
1

Mosaic Aided Navigation: Tools, Methods and
Results

Vadim Indelman, Pini Gurfil, Ehud Rivlin and Hector Rotstein

Abstract—The on-line construction of an image mosaic or
panorama can be exploited to aid the navigation system of an
airborne platform. The purpose of the paper is threefold. First,
the paper presents some of the tools required for computing a
mosaic and using the information collected as a side product
within a navigation filter. These tools include a special variation
of the Kalman filter and a new formulation of the tri-focal tensor
from multi-frame vision. Second, the paper summarizes a general
method for fusing the motion information obtained during the
mosaicking process and also shows how ”loop-closure” can be
used to preserve navigation errors at their initial levels. Third,
the paper discusses a number of illustrative examples to show
how mosaic aiding can indeed result in a substantial improvement
of the navigation solution.

I. INTRODUCTION

Image mosaicking refers to the process by which a number
of image frames taken by one or more cameras are combined
to form a single image of a relatively large scene. Mosaicking
is nowadays common in applications ranging from panoramic
home photos to high-end aerial imagery, and assumes either
implicitly or explicitly, that the motion of the imaging system
in between frames is known to some precision. In the case
of home panoramics, the motion between frames is assumed
to be a pure rotation and the panorama is formed by looking
for overlapping areas in between two frames. The rotation
assumption guarantees no or negligible perspective distortion
and hence the frames can be pasted seamless without transfor-
mations. In the case of aerial imagery from a flying platform,
the problem is much more complex since the images depend
also on the 3D structure of the scene and on the location and
angular orientation of the platform, in addition to the earth
roughly spherical shape. Hence aerial imagery usually assumes
that the navigation solution of the platform is known up to
the minimum accuracy to form a mosaic that is consistent
in some sense. Motivated by the proliferation of mosaicking
algorithms and the fact that a mosaic results from the platform
or the sensor motion, one is led to consider the inverse problem
relevant for navigation: is it possible to estimate or provide
an update for the motion of a platform based on a mosaic?
Several interesting practical problems would naturally benefit
from such an approach:

1) Go Back Home. The navigation and/or guidance systems
of many modern UAVs’ rely on GPS for positioning. In

V. Indelman and P. Gurfil are with the Faculty of Aerospace Engineer-
ing, Technion - Israel Institute of Technology, Haifa 32000, Israel (e-mail:
ivadim@tx.technion.ac.il, pgurfil@technion.ac.il).

E. Rivlin is with the Department of Computer Science, Technion - Israel
Institute of Technology, Haifa 32000, Israel (e-mail: ehudr@cs.technion.ac.il).

H. Rotstein is with RAFAEL - Advanced Defense Systems Limited, Israel
(e-mail: hector@rafael.co.il).

case of a GPS outage, the algorithm switches back to
survival variation of a vertical gyro to keep the platform
on the air, while turning in circles at constant altitude or
been flown back manually. Intuitively, if a mosaic was
built while GPS is available, then this mosaic can be
used as a map to fly the UAV automatically, and even
return back to base in case of an outage.

2) Loitering. In many applications a flying platform must
get to a location of interest and then fly around more
or less in circles while performing surveillance or other
similar mission. In this case, a mosaic may be generated
when the platform arrives at the loitering location, and
then used to keep the platform on a specified trajectory
using the mosaic as a form of geo-referencing. Notice
that the absolute location with respect to the earth may
not be exact but a similar level of navigation error could
in principle be maintained during the whole mission.

3) Information Sharing. When more than one air vehicle
are involved in a cooperative mission, and all or some
of the platforms are equiped with cameras, then a
mosaic may in principle be built by combining the
image frames from all the vehicles together with the
respective navigation solution. Notice that the consistent
combination of all the information sources is not trivial
and may require substantial computational effort.

Mosaic assisted navigation requires several building blocks.
It is assumed that a flying platform is provided with an inertial
measurement unit (IMU) and a processor for computing a
navigation solution. The platform has also a GPS receiver and
antenna for computing position and velocity, and a camera
or similar electro-optical device for acquiring images of the
ground overflown by the platform. It is worth stressing that
this is the setup of most autonomous and semi-autonomous
platforms today. Given this hardware, considerable research
efforts have been placed during the last decated into the
development of algorithms for aiding the inertial solution
from the IMU with GPS and visual data. A typical Vision
Assisted Navigation (VAN) algorithm uses the information
extracted from an image registration process, along with the
information available from other sensors, for estimating the
platform’s states and possibly additional navigation parame-
ters. For example, Ref. [1] proposed integrating the velocity-
to-height vision-based estimation with additional on-board
sensors; Ref. [2] applied the subspace-constraint approach [3]
to partially estimate an airborne platform’s states based on
measurements from an image registration process injected into
an implicit extended Kalman filter (EKF); and Ref. [4] utilized
epipolar constraints formulated for each pair of matching

2

features to aid the inertial navigation of a ground vehicle.
All the preceding methods rely only on information from
inertial navigation sensors and an on-board camera, without
assuming any a-priori available information or additional
external sensors. This is also the approach adopted in the
current work.

Alternatively, ref. [5] assumed that altimeter measurements
are used for scaling the imaging sensors in order to improve
state estimation during the landing phase of a space probe.
Refs. [6] and [7] showed that absolute pose and motion
estimation is possible when assuming that a DTM is available.
Another fusion approach, more closely connected with this
work, is that of map-based navigation, which assumes that
a map of the operational area is given and that the vehicle
navigates by fusing inertial measurements, images of the en-
vironment and a map [8], [9], [10]. For example, Refs. [9], [10]
proposed vision-based navigation for an unmanned underwater
vehicle relying on a previously-constructed mosaic image of
the ocean floor.

This paper describes tools and methods for vision-aided
navigation of an airborne platform utilizing the information
contained in the on-line construction of a mosaic from images
that are captured by an on-board camera. It is assumed that the
airborne platform is equipped with a standard, possibly low-
quality, inertial navigation system and a camera mounted on
gimbals. No additional external information source is assumed
to be available, including no a-priori additional information
except, perhaps, for the initial alignment of the navigation
system. In particular, the mosaic image that represents the map
of the overflown region has to be constructed during the flight
and its accuracy will be relative to the accuracy of the original
navigation solution. If an additional source of information,
e. g. GPS, is partially available, then the information of this
sensor can be used to provide an absolute geo-reference for
the mosaic.

In addition to the references mentioned above, Mosaic
Aided Navigation can be compared with Simultaneous Lo-
calization and Mapping (SLAM) [11]-[16], in which the con-
struction of the observed environment representation and the
estimation of the navigation solution are performed simultane-
ously. The standard approach to SLAM consists of formulating
a joint-estimation problem on the navigation errors and a
description of the environmnet like the location of landmarks
or occupation cells. When processing a measurement, e.g., the
new frame acquired by a camera, the navigation solution like
position and velocity are updated together with the description
of the environment. SLAM has generated some remarkable
results, and for instance it has been shown that under some
restrictive assumptions, the estimated representation of the
environment converges to the true one asymptotically. Nev-
ertheless, SLAM has some drawbacks, and among them the
fact that when the complexity of the scene grows, so does the
representation and hence the computational load associated
with solving the problem. The current work uses a mosaic as
a representation for the environment, but this representation is
not included with the motion parameters in the overall estima-
tion scheme. This approach was chosen in order to mitigate
one of the major deficiencies of the SLAM approach - the

increasing computational load resulting from the augmentation
of the state vector with the environment representation.

This work suggests a variation of the SLAM framework
for coping with the aforementioned challenge: Separating the
environment recovery from motion estimation. In order to do
this, two types of mosaics are constructed: a temporary or local
mosaic and a main or global mosaic. The parameter estimation
is based on the first type of mosaic image, which is a
small temporary mosaic constructed based on recent incoming
camera-captured images. Once the temporary mosaic image
reaches a certain size, its contents are removed and used for
updating the main mosaic image in a background process. The
advantage of this architecture is the low computational load
required for parameter estimation, since it involves processing
a constant-size state vector and only a portion of the temporary
mosaic image. The main mosaic image, on the other hand, may
be updated at a lower frequency using various algorithms [17]-
[29] depending on the available computational resources.

Images registration and image-based motion estimation are
important constituents in all VAN methods. The existence of
overlapping regions between processed images is the common
assumption to all vision-based motion estimation techniques.
A large overlapping region between two images should allow
a more accurate motion estimation relying on two-view ge-
ometry methods. If a mutual overlapping region for more than
two images can be found, the performance may be further
enhanced by applying multi-view-geometry-based methods.

