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Introduction

= A group of cooperative platforms is considered

— Required to autonomously perform different missions

— Navigation is an essential capability
= Dead reckoning \ inertial navigation errors have to be compensated
= Several methods for cooperative navigation were proposed

— Relative pose measurements between pairs of robots: e.g., “Distributed
Multirobot Localization”, Roumeliotis S.I. and Bekey G.A., 2002

— Two-view geometry and relative pose measurements between pairs of

robots: “Multiple Relative Pose Graphs for Robust Cooperative Mapping”, Kim B. et al.,
2010

— Three-view geometry measurements between triplets\pairs of robots

(camera only): “Distributed Vision-Aided Cooperative Navigation Based on Three-
View Geometry”, Indelman V. et al., 2011 3




Introduction (Cont.)

= Common property — each measurement is constituted upon navigation
information obtained from different robots

— In the general case, these sources of information are correlated

— Neglecting the correlations results in inconsistent information fusion
— Therefore — appropriate correlations terms should be known

= Previous Work:

— Augmented covariance matrix: e.g., “Distributed Multirobot Localization”,
Roumeliotis S.I. and Bekey G.A., 2002

— Consistent information fusion: “Consistent Cooperative Localization”, Bahr A. et
al., 2009

— Smoothing: “Multiple Relative Pose Graphs for Robust Cooperative Mapping”,
Kim B. et al., 2010

= |[n this work: Calculate explicitly correlation terms upon demand




General Multi-Robot Measurement Model

= Assume a group of N robots

= A general number of robots, 7, contribute navigation information and
readings of its onboard sensors (r < N)

— Not necessarily from the same time (e.g., two-view measurements)

2(1) =h({x, (1) 3, (1)} )2 ZHX (1,)+D,(t,)v.(1,)



General Multi-Robot Measurement Model (Cont.)

= Navigation error development for the i-th robot: X, (tb) =0 X (ta ) + @,

t, =t 1 t,—1,

= Update step of the Kalman filter involves cross-covariance terms

~

E[Xi(tl.))?f(tj)]

— X, (1) : Estimation error of X, (#,)

= Objective: Calculate E[ X, (1) X! (tj)]

i

— lIdentities of the robots participating in the measurement are a priori unknown

— The time instances 7, are also a priori unknown

= Maintaining all the possible cross-covariance terms — impractical
— In contrast to relative pose measurements

= Therefore: either neglect, or calculate upon-demand 6




Basic Example

3
= Three-robot measurement model: z(t)= ) HX,(1,)+Dv
a, b, i=1
| —o—o S e e L b
a [ b '@ - a priori information :
I o o - . :
'l - update event (only one robot is updated) |
as bs | :

] O — Ol —» Lo e

= Assume first update (a;) was carried out

= Objective: Calculate E [X o ( )X a1 ( )J =F,,

~

_ 17 11 -
X,,,(tb3) CI)H%X,,,( )+a)ﬁb3 , Xn(sz):--

X, (0 )=(1-K,H,)X,(t,)-K,H,X,(t,)-K,HX,(t,)-K,Dp,

== 5, =0, [(I-K,H, )P, ~K,H, P, ~KHP, (@) -



Concept
= A general MR measurement: z = iH,-X,- (fi)+ D, (ti)vi (ti)
i=1

~

= Objective: Calculate E[Xi (f)XJT (’j)]

1. Represent all MR updates executed so far in a directed acyclic graph
(DAG) G.

2. Express X,(1,)and X (tj) according to the history of MR measurement
updates

3. Calculate E[Xi (1) X! (tj)] based on expressions from step 2.



Concept (cont.)

= Each platform maintains its own DAG G

= A-priori and a-posteriori covariance and cross-covariance matrices are
stored in G after each MR update

= Two node types in G: a-priori and a-posteriori nodes
— Nodes representing (a-priori) information participating in an MR measurement
— Update-event node, representing a-posteriori estimate of the updated robot

= Each MR update is represented by r+17 nodes

a b > A\
2 2 \
I *—+o >~ —> N
a
as bs 3
1l om— o >
~ - \
Example with r=3 T~ 9




Graph Representation (cont.)

= Each node can be connected to another node by a

~ ~

— Transition relation Xb — @' Xa + a)i

t,—1, t,—1,

N
— MR update relation a Briori nodes
X, =(1-K,H,)X, K, > H, X, —KﬁqZIDﬁivﬂi

=1,
i\ g

a posteriori node

= The process and measurement noise covariance matrices are also stored

= Assume we need to calculate 2, = £| X X7 |
— First: Construct two inverse-trees 1. , T,
Containing all the routes in G to the nodes ¢ and d
— Next: Express P, using information stored in nodes in 7, , 7, 0



Algorithm Concept

; . @ + @ 3rd |evel
v

\
c d 2nd level
Update ./ 2 2 [ _~Update
event node
event node 15t level
I, T,

= Start with first-level nodes of 7. ,7,: c and d

= Since £| X, X] |is unknown, proceed to next level in the trees
— According to relation types represented by arc weights

» For example, assume transition relation in both cases

E[XX]]=E| X, (0,.,%, +o,.,) |-E[(0. X, +0._)X]]-

=E (q)c2—>cX +wc2—>c)(q)d2—>dX;dz+aﬁ2—>d)Ti| 11



HEESS AT
Algorithm Concept (cont.)

= [f unknown, proceed to higher levels in 7, and 7,

— Until all the terms required for calculating £[ X X |
are known

— Or, reaching top level in both trees

= Consider reaching the k-th level and

analyzing some pair (c,.d, ) Cclk 6?
k€ 1a

= Look for the pair (c;.d, ) so that Eﬁ)?cjfjk] is
known (i.e. stored in G), with smallest |

— Or (ck, ) with a known E[Xckfﬂ

= The contribution of a known term E[XX;J to £| X X |is calculated as

WC(])E[X XTL\ " (d )+chk

Overall weight of the route©  Overall weight of the route Contrlbution of process and
c,>—>cinT d, —>--—>din T, measurement noise terms.
See paper...
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Results

M-

Three-view measurement model: z(t)= » H,X,(t,)+ Dy

i=1

Details: “Distributed Vision-Aided Cooperative Navigation
Based on Three-View Geometry”, Indelman V. et al., 2011
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Simulation Results — Leader-Follower Scenario

= 2 robots: Leader, Follower
— Leader is equipped with a better IMU

= Scenario:

Follower Leader
— Trajectory: Straight and level, north heading flight S e

— Leader is 20 sec ahead

— Follower is updated every 10 seconds

— Leader is not updated (inertial navigation)

— Synthetic imagery

a1 o oF b,
Leader —@—@ *—© >
as b3
Follower o O >
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Simulation Results — Leader-Follower Scenario (cont.)

Monte Carlo results (1000 runs): Follower’s navigation errors
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Conclusions

= A method for on-demand explicit cross-covariance calculation was
presented

— Multi-Robot general measurement model. A measurement is composed from
information obtained from

Any number of robots
Not necessarily at the same time
— Graph-based approach was applied
Allows properly handling noise covariance terms
— The method was demonstrated for a three-view measurement model
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