimated

translation vector obtained from the image processing module, Eq. (32) becomes

[
PosL2

Nav(t2)−PosL2
Nav(t1)

]× TC2
L2,Nav t̂

C2

1→2 = ztranslation (33)

where ztranslation denotes the residual measurement vector.

Taking into account the fact that PosL2
Nav(.) = PosL2

True(.)+∆PL2(.) and subtracting (32)

from (33) results in

[∆P(t2)−∆P(t1)]
L2 × TC2

L2,Navt̂
C2

1→2 + vtr = ztranslation (34)
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where vtr = [PosTrue(t2)−PosTrue(t1)]
L2 ×

[
TC2

L2,Navt̂
C2

1→2 − TC2
L2,T ruet

C2
1→2,T rue

]
. The vector

vtr is due to imperfect translation measurements and navigation errors. One may verify that

in ideal conditions this term is nullified.

The inertial position error for a sufficiently small ∆t = t2 − t1 or for a straight and level

flight is given by [37] (the Nav subscript is omitted for simplicity from here on; thus, all

parameters are computed based on the navigation system data, unless otherwise specified):

∆P(t2) = TL1
L2

[
−1

6
As(t1)T

B1
L1

d · (∆t)3

+
1

2

[
As(t1)∆Ψ(t1) + TB1

L1
b
]
(∆t)2 + ∆V(t1)∆t + ∆P(t1)

]
(35)

Note that a transformation matrix, TL1
L2

, was added to express the position error at t = t2 in

LLLN coordinates.

Substituting Eq. (35) into Eq. (34), canceling position errors at t = t1 and denoting

t̂
L2

1→2 ≡ TC2
L2,Navt̂

C2

1→2 yields

[
TL1

L2

[
−1

6
As(t1)T

B1
L1

d · (∆t)3 +
1

2

[
As(t1)∆Ψ(t1) + TB1

L1
b
]
(∆t)2 + ∆V(t1)∆t

]]∧
t̂
L2

1→2

+vtr = ztranslation (36)

where (.)∧ denotes the matrix cross-product equivalent. One can see from Eq. (36) that the

translation measurement equation is of the form ztranslation = H trX + vTr, where

H tr =
[
03×3 H tr

∆V H tr
∆Ψ H tr

d H tr
b

]
(37)

After some algebraic manipulations (cf. Appendix A in Ref. [37]), the submatrices of H tr

can be rendered into

H tr
∆V = −

[
t̂
L2

1→2

]∧
TL1

L2
∆t H tr

∆Ψ = −1

2

[
t̂
L2

1→2

]∧
TL1

L2
As(t1)(∆t)2

H tr
d =

1

6

[
t̂
L2

1→2

]∧
TL1

L2
As(t1)T

B1
L1

(∆t)3 H tr
b = −1

2

[
t̂
L2

1→2

]∧
TL1

L2
TB1

L1
(∆t)2

B. Rotation Measurement Equation

Recall Eq. (31b), written under the assumption of ideal conditions: TC2
C1,T rue = RC2

C1,T rue.

When taking into account navigation errors and errors in the estimated rotation matrix, this

equation no longer holds. Instead, we define a residual error angle vector, zrotation. Under
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the assumption of small angles, this vector can be written as

I − z∧rotation,A = TC2
C1,Nav

[
R̂C2

C1

]T

(38)

Here TC2
C1,Nav denotes the DCM transforming from C at t = t1 to C at t = t2, computed

by the navigation system of the platform. This matrix differs from the true DCM due to

platform navigation errors. The matrix R̂C2
C1

is the estimated rotation matrix. One can verify

that under ideal conditions, TC2
C1,T rue = RC2

C1,T rue, and thus the rotation error angle zRotation

is equal to zero. We omit the subscript (Nav) for simplicity, and write simply TC2
C1

.

In general, TC2
C1

can be written as follows:

TC2
C1

= TB1
C1

TE
B1

TB2
E TC2

B2
(39)

where the matrices TB1
C1

and TC2
B2

are assumed to be known precisely – or at least with much

more precision compared to the developing attitude errors. Thus, TC
B = TC

B,True.

The errors in the ECEF-to-body rotation matrix stem from two sources: position errors

and attitude errors. Denote by LC the correct LLLN system at the platform estimated

position, and by L the LLLN system estimated by the navigation system. Thus TE
B = TL

BTE
LC

,

where TL
B is erroneous due to attitude errors and TE

LC
is erroneous due to position errors.

When these errors are not present, L = LC = LTrue, where LTrue is the true LLLN system.

The errors in TE
LC

are assumed to be negligible, since they depend on the position errors,

which are small relative to Earth’s radius. Thus, LC = LTrue and therefore TE
LC

= TE
LTrue

.

However, the attitude errors do not allow a perfect estimation of the DCM transforming

from LLLN to B, since the estimated LLLN system is erroneous. Hence, TL
B = TLC

B TL
LC

.