The two-view-geometry-based methods include, for exam-
ple, Ref. [30], in which the relative motion between two
given views is extracted from an estimated essential matrix
[31]. The motion parameters are then used for estimating the
state vector, which is an augmented vector comprised of the
vehicle’s current pose and past poses for each captured image.
When the observed scene is planar, the motion parameters
can be calculated by estimating the homography matrix [32],
[10], [33], [35]. Having in mind the requirements for real-
time performance and a low computational load, in this work
the estimated camera motion is related to a constant-size state
vector comprised of the vehicle’s current parameters only (in
contrast to Ref. [30]).

The multi-view-geometry-based methods, in contrast to
two-view-geometry, use connections among several images,
assuming that a common overlapping region exists. This re-
sults in an increased observability and better estimation of the
platform states. However, assuming that an overlapping region
among several images exists may be invalid in many airborne
applications. Violating this assumption usually degenerates
the multi-view methods into the two-view methods discussed
above.

Yet, when the platform trajectory contains loops, or alterna-
tively, in the case of several platforms that share information
among themselves, several images are likely to be available
with a mutual overlapping area. Consequently, motion estima-
tion based on multiple-view geometry, and in particular three-
view geometry, may be applied. Indeed, several multi-view
methods for navigation aiding have been already proposed
[36], [38]. In Ref. [36], features that are observed within
multiple images and the platform pose at the relevant time

3

instances are related using an augmented state vector. The state
vector contains the current platform pose and the platform pose
for each previously-captured image that has at least one feature
that appears in the current image. Once a certain feature,
observed in the previous images, is no longer present in the
currently-captured image, all the stored information for this
feature is used for estimating the platform parameters, and
the pose entries that belong to these past images are casted
aside from the state vector. However, should the same feature
be re-observed at some later time instant, such as in a loop
scenario, the method will not be able to use the data for
the feature’s first appearance. It was later proposed [37] to
cope with loops using bundle adjustment [31]. However, this
process involves processing all the images that are part of the
loop sequence, and therefore real-time performance is hardly
possible. Furthermore, the method contains an intermediate
phase of structure reconstruction.

The proposed approach herein for fusing information based
on at least three overlapping images relies on the same archi-
tecture of decoupling the parameter estimation from mosaick-
ing mentioned above, utilizing a constant-size state vector.
Constraints based on a geometry of a general scene observed
by three views are formulated, and then fused with an inertial
navigation system using an Implicit Extended Kalman Filter,
allowing estimation of the position state, thereby reducing the
position errors to the levels present while the first two images
were obtained. Thus, loop scenarios are handled by processing
only three images, thereby requiring a reduced computational
load compared to the available state-of-the-art techniques for
handling loop scenarios, which either use an augmented state
(SLAM methods) or require processing all the image chain
(bundle adjustment methods), rendering real-time performance
impractical.

The developed constraints and the trifocal tensor [31] are
both constituted assuming a general three-view geometry.
However, while the trifocal tensor utilizes only features that
are observed from all the three images, the developed con-
straints may also be partially applied using features that are
observed in each pair of images of the given three images.
It should be noted that the trifocal tensor has been suggested
for camera motion estimation [39], [40], and for localization
of a robot and observed landmarks while performing a planar
motion [41]. However, the trifocal tensor and in particular the
constraints developed herein, have not been proposed so far
for navigation aiding.

The camera field-of-view (FOV) is another important factor
in the context of motion estimation. A special attention is given
in this work to allow improved motion estimation when using
narrow-FOV cameras, since many modern aerial platforms are
equipped with narrow-FOV cameras of up to a few degrees to
obtain large-zoom images with high resolution and feasible
requirements on computational power. In the current work
a method is proposed for increasing the overlapping regions
between the images, by coupling the camera scanning and the
online mosaic construction procedures.

II. PRELIMINARIES

Throughout this paper, the following coordinate systems are
used:
• E - Earth-fixed reference frame, also known as an Earth-

centered, Earth-fixed (ECEF) coordinate system. Its ori-
gin is set at the center of the Earth, the ZE axis coincides
with the axis of rotation, XE goes through the point
latitude 0o, longitude 0o, and YE completes a Cartesian
right-hand system.

• L - Local-level, local-north (LLLN) reference frame, also
known as a north-east-down (NED) coordinate system. Its
origin is set at the platform’s center-of-mass. XL points
north, YL points east and ZL is aligned with the plumb-
bob vertical to complete a Cartesian right-hand system.

• B - Body-fixed reference frame. Its origin is set at the
platform’s center-of-mass. XB points towards the nose
tip, YB points toward the right wing and ZB completes
the setup to yield a Cartesian right-hand system.

• C - Camera-fixed reference frame. Its origin is set at the
camera center-of-projection. XC points toward the FOV
center, YC points toward the right half of the FOV and
ZC completes the setup to yield a Cartesian right-hand
system.

Notice that the camera is mounted on gimbals and performs
pan and tilt movements with respect to the platform; the yaw
and pitch angles between B and C are denoted by ψC and
θC , respectively.

III. MOSAIC-AIDED NAVIGATION TOOLS

Figure 1 shows the main components of the architecture
under consideration. The specific system assumed in this work
is an airborne platform equipped with a gimballed camera and
an inertial navigation system (INS). Throughout this work,
a narrow-FOV camera is assumed, since it is more realistic
than wide-FOV camera for many cases of practical interest.
As mentioned in the Introduction, a narrow-field makes the
VAN and the image-based motion estimation problems more
challenging. However, the proposed method is not restricted
to cameras with narrow FOV, and is valid for other cameras as
well. In addition, it is assumed that the observed ground area
is sufficiently close to planar, or alternatively, that the flight
altitude above ground level is high relative to ground changes
in elevation1.

The INS consists of an inertial measurement unit (IMU),
a strapdown algorithm and a navigation Kalman Filter. The
strapdown algorithm integrates the accelerations and angular
rates (or rather, the velocity and angular increments) from the
IMU to produce a navigation solution, which is comprised of
platform position, velocity and attitude. Due to the unavoidable
errors of the IMU sensors, the computed navigation parameters
develop errors which increase unboundedly over time. It is
well-known that for relatively low-grade inertial sensors, errors

1This assumption is made due to the construction process of the mosaic
image, which is based on the homography transformation. However, the
proposed approach for fusing image-based motion estimations and navigation
data may be also applied without constructing a mosaic image, in which case
non-planar scenes can be handled as well [45].

4

grow proportionally to time cubed, and hence an uncompen-
sated inertial solution becomes useless in a relatively short
period of time.

During the flight, an on-board camera captures images
of ground regions according to a scanning procedure. The
acquired images are directed to the image processing module
that is accountable for mosaic image construction and for
relative motion estimation. While all the images are used for
updating the mosaic image, the motion estimation is performed
at a lower frequency, utilizing only some of the images.

The mosaic construction is coupled with the camera scan-
ning procedure, and is processed in two phases: 1) The
camera-captured images are used for constructing a small
temporary mosaic image. This temporary mosaic image is
used for motion estimation at appropriate time instances. 2)
After each motion estimation event, the temporary mosaic
image is emptied and initialized to the most recent camera-
captured image, while the removed images from the temporary
mosaic image are used to update the main mosaic image in a
background process.

The image-based motion estimation is reformulated into
measurements, which are then injected into the navigation
Kalman Filter in order to update the navigation system and
thereby arrest the development of inertial navigation errors. In
this way, the platform can navigate for long periods of time
even with low-grade sensors.

Strapdown

Camera
Inertial Navigation System

New Image

IEKF

IMU

measurements
Pos

V

 Ψ

r

r

r

A

B

B

A

Repository

A

New

Image

+

NavData

Three

Overlapping

Images?

Three-View Constraints

Image Processing Module

New Image

Image 1, NavData 1

Image 2, NavData 2

Yes

Fig. 1. Overview of the system concept.

A. Camera Scanning Procedure and Mosaic Construction
Method

1) Scanning Procedure: During flight, the onboard camera
captures images of the ground according to commands either
from a human operator, an autonomous tracking algorithm of
some features on the ground, or a scanning procedure. When
captured, each new frame is processed and used to update the
mosaic image of the flight area.

The scanning procedure is designed such that each image
partially overlaps the preceding image as well as images from
the previous scan stripe. The existence of overlapping regions
is essential for performing image matching between captured
images. In addition, and as opposed to most motion-from-
structure methods, the additional overlapping region, provided
by the camera scanning procedure, enables enhancement of

motion estimation, as demonstrated in Ref. [44]. The proposed
scan pattern also allows implementation of improved mosaic
construction methods.

We assume that the scanning procedure modifies the pan
angle of the camera, ψc, while keeping the camera tilt angle
constant. Given camera angles at the current time instant,
the calculation of camera angles for the next time instant is
performed in two steps. First, the line-of-sight (LOS) vector
for the next camera aiming point in the body-fixed reference
frame, r̂B , is determined according to

r̂B = TC
B (ψc)

[f, d · CCDYC
/2, 0]T∥∥∥[f, d · CCDYC
/2, 0]T

∥∥∥
(1)

where TC
B (ψc) is the directional cosines matrix (DCM) trans-

forming from the camera reference frame to the body frame,
computed based on current camera angles; f is the camera
focal length; d is the scan direction, so that d = 1 for
increasing the camera pan angle and d = −1 for decreasing
the camera pan angle; and CCDYC

is the size of the camera
charged coupled device (CCD) in pixels along the YC axis.

The next step is to compute the new camera angles from
r̂B . The DCM transforming from B to C can be written as

TB
C (ψc) =

0 sin ψc cosψc

0 cos ψc − sinψc

−1 0 0

 (2)

Since the aiming point vector in C is, by definition, [1 0 0]T ,
one can write

r̂B = TC
B (ψc)

[
1 0 0

]T =
[
0 sin ψc cos ψc

]T (3)

hence

ψc = tan−1

[
r̂B(2)
r̂B(3)

]
(4)

The scanning direction, d, is switched once the camera pan
angle, ψc, reaches a certain pre-specified level; this level is
constrained by the correspnding gimbal limit but may be
smaller than this mechanical limit.

For simplicity, it is assumed implicitly that the velocity-
over-height ratio and the camera sampling frequency provide
sufficient overlapping regions between each two adjacent
images along the flight direction. Thus, the proposed scan
methodology moves the camera only in a direction perpen-
dicular to the flight trajectory. Notice that in a practical
application this imposes a complex trade-off among flying
altitude over ground, platform speed, FOV, scanning slant
angle and resolution. However, the method presented here may
be adjusted to work with a relaxed version of the assumption.
Note also that no additional or a-priori information is required.
An example of real mosaic images, constructed based on
images acquired during the camera scanning procedure, as
well as full details of the implemented scanning procedure,
are given in Ref. [44].

2) Mosaic Construction Method: The construction of a
mosaic from a series of single frames has several advantages
from an application viewpoint. A mosaic is capable of showing
the whole flight region in a single image, a feature that

5

constitutes an important aid to surveillance, communication
and mission operation. Moreover, as shown in Ref. [44], the
mosaic image and its construction process can be utilized
for enhancing the accuracy of image-based relative motion
estimation. We shall now present a partial description of
the mosaic construction method using the camera scanning
method described in Section III-A1.

The mosaic construction process and the camera scanning
procedure are coupled. During the scan, images are captured
using varying camera angles. While all the images contribute
to the construction of a mosaic, only images taken while
the camera was pointing downwards are used for motion
estimation. These images are referred to as downward-looking
images.

The mosaic construction process proceeds as follows. Two
mosaic representations are constructed in the proposed ap-
proach: a temporary mosaic image that is used for motion
estimation, and the main mosaic image which is the final
mosaic image constructed based on the captured images.

The temporary mosaic image is initialized to a downward-
looking image, once such an image is captured, and is
updated with new non-downward-looking images. When a
new downward-looking image is captured, it is matched to
a relevant region in the temporary mosaic image, which is
calculated utilizing information from the navigation system.
Next, motion estimation can be performed, as discussed in
Ref. [44].

The temporary mosaic image is expressed in the preceding
downward-looking image system, defined as the coordinate
system C of the previous downward-looking image. Therefore,
the estimated motion describes the relative motion performed
by the camera between two adjacent downward-looking im-
ages. This estimation will be used to correct developing inertial
navigation errors.

Due to the coupling between the scanning procedure and
the mosaic construction process, an enlarged overlapping area
between the new downward-looking image and the tempo-
rary mosaic image is achieved. This, and the quality of the
constructed temporary mosaic image, are the two factors
that allow better motion estimation in certain scenarios, as
demonstrated in Ref. [44].

After motion estimation is performed, the temporary mosaic
image is reset and initialized to the new downward-looking
image. The images that were removed from the temporary
mosaic image are then used for updating the main mosaic
image. Since the main mosaic image is not used for motion
estimation, it may be updated in a background process. This
may be performed by applying various algorithms [17]-[29],
[34], depending on the available computational resources.

An example of the mosaic image construction process,
based on real images acquired using the scanning procedure
described above from Google Earth, is given in Ref. [44].

It should be noted that loop scenarios may be also handled
in this background process yielding an improved main mosaic
image. In case of a loop, motion estimation and navigation
aiding are performed based on the temporary mosaic image,
following the method suggested herein. However, a different
approach is required for utilizing the full potential of the

available information in such an event (e. g. three overlapping
images), as discussed in Sections III-D and IV.

B. Multi-Point Kalman Filter

The problem considered in this note is the following. Given
is the system:

x(t + 1) = Φ(t, t + 1)x(t) + w(t), (5)

where Φ ∈ IRn×n, and w(t) is a Gaussian white noise process
with Ew(t) = 0 and Ew(t)w(t)T = Q(t). What makes the
system ”interesting” is the fact that the measurements at time
t can be modeled by:

z(t) = H2(t)x(t− 2) + G2(t)ν(t− 2) +
+H1(t)x(t− 1) + G1(t)ν(t− 1) +
+H0(t)x(t) + G0(t)ν(t), (6)

where Hi(t) and Gi(t) are time dependent measurement and
measurement-noise matrices, and ν(t) is a Gaussian white
noise process with expected value Eν(t) = 0 and covariance
Eν(t)ν(t)T = R(t). For ease of notation, it will be assumed
here that Q(t) = Q and R(t) = R. The problem is to design
an optimal estimator x(t/t) for the state x(t) using all the
measurements available up to time t. The error between the
states and its estimate is denoted by:

x̃ (t/τ) = x(t)− x(t, τ), τ ≤ t. (7)

The estimator is to be unscented, so that Ex̃ (t/τ) = 0. The
covariance of this estimation error is P (t/τ).

1) Back to the KF: In order to find a solution to the
estimation problem, we will try to re-write it using the Kalman
Filtering formalism. To do that, define:

xa(t) =

x(t− 2)
x(t− 1)

x(t)

 (8)

and

Φa(t, t + 1) =

0 I 0
0 0 I
0 0 Φ(t, t + 1)

 (9)

wa(t) =

0
0

w(t)

 . (10)

Then, from (5),

xa(t + 1) = Φa(t, t + 1)xa(t) + wa(t). (11)

Likewise, taking

Ha(t) =
[

H2(t) H1(t) H0(t)
]
, (12)

Ga(t) =
[

G2(t) G1(t) G0(t)
]
, (13)

νa =

ν(t− 2)
ν(t− 1)

ν(t)

 (14)

one can write:

z(t) = Ha(t)xa(t) + Ga(t)νa(t). (15)

6

Notice that:

Qa =

0 0 0
0 0 0
0 0 Q

 ,

Ra =

R 0 0
0 R 0
0 0 R

 .