Assuming small attitude errors, we write ΨNav = ΨTrue +∆Ψ to obtain TL
LC

= I−∆Ψ∧.

Taking all the above into consideration, Eq. (39) turns into

TC2
C1

= TB1
C1

T
LC1
B1

[I −∆Ψ∧(t1)] TE
LC1

T
LC2
E [I + ∆Ψ∧(t2)] T

B2
LC2

TC2
B2

(40)

For a sufficiently small t− t0 or for a straight and level flight, one can use the approximation

(cf. Appendix A in Ref. [37]) ∆Ψ(t2) = −TB1
L1

d∆t+∆Ψ(t1). Substituting this into Eq. (40),

ignoring second-order terms and carrying out some additional algebraic manipulations we

get

TC2
C1

= TB1
C1

T
LC1
B1

TE
LC1

T
LC2
E TB2

LC2
TC2

B2

+ TB1
C1

T
LC1
B1

[
TE

LC1
T

LC2
E

(
∆Ψ(t1)− TB1

L1
d∆t

)∧ −∆Ψ∧(t1)TE
LC1

T
LC2
E

]
TB2

LC2
TC2

B2
(41)

As was mentioned before, the rotation matrix that was estimated by the image processing
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module differs from the true matrix. Let TRErr
be the DCM transforming between the true

rotation matrix and the estimated one: R̂C2
C1

= TRErr
RC2

C1,T rue.

Multiplying Eq. (41) by
[
R̂C2

C1

]T

from the right and noting that TB1
C1

T
LC1
B1

TE
LC1

T
LC2
E TB2

LC2
TC2

B2

is the nominal value of TC2
C1,T rue and hence also of RC2

C1,T rue yields

TC2
C1

[
R̂C2

C1

]T

=
{

I + TB1
C1

T
LC1
B1

[
TE

LC1
T

LC2
E

(
∆Ψ(t1)− TB1

L1
d∆t

)∧

− ∆Ψ∧(t1)TE
LC1

T
LC2
E

]
TB2

LC2
TC2

B2
RC1

C2,T rue

}
T T

Rerr
(42)

Assuming small estimation rotation errors vrot, one can write T T
Rerr

= I − v∧rot. Thus,

substituting Eq. (42) into Eq. (38) yields

z∧rotation = v∧rot + TB1
C1

T
LC1
B1

[
−TE

LC1
T

LC2
E

(
∆Ψ(t1)− TB1

L1
d∆t

)∧

+∆Ψ∧(t1)TE
LC1

T
LC2
E

]
TB2

LC2
TC2

B2

[
R̂C2

C1

]T

(43)

Using Eq. (39), one can write the following two relations:

TB1
C1

T
LC1
B1

TE
LC1

T
LC2
E = R̂C2

C1
TB2

C2
T

LC2
B2

, TB1
C1

T
LC1
B1

= R̂C2
C1

TB2
C2

T
LC2
B2

TE
LC2

T
LC1
E (44)

Substituting Eqs. (44) into Eq. (43) and using the fact that for any matrix Λ and any vector

ξ, Λξ∧ΛT = (Λξ)∧, Eq. (43) transforms into

zrotation = R̂C2
C1

TB2
C2

T
LC2
B2

(
TE

LC2
T

LC1
E − I

)
∆Ψ(t1) + R̂C2

C1
TB2

C2
T

LC2
B2

TB1
L1

d∆t + vrot (45)

One can see that Eq. (45) is of the form zrotation = HrotX + vrot, where

Hrot =
[
03×3 03×3 Hrot

∆Ψ Hrot
d 03×3

]

Hrot
∆Ψ = R̂C2

C1
TB2

C2
T

LC2
B2

(
TE

LC2
T

LC1
E − I

)
, Hrot

d = R̂C2
C1

TB2
C2

T
LC2
B2

TB1
L1

∆t

Appendix B: Google Earth Interface

Given a platform trajectory and measurement settings (such as measurement frequency),

a command is sent to Google Earth throughout the interface to display a region at a specified

position (latitude, longitude and altitude) and inertial orientation. These are computed

based on the current platform position, attitude and camera angles.

Since the current version of Google Earth allows changing only the camera heading and

tilt angles, special care was taken to allow roll motion in Google Earth, that is required for

implementing the camera scanning procedure. This was achieved by shifting the yaw angle
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by 90o relative to the flight heading angle and adjusting the camera system accordingly. As a

result, camera/platform roll motion is obtained through tilt motion (handled automatically

by the interface).

In the current implementation, the image acquisition through Google Earth is performed

offline, i. e., this command is sent according to the measurement’s frequency and the acquired

images are saved into some repository. The images are injected into the image processing

module in the simulation at appropriate instants. Examples of images acquired from Google

Earth are given throughout the paper (e. g. Figure 4). See also Appendix A in Ref. [41].
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