2) Propagation Stage: Define the propagation stage:

xa(t + 1/t) = Φa(t, t + 1)xa(t/t) (16)

Then:

x̃ (t + 1/t) = Φa(t, t + 1)x̃ (t/t) + wa(t) (17)

and

P (t + 1/t) = Φa(t, t + 1)P (t/t)Φa(t, t + 1)T + Qa. (18)

3) A-Posteriori Estimate: The correction stage is substan-
tially more complicated than the propagation stage discussed
above. Using the KF formalism, take:

xa(t/t) = x(t/t− 1) + Ka(t) [z(t)−
−Ha(t)x(t/t− 1)] =

= x(t/t− 1) + Ka(t) [Ha(t)x̃ (t/t− 1)+
+Ga(t)νa(t)] ,

so that

x̃ (t/t) = [I −Ka(t)Ha(t)] x̃ (t/t− 1)
−Ka(t)Ga(t)νa(t). (19)

The objective is now to compute Ka(t) in an optimal manner,
namely, so that it minimizes the trace of the covariance
Pa(t/t). From (19):

Pa(t/t) = [I −Ka(t)Ha(t)]Pa(t/t− 1) ·
· [I −Ka(t)Ha(t)]T + Ka(t)Ga(t)RaGa(t)T Ka(t)T −
− [I −Ka(t)Ha(t)] E

[
x̃ (t/t− 1) νa(t)T

] ·
·Ga(t)T Ka(t)T −Ka(t)Ga(t) ·
·E

[
νa(t)x̃ (t/t− 1)T

]
[I −Ka(t)Ha(t)]T

Let
Pxν(t) = Ex̃ (t/t− 1) νa(t)T (20)

Then, the optimal filter gain can be computed to be:

Ka(t) =
[
Pa(t/t− 1)Ha(t)T + Pxν(t)RaGa(t)T

] ·
· [Ha(t)Pa(t/t− 1)Ha(t)T + Ga(t)RaGa(t)T +

+ Ha(t)Pxν(t)Ga(t)T + Ga(t)Pxν(t)T Ha(t)T
]−1

with a-posteriori covariance:

Pa(t/t) = Pa(t/t− 1)− (21)
− Ka(t)

[
Ha(t)Pa(t/t− 1) + Ga(t)RaPxν(t)T

]

4) Computation of the Cross-Covariance: This section
contains a derivation for the cross-covariance matrix Pxν(t)
required for implementing the formula above. From (20) and
(17),

Pxν(t) = E [Φa(t− 1, t)x̃ (t− 1/t− 1) + wa(t− 1)] νa(t)T

= Φa(t− 1, t)Ex̃ (t− 1/t− 1) νa(t)T .

Using (19):

Pxν(t) = Φa(t− 1, t)E {[I−
−Ka(t− 1)Ha(t− 1)] x̃ (t− 1/t− 2)−
Ka(t− 1)Ga(t− 1)νa(t− 1)} νa(t)T

= Φa(t− 1, t) [I−
−Ka(t− 1)Ha(t− 1)] Ex̃ (t− 1/t− 2) νa(t)T −

−Φa(t− 1, t)Ka(t− 1)Ga(t− 1)

0 0 0
R 0 0
0 R 0

Again, by using (17) and (19),

Ex̃ (t− 1/t− 2) νa(t)T =
Φa(t− 2, t− 1)Ex̃ (t− 2/t− 2) νa(t)T ·
·Φa(t− 2, t− 1) [I−
−Ka(t− 2)Ha(t− 2)] Ex̃ (t− 2/t− 3) νa(t)T −
−Φa(t− 2, t− 1)Ka(t− 2)Ga(t− 2)νa(t− 2)νa(t)T

The first term in this expression is zero since no correlation
exists between νa(t) and estimates prior to t−2. Consequently,

Ex̃ (t− 1/t− 2) νa(t)T = (22)

−Φa(t− 2, t− 1)Ka(t− 2)Ga(t− 2)

0 0 0
0 0 0
R 0 0

Therefore:

Pxν(t) = −Φa(t− 1, t) [I −Ka(t− 1)Ha(t− 1)] ·

·Φa(t− 2, t− 1)Ka(t− 2)Ga(t− 2)

0 0 0
0 0 0
R 0 0

−

−Φa(t− 1, t)Ka(t− 1)Ga(t− 1)

0 0 0
R 0 0
0 R 0

C. Special Case: Filter applied each 3 measurements

The equations above are substantially simplified if the filter
is applied using each measurement only once. That is to say,
if the estimates are updated only each 3 measurement sample
times. In that case, and using the notation above, Ka(t−1) =
Ka(t− 2) = 0. As a consequence, Pxν(t) = 0, and denoting:

P0 = Pa(t− 2/t− 3)
P1 = Φ(t− 2, t− 1)P0Φ(t− 2, t− 1)T + Q

P2 = Φ(t− 1, t)P1Φ(t− 1, t)T + Q

one can compute

Pa(t/t− 3) =

P0 PT
10 PT

20

P10 P1 PT
21

P20 P21 P2

 . (23)

7

with P10
.= Φ(t− 2, t− 1)P0, P20

.= Φ(t− 2, t)P0 and P21
.=

Φ(t− 1, t)P1.
Eq. (23) can also be re-written as:

Pa(t/t− 3) =

I
Φ(t− 2, t− 1)

Φ(t− 2, t)

P0 ·

· [I Φ(t− 2, t− 1)T Φ(t− 2, t)T
]
+

+

0
I

Φ(t− 1, t)

 Q

[
0 I Φ(t− 1, t)T

]
+

+

0 0 0
0 0 0
0 0 Q

 .

Define:

Hb1(t) = H2(t) + H1(t)Φ(t− 2, t− 1) +
+H0(t)Φ(t− 2, t)

Hb2(t) = H1(t) + H0(t)Φ(t− 1, t).

Then, the Kalman gain simplifies to:

Ka(t) =

I
Φ(t− 2, t− 1)

Φ(t− 2, t)

 P0H

T
b1+ (24)

+

0
I

Φ(t− 1, t)

 QHT

b2 +

0
0
I

 QHT

0

P−1

zz (t)

where

Pzz
.= Hb1P0H

T
b1 + Hb2QHT

b2 + H0QHT
0 + Ga(t)RaGa(t)T .

Notice that in this special case, the state needs to be updated
at time t only, so that the filter gain can be reduced to:

Kar(t) =
[

0 0 I
]
Ka(t)

=
[
Φ(t− 2, t)P0H

T
b1 + Φ(t− 1, t)QHT

b2+

+QHT
0

]
P−1

zz . (25)

The state should be updated using

x(t/t) = x(t/t− 3) + Karz(t) (26)

with corresponding a-posteriori covariance matrix

P (t/t) =
[

0 0 I
]
Pa

0
0
I

 (27)

= P2 −
[
Φ(t− 2, t)P0H

T
b1 + Φ(t− 1, t)QHT

b2+

+ QHT
0

]
P−1

zz

[
Φ(t− 2, t)P0H

T
b1+

+ Φ(t− 1, t)QHT
b2 + QHT

0

]T

D. Epipolar and Trifocal Constraints

In this section a development of constraints based on a
general three-view geometry is presented. Figure 2 presents
the considered scenario, in which a single ground landmark
p is observed from three images captured at time instances
t1, t2 and t3, where t1 < t2 < t3. Denote by Tij the camera
translation motion from the ith to jth view, with i, j ∈ {1, 2, 3}

1 1,q λ

2 2,q λ
3 3,q λ

12T
23T

13T �� ���� ��
 �� ���� ��

�� ���� ��

p

Fig. 2. Three view geometry

and i 6= j. Let also qi and λi be the line of sight (LOS) vector
and range, respectively, to the ground landmark p at time ti.

The position of a ground landmark p relative to the camera
position at t1, expressed in the LLLN system of t2 may be
written as:

λ1C
C1
L2

qC1
1 = CC1

L2
TC1

12 + λ2C
C2
L2

qC2
2 (28a)

λ1C
C1
L2

qC1
1 = CC1

L2
TC1

12 + CC2
L2

TC2
23 + λ3C

C3
L2

qC3
3 (28b)

where qCi
i is the LOS to the ground feature at ti, expressed

in a camera system at ti; λi is the range between the platform
position at time instant ti and the landmark p; CCi

L2
is a

directional cosine matrix (DCM) transforming from camera
system at ti to the LLLN system at t2; TCi

ij is the platform
translation from time ti to tj , expressed in the camera system
at ti. Here i, j ∈ {1, 2, 3}, i 6= j.

Subtraction of Eq. (28a) from Eq. (28b) and some basic
algebraic manipulations give

0 = λ1C
C1
L2

qC1
1 − λ2C

C2
L2

qC2
2 − CC1

L2
TC1

12 (29a)

0 = λ2C
C2
L2

qC2
2 − λ3C

C3
L2

qC3
3 − CC1

L2
TC1

23 (29b)

Since the range parameters λ1, λ2, λ3 are neither required
nor known, we wish to form constraints on T23 without
using these parameters, or in other words, avoid structure
reconstruction. For this purpose, Eq. (29) is rewritten into the
matrix form

[
q1 −q2 03×1 −T12

03×1 q2 −q3 −T23

]

6×4

λ1

λ2

λ3

1

4×1

= 06×1 (30)

For the sake of brevity, the superscript L2 was omitted, e. g.
q1 ≡ qL2

1 = CC1
L2

qC1
1 .

Let

A =
[

q1 −q2 03×1 −T12

03×1 q2 −q3 −T23

]
∈ R6×4 (31)

In a similar manner to Refs. [31] and [47], since all the
components in

[
λ1 λ2 λ3 1

]T are nonzero, it follows that
rank(A) < 4. In particular, the determinant of any 4 × 4
submatrix of A should be equal to zero. A careful examination
of all such possible submatrices of A will give a complete set
of constraints derived from a general three-view geometry.

8

All the 4× 4 submatrices of A comprised of the first three
rows with any of the other rows of A yield the epipolar
constraint for the first two views:

qT
1 (T12 × q2) = 0 (32)

This constraint, when applied to a single pair of matching
features, forces the three vectors q1,T12,q2 to be coplanar.
In case several matching points are considered, it is possible
to determine T12 only up to scale.

In the same manner, the last three rows, with any of the first
three rows of A provide the epipolar constraint for the second
and the third views:

qT
2 (T23 × q3) = 0 (33)

The more interesting result, however, stems from analyzing
the determinants of all the other possible submatrices of A.
After extensive algebra (cf. Ref. [46]) one gets:

(q2 × q1)
T (q3 ×T23) = (q1 ×T12)T (q3 × q2) (34)

The constraints (32,33) force the translation vectors to be
co-planar with the LOS vectors. Given multiple matching
features, one can determine from Eqs. (32) and (33) the
translation vectors T12 and T23, respectively, up to scale.
In general, these two scale unknowns are different. The two
scales are connected through Eq. (34), which relates between
the magnitudes of T23 and T12. Consequently, if the mag-
nitude of T12 is known,it is possible to calculate both the
direction and the magnitude of T23, given multiple matching
features.

Several remarks are in order. First, Eqs. (32-34) also contain
rotation parameters, since all the quantities are assumed to
be expressed in the LLLN system at t2. Second, structure
reconstruction is not required. As shown in the sequel, this
allows to maintain a constant-size state vector comprised of the
vehicle’s parameters only, resulting in a reduced computational
load.

IV. MOSAIC AIDED NAVIGATION METHODS

In this section we present a technique for fusing the three-
view geometry constraints, with a standard navigation system,
assuming three images with a mutual overlapping area had
been identified. The data fusion is performed using an indirect
IEKF that estimates the navigation parameter errors instead of
the parameters themselves. These estimated errors are then
used for correcting the navigation solution computed by the
navigation system.

When real imagery and navigation data are considered, the
existence of navigation errors and image noise renders the
constraints of Eqs. (32-34) inaccurate. Thus, the following
residual measurement is defined:

z .=

U
F
0

N×3

T23 −

W
0
G

N×3

T12
.= AT23 − BT12 (35)

where

U =
[
u1 . . . uN123

]T
W =

[
w1 . . . wN123

]T

F =
[
f1 . . . fN23

]T
G =

[
g1 . . . gN12

]T

Notice that Nij is the number of corresponding feature points
between frame i, and frame j, and likewise for Nijk between
frames i, j and k. Also:

fT .= (q2 × q3)
T (36)

gT .= (q1 × q2)
T (37)

uT .= (q1 × q2)
T [q3]× = gT [q3]× (38)

wT .= (q2 × q3)
T [q1]× = fT [q1]× (39)

Full development of these equations may be found in Ref.
[46].

Since T12 = Pos(t2) − Pos(t1) , T23 = Pos(t3) −
Pos(t2), and the matrices F, G,U,W are functions of the LOS
vectors, the residual measurement z is actually a nonlinear
function of the following parameters2:

z = h (Pos(t3),Ψ(t3),Pos(t2),Ψ(t2), (40)

Pos(t1),Ψ(t1),
{
qC1

1i
,qC2

2i
,qC3

3i

})

Here (t3, t2, t1) denote the time instances in which the three
mutually overlapping images were captured, with t3 being the
current time.

We now define the state vector as

X =
[
∆PT ∆VT ∆ΨT dT bT

]T
(41)

where ∆P ∈ R3, ∆V ∈ R3, ∆Ψ ∈ SO(3) are the position,
velocity and attitude errors, respectively, and (d,b) is the
parameterization of errors in the inertial sensor measurements:
d ∈ R3 is the gyro drift, and b ∈ R3 is the accelerometer
bias. The first 9 components of X are given in LLLN coor-
dinates, while the last 6 are written in a body-fixed reference
frame. The corresponding transition matrix Φd(t2, t1) satisfy-
ing X(t2) = Φd(t2, t1)X(t1) is given in Ref. [45].

Noting that X contains navigation information only for
the current time instant, while the residual measurement z
contains navigation and imagery information from the three
time instances t1, t2 and t3, we define the following augmented
state vector:

X (t3, t2, t1)
.=

[
X(t3)T X(t2)T X(t1)T

]T
(42)

Linearizing h about Pos(t3),Ψ(t3),Pos(t2),Ψ(t2),
Pos(t1),Ψ(t1) and

{
qC1

1i
,qC2

2i
,qC3

3i

}
, and keeping the first

order terms yields

z ≈ HX +Dv (43)

where H is the gradient of h with respect to X ,

HN×45 =
[
H3 H2 H1

]
(44)

with Hi being the gradient of h with respect to X(ti), i ∈
{1, 2, 3}. The matrix D is the gradient of h with respect to
the LOS vectors and v is the image noise associated with the
LOS vectors with covariance matrix R. The development of
the matrices H,D, R is given in Ref. [46].

2In Eq. (41),
{
qC1

1i
,qC2

2i
,qC3

3i

}
refers to the fact that LOS vectors from

all the three images are used for calculating the residual measurement z.
Note that each of the matrices F, G, U, W is a function of a different set of
matching points.

9

Since it is unknown a-priori which three images will have a
mutual overlapping area, and in order to maintain a constant-
size state vector, each captured image should be stored and
associated with the relevant navigation information3. The
navigation data that should be attached to each image are
the platform position, attitude, gimbal angles and the filter’s
uncertainty covariance matrix.

The resulting estimation problem can be solved using results
discussed in section III-B.

A. Computational Requirements

A single filter update step, given three mutually overlapping
images, involves computation of the matrices A,B and the
Jacobian matrices H, D. These calculations are linear in N .
Noting that the state vector is constant in size, the most
computationally expensive operation in the filter update step
is the inversion of an N × N matrix that is required for the
calculation of the gain matrix.

Although the augmented state vector X is a 45-element
vector, the actual calculations are performed using the basic
state vector X ∈ R15×1. The computational load is not
significantly increased even when the augmented state vector
X is used (given that the correlation terms involving the
current time are known), since the propagation step is still
carried out using the basic state vector X. The calculation of
the gain matrix K involves inversion of an N × N matrix,
while a-posteriori estimation of only the first 15 elements of
X and of the 15× 15 upper left sub-matrix of the augmented
covariance matrix P should be performed.

The computational load of the proposed method does not
change significantly over time (depending on the variation
of N), regardless of the scenarios in which the algorithm is
applied to (including loops). Moreover, if the computational
capability is limited, it is possible to utilize only part of the
available matching pairs and triplets, or eliminate the epipolar
constraints, thus reducing the computational load even further.

In contrast to the above, the computational requirements of
other existing methods are much higher. The SLAM approach
entails constantly increasing computational requirements, due
to the augmentation of the state vector. Furthermore, the
high computational load is induced in each filter propagation
step. Methods that perform state augmentation until a certain
size of the state vector is reached (e. g. Ref. [36]), handle
loops trajectory by applying bundle adjustment over all the
images that were captured during the loop chain, as opposed
to processing only three images as done in our approach.

V. RESULTS

This section contains results of the developed mosaic-aided
navigation method that are based on two-view and three-view
geometry. The two-view method is demonstrated using images
from Google Earth4 and a simulation navigation. The three-
view method is demonstrated in an experiment involving real

3Practically, since saving all the captured images might be difficult in certain
applications, one may settle for storing the images at some high frequency, or
following different logic, at the expense of having less images in the repository
to seek for potential overlapping areas.

4http://earth.google.com/index.html.

TABLE I
INITIAL NAVIGATION ERRORS AND IMU ERRORS

Parameter Description Value Units
∆P Initial position error (100, 100, 100)T m

∆V Initial velocity error (0.3, 0.3, 0.3)T m/s

∆Ψ Initial attitude error (0.1, 0.1, 0.1)T deg

d IMU drift (1, 1, 1)T deg/hr

b IMU bias (1, 1, 1)T mg

imagery and navigation data. Additional results are given in
Refs. [44], [45] and [46].

A. Vision-Aided Navigation - Two-view Method

This section contains results of the developed mosaic-
aided navigation method based on the camera scanning and
mosaic construction procedures described in Section III-A.
The results are based on images obtained from Google Earth
and a navigation simulation. A complete description of the
fusion between the products of these two procedures and the
navigation system is given in Ref. [44] and Ref. [45].

The results are compared to vision-aided navigation based
on a statndard two-view motion estimation technique. The
examined scenario consists of a narrow-FOV camera (5o×3o)
and a low-texture scene. The platform performs a straight
and level north-heading flight. The observed scene along this
trajectory is of a planar nature with about 50 m elevation above
sea level.

The assumed values of IMU errors and initial navigation
errors are given in Table I. The IMU errors are then used for
contaminating the pure IMU readings, while the initial input
to the strapdown module is set according to initial platform
parameters and initial navigation errors (cf. Section V).

The experiment consisted of 50 sec of inertial flight, fol-
lowed by a 50 sec of vision-aided phase, during which the
mosaic- and two-view-based motion estimations were injected
into the navigation system. The last phase is another inertial
navigation flight segment for 50 sec. Figures 3-6 provide the
experimental results, comparing the navigation performance
for the two examined methods (mosaic and two-view). In
addition, the development of inertial navigation errors is given
for reference.

The enhanced performance of mosaic-aided navigation can
be clearly seen. During the vision-aided phase, the position and
velocity errors (Figures 3 and 4) perpendicular to the flight
heading are significantly reduced. The mosaic-based aiding
yields better results than two-view-based aiding, due to more
accurate vision-based motion estimation. As for the roll angle
error (Figure 5), although this error is smaller with the two-
view method, it is expected to reach higher values if more
measurements were accepted by the filter.

When examining the behavior of navigation errors in an
inertial segment (after the vision-aided phase), one can notice
the slow development of inertial errors when using mosaic
aiding. The reason for this is the improved bias estimation
compared to the estimation using the two-view method, as
shown in Figure 6: bz is almost exactly estimated and thus

10

it does not contribute to the growth of inertial position and
velocity errors in the down axis. The drift state was not
estimated at all, because all the relative rotation measurements
were rejected by the filter due to their low quality.

0 50 100 150
0

50
100
150

N
or

th
 [m

]

InertialInertial Vision−Aided

0 50 100 150

100

200

E
as

t [
m

]

0 50 100 150
80

100
120
140

Time [s]

H
ei

gh
t [

m
]

Mosaic Inertial 2−view

Fig. 3. Mosaic aiding applying two-view techniques vs. conventional two-
view aiding: Position errors. Inertial error development in the north direction
due to lack of observability. Reduced errors in the east and down directions,
with a significant improvement in favor of the mosaic aiding.

0 50 100 150

0

1

2

V
N
 [

m
/s

]

Inertial InertialVision−Aided

0 50 100 150
−2

−1

0

V
E
 [

m
/s

]

Mosaic Inertial 2−view

0 50 100 150
−1

−0.5
0

0.5

Time [s]

V
D
 [

m
/s

]

Fig. 4. Mosaic aiding applying two-view techniques vs. conventional two-
view aiding: Velocity errors. Inertial error development in the north direction
due to lack of observability. Reduced errors in the east and down directions,
with a significant improvement in favor of the mosaic aiding.

0 50 100 150
−0.2

0

0.2

Φ
 [d

eg
]

Inertial InertialVision−Aided

0 50 100 150
−0.2

−0.15

−0.1

Θ
 [d

eg
]

0 50 100 150
−0.2

−0.15

−0.1

Time [s]

Ψ
 [d

eg
]

Mosaic Inertial 2−view

Fig. 5. Mosaic aiding applying two-view techniques vs. conventional two-
view aiding: Euler angle errors. Roll angle error estimation for both motion
estimation methods. Pitch and yaw angles errors are not reduced due to lack
of observability.

0 50 100 150
0.9

1

1.1

b x [
m

g] Inertial InertialVision−Aided

0 50 100 150

0.8

1

b y [
m

g]

0 50 100 150
0

0.5

1

b z [
m

g]

Time [sec]

Mosaic 2−view

Fig. 6. Mosaic aiding applying two-view techniques vs. conventional two-
view aiding: Bias estimation errors. Considerably improved bz estimation in
favor of mosaic-aided navigation.

B. Mosaic-Aided Navigation - Three View method

In this section results are shown for navigation aiding
based on the developed three-view-geometry method. First,
the method is applied on real images and simulated navigation.
Next, the method is demonstrated in an experiment involving
real imagery and navigation data. A statistical study of the
method based on synthetic imagery and simulation navigation
can be found in Ref. [46].

1) Results based on Real Images and Simulated Navigation:
The set of three partially overlapping images used in this
section is shown in Figure 7. The image matching process

(a) First image (b) Second image

(c) Third image

Fig. 7. Original indoor images.

is given in Figure 8.
The camera orientation was identical while the three images

were captured. The relative translation motion of the camera
(manually measured) between these images is

T12 =
(
59.7 0 0

)T
cm

T23 =
(−36.4 −67.9 0

)T
cm

Since three-view geometry constrains the camera motion up
to a common projective transformation, we can create any

11

(a) (b)

(c) (d)

(e)

Fig. 8. Image matching. (a) Matching pairs between image 1 and 2:{
xi

1,xi
2

}N12
i=1

; (b) Matching pairs between image 2 and 3:
{
xi

2,xi
3

}N23
i=1

; (c)
Matching triplets between image 1 and 2: (x1,x2) ∈ {

xi
1,xi

2,xi
3

}N123
i=1

; (d)
Matching triplets between image 2 and 3: (x2,x3) ∈ {

xi
1,xi

2,xi
3

}N123
i=1

; (e)
Matching triplets between image 1 and 3: (x1,x3) ∈ {

xi
1,xi

2,xi
3

}N123
i=1

.

trajectory and set the transformation accordingly. Next, we
present such a trajectory, and show the results when fusing
the algorithm with an inertial navigation of the platform.

The assumed trajectory is given in Figure 9. As can be
seen, the platform performs a shifted loop while maintaining
a constant altitude, and observes the same scene three times
(the camera orientation is denoted by arrows in the figure) at
the following time instants: t1 = 22.74 sec, t2 = 50.00 sec,
t3 = 405.48 sec. Note that the crossover occurs at t3.

−121.75
−121.7

−121.65
−121.6

−121.55
−121.5

37.15

37.2

37.25

37.3
999

999.5

1000

1000.5

1001

H
ei

gh
t [

m
]

Longitude [deg]Latitude [deg]

2

3 1

Fig. 9. Platform trajectory. The three views and camera orientation are
denoted as well.

The true translation in the appropriate LLLN coordinate
frame between these three time instants is5

TL1
12 =

(
2725.6 0 0

)T
m

TL2
23 =

(−1661.9 −3100 0
)T

m

Figures 10-13 shows the development of navigation errors
and the square root of filter covariance. As can be seen, the
position error in all axes (Figure 10) is reduced to the levels
of position error that were present while the first image was
captured (t1 = 22.74 sec), e. g. the error in east component
drops from around 1900 m to only 90 m, while the initial error
(at t = 0 sec) was 100 m.

As to the other parameters in the state vector, the velocity
errors were also significantly reduced (Figure 11), while
the attitude error was somewhat deteriorated. The drift state
(Figure 13) is not estimated, while the bias state is estimated
in z axis, and partially estimated in x axis.

It should be noted, that a different scenario (e. g. different
camera orientation) might change the components in bias and
drift states that may be estimated. However, the estimation of
position error , as described above, will be obtained regardless
to the examined scenario, as long as three partially overlapping
images are available.

0 100 200 300 400 500
−2000

0

2000

N
or

th
 [m

]

Error Sqrt Cov

0 100 200 300 400 500
0

1000

2000

E
as

t [
m

]

0 100 200 300 400 500
0

1000

2000

Time [s]

H
ei

gh
t [

m
]

Fig. 10. Three-view method: a single loop update based on real images -
Position errors

0 100 200 300 400 500
−20

0

20

V
N
 E

rr
or

 [m
/s

]

Error Sqrt Cov

0 100 200 300 400 500
−20

0

20

V
E
 E

rr
or

 [m
/s

]

0 100 200 300 400 500
−5

0

5

Time [s]

V
D
 E

rr
or

 [m
/s

]

Fig. 11. Three-view method: a single loop update based on real images -
Velocity errors

5Thus, the scaling constant of three-view geometry is around 45.6 in this
scenario.

12

0 100 200 300 400 500
−0.5

0

0.5

Φ
 [d

eg
]

Error Sqrt Cov

0 100 200 300 400 500
−0.5

0

0.5

Θ
 [d

eg
]

0 100 200 300 400 500
−0.5

0

0.5

Time [s]

Ψ
 [d

eg
]

Fig. 12. Three-view method: a single loop update based on real images -
Euler angle errors

300 350 400 450
0.95

1

1.05

d x E
rr

or
 [d

eg
/h

r]

300 350 400 450
0.5

1

1.5

b x E
rr

or
 [m

g]

Error Sqrt Cov

300 350 400 450
0.8

1

1.2

d y E
rr

or
 [d

eg
/h

r]

300 350 400 450
0.8

1

1.2

b y E
rr

or
 [m

g]

300 350 400 450
0.5

1

1.5

d z E
rr

or
 [d

eg
/h

r]

Time [s]
300 350 400 450
0

1

2

b z E
rr

or
 [m

g]

Time [s]

Fig. 13. Three-view method: a single loop update based on real images -
Drift and bias estimation errors (zoomed)

2) Experimental Results: The experimental setup contains
an MTi-G Xsens6 IMU/INS and a 207MW Axis network
camera7 that were mounted on top of a ground vehicle. The
vehicle was manually commanded using a joystick, while the
camera captured images perpendicular to the motion heading.
During the experiment, the inertial sensor measurements and
camera images were recorded for post-processing at 100 and
15 Hz frequency, respectively. In addition, these two data
sources were synchronized by associating to each image a
time stamp from the navigation timeline. Figure 14 shows the
described hardware.

(a) (b)

Fig. 14. Hardware used in the experiment. (a) Axis 207MW camera. (b)
XSens MTi-G IMU/INS.

The true vehicle trajectory was manually measured dur-
ing the experiment and associated with a timeline by post-

6http://www.xsens.com/en/general/mti-g.
7http://www.axis.com/products/cam 207mw/index.htm.

processing the inertial sensors readings. The obtained ref-
erence trajectory is presented in Figure 15 and Figure 16.
The diamond marks denote the manual measurements of
the vehicle position, while the solid line represents a linear
interpolation between each two marks. The vehicle began its
motion at t ≈ 76 seconds. As can be seen from Figure 15, the
vehicle performed the same closed trajectory twice (see also
Figure 16).

50 100 150 200 250
0

2

4

N
or

th
 [m

]

50 100 150 200 250
0

5

10

E
as

t [
m

]

50 100 150 200 250
−2

0

2

H
ei

gh
t [

m
]

Time [s]

Fig. 15. Trajectory performed in the experiment.

0
2

4
6

0

2

4
−1

0

1

2

A
lt

[m
]

East [m]North [m]

Fig. 16. Trajectory performed in the experiment - 3D view

The recorded inertial sensor measurements were processed
by the strapdown block yielding an inertial navigation solution.
Sets of three mutually overlapping images were manually iden-
tified and chosen. The proposed algorithm was applied for each
such set and used for updating the navigation system. Two
different update modes are demonstrated in this experiment:
a) “Sequential update” in which all the three images were
acquired closely to each other, and b) “Loop update” in which
the first two images were captured while the platform passed
the region for the first time, whereas the third image was
obtained at the second passing. The algorithm activation is
the same in both cases.

The image matching process for the first set of three
mutually overlapping images is partially shown in Figure
17. Two camera captured images (of the three) are given in
Figures 17(a)-17(b). The set of matching pairs

{
xi

1,x
i
2

}N12

i=1
is

provided in Figure 17(c). As can be seen, the images have a
considerable mutual overlapping area, and thus it was possible
to obtain a large number of matching pairs (and triplets); only

13

(a) (b)

(c)

Fig. 17. Image matching process. (a),(b) Two camera-captured overlapping
images. (c) Matching pairs: (x1,x2) ∈ {

xi
1,xi

2,xi
3

}N123
i=1

. For clarity, only
the first few matches are explicitly shown; the rest of the matches are denoted
by marks in each image.

a few of them are explicitly shown in Figure 17(c), while the
rest of the matches are denoted by marks.

The results are shown in Figure 18, that presents the
estimated position compared to the true position. In addition,
an inertial scenario (based only on inertial navigation data)
is given. The update mode of the method in the experiment
was as follows (also indicated in the figure). Until t ≈ 150
seconds sequential updates were performed; Loops updates
were carried out after the platform has completed a loop,
starting from t ≈ 158 seconds.

During the sequential updates phase, the time instances
(t1, t2, t3) were chosen such that t2 − t1 ≈ 1 seconds and
t3− t2 ≈ 5 seconds. As can be seen, while sequential updates
are active, the position is estimated up to several meters,
whereas the inertial solution rapidly diverges.

After the vehicle had completed its first loop, the algorithm
was applied in a “loop update” mode. As can be seen, each
such update, significantly reduces the inertially accumulated
position error, allowing to maintain a small error of several
meters after over 150 seconds of operation. For comparison,
the inertial error approaches 1100 meter (in the north axis)
over this period of time, indicating the low quality of the
inertial sensors. Note that the position error is reduced in
all axes, including along the motion direction, which is not
possible in two-view methods for navigation aiding.

VI. CONCLUSIONS

The paper has shown that the on-line construction of an
image mosaic can be effectively exploited to aid the navigation
system of an airborne platform. The paper contains three
main sections. On the first, some of the tools required for
computing a mosaic and using the information collected as
a side product within a navigation filter were discussed,
including mosaic construction, multi-point Kalman filter and
a new formulation of the tri-focal tensor from multi-frame
computer vision. As discussed, the multi-point filter is required
since the measurement process includes the navigation solution
at several time instants. Also, the new formulation of the

100 150 200 250 300
0

50

100

N
or

th
 [m

]

100 150 200 250 300

0

20

40

E
as

t [
m

]

100 150 200 250 300
−5

0

5

10

15

Time [s]

H
ei

gh
t [

m
]

Estimated
Inertial
True
Seq. upd.
Loop upd.

Fig. 18. Estimated position in an experiment. Reduced position errors in
the sequential mode. The position error is reset back to its prior levels in the
loop updates.

three-frame vision constraint is adequate for fusing in an
implicit Kalman filtering setup. The next section deals with
a collection of methods for fusing multi-frame constraints
and the side-products of the mosaic construction procedure
with a navigation solution. The following section presents
some illustrative examples to show how the mosaic aided
approach can slow down the error build-up in an inertial
navigation algorithm and also reduce these errors to their
initial level when a loop-closure is detected. Overall, mosaic-
aided navigation appears to provide an adequate solution for a
number of relevant mission scenarios, including the return to
base, long-time loitering and possibly navigation information
sharing between several cooperative platforms.

REFERENCES

[1] Merhav, S. and Bresler, Y., “On-Line Vehicle Motion Estimation from
Visual Terrain Information Part 1: Recursive Image Registration,” IEEE
Transactions on Aerospace and Electronic Systems, Vol. 22, No. 5, 1986,
pp. 583–587.

[2] Gurfil, P. and Rotstein, H., “Partial Aircraft State Estimation from
Visual Motion Using the Subspace Constraints Approach,” Journal of
Guidance, Control and Dynamics, Vol. 24, No. 5, July 2001, pp. 1016–
1028.

[3] Soatto, S. and Perona, P., “Recursive 3-D Visual Motion Estimation
Using Subspace Constraints,” International Journal of Computer Vision,
Vol. 22, No. 3, 1997, pp. 235–259.

[4] Diel, D., DeBitetto, P. and Teller, S., “Epipolar Constraints for Vision-
Aided Inertial Navigation,” Proceedings of the IEEE Workshop on
Motion and Video Computing, Vol. 2, January 2005, pp. 221–228.

[5] Roumeliotis, S., Johnson, A. and Montgomery, J., “Augmenting Inertial
Navigation with Image-Based Motion Estimation,” IEEE International
Conference on Robotics and Automation, Vol. 4, 2002, pp. 4326–4333.

[6] Merhav, S. and Bresler, Y., “On-Line Vehicle Motion Estimation from
Visual Terrain Information Part 2: Ground Velocity and Position Estima-
tion,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 22,
No. 5, 1986, pp. 588–604.

[7] Lerner, R., Rivlin, E., and Rotstein, H., “Pose and Motion Recovery from
Feature Correspondences and a Digital Terrain Map,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 28, No. 9, September
2006, pp. 1404–1417.

14

[8] Sim, D., Park, R., Kim, R., Lee, S., and Kim, I., “Integrated Position
Estimation Using Aerial Image Sequences,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 24, No. 1, January 2002,
pp. 1–18.

[9] Gracias, N., Zwaan, S., Bernardino, A. and Santos-Victor, J., “Results
on Underwater Mosaic-based Navigation,” IEEE OCEANS, Vol. 3, 2002,
pp. 1588–1594.

[10] Gracias, N. and Santos-Victor, J., “Underwater Video Mosaics as Visual
Navigation Maps,” Computer Vision and Image Understanding, Vol. 79,
2000, pp. 66–91.

[11] Garcia, R., “A proposal to estimate the motion of an underwater vehicle
through visual mosaicking,” Phd thesis. University of Girona, Spain,
2002.

[12] Garcia, R., Puig, J., Ridao, P., and Cufi, X., “Augmented State Kalman
Filtering for AUV Navigation,” IEEE Proceedings on International
Conference Robotics and Automation, Vol. 4, 2002, pp. 4010– 4015.

[13] Davison, A.J., Reid, I.D., Molton, N.D. and Stasse, O., “MonoSLAM:
Real-Time Single Camera SLAM,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, Vol. 29, No. 6, 2007.

[14] Bryson, M. and Sukkarieh, S., “Active Airborne Localization and
Exploration in Unknown Environments using Inertial SLAM,” IEEE
Aerospace Conference, 2006.

[15] Bryson, M. and Sukkarieh, S., “Bearing-Only SLAM for an Airborne
Vehicle,” Australasian Conference on Robotics and Automation, 2005.

[16] Kim, J. and Sukkarieh, S., “6DoF SLAM aided GNSS/INS Navigation
in GNSS Denied and Unknown Environments,” Journal of Global
Positioning Systems, Vol. 4, No. 1-2, pp. 120–128, 2005.

[17] Peleg, S. and Herman, J., “Panoramic mosaics by manifold projection,”
In CVPR, 1997, pp. 338–343.

[18] Szeliski, R., “Image alignment and stitching: A tutorial,” Tech. Rep.
MSR-TR-2004-92, Microsoft Research, 2005.

[19] Fleischer, S., Wang, H., and Rock, S., “Video Mosaicking Along
Arbitrary Vehicle Paths,” Proceedings of the Symposium on Vehicle
Technology, 1996, pp. 293–299.

[20] Gracias, N., Costeira, J., and J.Santos-Victor, “Linear Global mosaic For
Underwater Surveying,” IAV2004, 2004.

[21] Kanazawa, Y. and Kanatani, K., “Image Mosaicing by Stratified Match-
ing,” Image and Vision Computing, Vol. 22, 2004, pp. 93–103.

[22] Peleg, S., Rousso, B., Rav-Acha, A., and Zomet, A., “Mosaicing
on Adaptive Manifolds,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 22, No. 10, 2000, pp. 1144–1154.

[23] Shum, H. and Szeliski, R., “Systems and Experiment Paper: Construc-
tion of Panroamic Image Mosaics with Global and Local Alignment,”
International Journal of Computer Vision, Vol. 36, No. 2, 2000, pp. 101–
130.

[24] Zelnik-Manor, L. and Irani, M., “Multiview Constraints on Homogra-
phies,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 24, No. 2, 2002, pp. 214–223.

[25] Richmond, K. and Rock, S., “An Operational Real-Time Large-Scale
Visual Mosaicking and Navigation System,” OCEANS, September 2006,
pp. 1–6.

[26] Ferrer, J., Elibol, A., Delaunoy, O., Gracias, N. and Garcia, R., “Large-
Area Photo-Mosaics Using Global Alignment and Navigation Data,”
OCEANS, September 2007, pp. 1–9.

[27] Irani, M., Anandan, P., and Hsu, S., “Mosaic Based Representations of
Video Sequences and Their Applications,” Proc. of IEEE ICCV, 1995,
pp. 605–611.

[28] Zhang, P., Milios, E. E., and Gu, J., “Graph-based Automatic Consistent
Image Mosaicking,” IEEE International Conference on Robotics and
Biomimetics, Shenyang, China, Paper no. 332, 2004.

[29] Zhu, Z., Hanson, A., and Riseman, E., “Generalized Parallel-Perspective
Stereo Mosaics from Airborne Video,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 26, No. 2, 2004, pp. 226–237.

[30] Eustice, R. M., Pizarro, O. and Singth, H., “Visually Augmented
Navigation for Autonomous Underwater Vehicles,” IEEE Journal of
Oceanic Engineering, Vol. 33, No. 2, 2008, pp. 103–122.

[31] Hartley, R. and Zisserman, A., “Multiple View Geometry,” Cambridge
University Press, 2000.

[32] Tsai, R., Huang, T. and Zhu, W., “Estimating Three-Dimensional Motion
Parameters of a Rigid Planar Patch, II: Singular Value Decomposition,”
IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 30,
No. 4, August 1982, pp. 525–534.

[33] Caballero, F., Merino, L., Ferruz, J. and Ollero, A., “Improving Vision-
based Planar Motion Estimation for Unmanned Aerial Vehicles through
Online Mosaicing,” IEEE International Conference on Robotics and
Automation, Orlando, Florida, May 2006, pp. 2860–2865.

[34] Caballero, F., Merino, L., Ferruz, J. and Ollero, A., “Homography Based
Kalman Filter for Mosaic Building. Applications to UAV position esti-
mation,” IEEE International Conference on Robotics and Automation,
Roma, Italy, April 2007, pp. 2004–2009.

[35] Caballero, F., Merino, L., Ferruz, J. and Ollero, A., “Vision-Based
Odometry and SLAM for Medium and High Altitude UAVs,” Journal of
Intelligent and Robotic Systems, Vol. 54, No. 1-3, March 2009, pp. 137–
161.

[36] Mourikis, A. and Roumeliotis, I., “A Multi-State Constraint Kalman
Filter for Vision-aided Inertial Navigation,” International Conference on
Robotics and Automation, April 2007, pp. 3565–3572.

[37] Mourikis, A. and Roumeliotis, I., “A Dual-Layer Estimator Architec-
ture for Long-term Localization,” IEEE Computer Vision and Pattern
Recognition Workshops, June 2008, pp. 1–8.

[38] Shakernia, O., Vidal, R., Sharp, C., Ma, Y. and Sastry, S., “Multiple
View Motion Estimation and Control for Landing an Unmanned Aerial
Vehicle”, IEEE International Conference on Robotics and Automation,
May 2002, pp. 2793–2798.

[39] Yu, Y. K., Wong, K. H., Chang, M. M. Y. and Or, S. H., “ Recursive
Camera-Motion Estimation With the Trifocal Tensor,” IEEE Transac-
tions on Systems, Man, And Cybernetics - Part B: Cybernetics, Vol. 36,
No. 5, October 2006, pp. 1081–1090.

[40] Yu, Y. K., Wong, K. H., Or, S. H. and Chang, M. M. Y., “ Robust
3-D Motion Tracking From Stereo Images: A Model-Less Method,”
IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 3,
March 2008, pp. 622–630.

[41] Guerrero, J. J., Murillo, A. C. and Sagües, C.,“ Localization and
Matching Using the Planar Trifocal Tensor with Bearing-Only Data,”
IEEE Transactions on Robotics, Vol. 24, No. 2, April 2008, pp. 494–
501.

[42] Lowe, D., “Distinctive Image Features from Scale-Invariant Keypoints”,
International Journal of Computer Vision, Vol. 60, No. 2, November
2004, pp. 91–110.

[43] Fischler, M. and Bolles, R., “Random Sample Consensus: a Paradigm
for Model Fitting with Application to Image Analysis and Automated
Cartography,” Commun. Assoc. Comp. Mach., Vol. 24, 1981, pp. 381–
395.

[44] Indelman, V., Gurfil, P., Rivlin, E. and Rotstein,H., “Real-Time Mosaic-
Aided Aircraft Navigation: I. Motion Estimation,” AIAA GN&C Confer-
ence, USA, 2009.

[45] Indelman, V., Gurfil, P., Rivlin, E. and Rotstein,H., “Real-Time Mosaic-
Aided Aircraft Navigation: II. Sensor Fusion,” AIAA GN&C Conference,
USA, 2009.

[46] Indelman, V., Gurfil, P., Rivlin, E. and Rotstein, H., “Real-Time Vision-
Aided Localization and Navigation Based on Three-View Geometry,”
preprint, 2010.

[47] Ma, Y., Huang, K., Vidal, R., Kosecka, J. and Sastry, S., “ Rank
Conditions on the Multiple-View Matrix,” International Journal of
Computer Vision, May 2004, pp. 115–137.

