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� Conclusions



Introduction

� A group of cooperative platforms is considered

– Required to autonomously perform different missions

– Navigation is an essential capability

� Dead reckoning \ inertial navigation errors have to be compensated

� Several methods for cooperative navigation were proposed
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� Several methods for cooperative navigation were proposed

– Relative pose measurements between pairs of robots: e.g., “Distributed 

Multirobot Localization”, Roumeliotis S.I. and Bekey G.A., 2002

– Two-view geometry and relative pose measurements between pairs of 

robots: “Multiple Relative Pose Graphs for Robust Cooperative Mapping”, Kim B. et al., 

2010

– Three-view geometry measurements between triplets\pairs of robots 

(camera only): “Distributed Vision-Aided Cooperative Navigation Based on Three-

View Geometry”, Indelman V. et al., 2011



Introduction (Cont.)

� Common property – each measurement is constituted upon navigation 
information obtained from different robots 

– In the general case, these sources of information are correlated

– Neglecting the correlations results in inconsistent information fusion

– Therefore – appropriate correlations terms should be known
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� Previous Work:

– Augmented covariance matrix: e.g., “Distributed Multirobot Localization”, 
Roumeliotis S.I. and Bekey G.A., 2002

– Consistent information fusion: “Consistent Cooperative Localization”, Bahr A. et 
al., 2009

– Smoothing: “Multiple Relative Pose Graphs for Robust Cooperative Mapping”, 
Kim B. et al., 2010

� In this work: Calculate explicitly correlation terms upon demand



General Multi-Robot Measurement Model

� Assume a group of     robots

� A general number of robots,   , contribute navigation information and 
readings of its onboard sensors

– Not necessarily from the same time (e.g., two-view measurements)
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: Navigation solution of robot i at time ti

: Readings of onboard sensors of robot i at time ti

: Residual Multi-Robot measurement 

: Measurement errors of onboard sensors of robot i at time ti

: Navigation errors of robot i at time ti
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General Multi-Robot Measurement Model (Cont.)

� Navigation error development for the i-th robot: 

� Update step of the Kalman filter involves cross-covariance terms

– : Estimation error of 
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� Objective: Calculate 

– Identities of the robots participating in the measurement are a priori unknown

– The time instances    are also a priori unknown

� Maintaining all the possible cross-covariance terms – impractical

– In contrast to relative pose measurements

� Therefore: either neglect, or calculate upon-demand
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Basic Example

� Three-robot measurement model:

� Assume first update (a ) was carried out
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- a priori information

- update event (only one robot is updated)
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� Assume first update (a3) was carried out

� Objective: Calculate ( ) ( )
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Concept

� A general MR measurement:

� Objective: Calculate 

1. Represent all MR updates executed so far in a directed acyclic graph 

(DAG) G. 
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2. Express           and             according to the history of MR measurement 

updates

3. Calculate                               based on expressions from step 2.
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Concept (cont.)

� Each platform maintains its own DAG G

� A-priori and a-posteriori covariance and cross-covariance matrices are 
stored in G after each MR update

� Two node types in G: a-priori and a-posteriori nodes

– Nodes representing (a-priori) information participating in an MR measurement

– Update-event node, representing a-posteriori estimate of the updated robot
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– Update-event node, representing a-posteriori estimate of the updated robot

� Each MR update is represented by r+1 nodes
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Graph Representation (cont.)

� Each node can be connected to another node by a 

– Transition relation

– MR update relation

a b a b

i i

b t t a t t→ →= Φ +ɶ ɶX X ωωωω

( )
1, 1

q q q q i i q i i

r r

i i
i q

I K H K H K Dα β β β β β β β β β
= =
≠

= − − −∑ ∑ɶ ɶ ɶX X X v

b
+

3
b
−

2
a
−

1
a
−

1
b
−

2
b
−

3
a
−

3
a
+

I IIIII

a priori nodes

10

1, 1i i
i q
= =
≠

� The process and measurement noise covariance matrices are also stored

� Assume we need to calculate

– First: Construct two inverse-trees

• Containing all the routes in G to the nodes c and d

– Next: Express        using information stored in nodes in
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Algorithm Concept
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� Start with first-level nodes of          : c and d

� Since               is unknown, proceed to next level in the trees

– According to relation types represented by arc weights

� For example, assume transition relation in both cases
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Algorithm Concept (cont.)

� If unknown, proceed to higher levels in     and     

– Until all the terms required for calculating                

are known

– Or, reaching top level in both trees

� Consider reaching the k-th level and  
analyzing some pair

� Look for the pair            so that                   is                    
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� The contribution of a known term                    to                 is calculated as

� Look for the pair            so that                   is                    
known (i.e. stored in G), with smallest j

– Or              with a known
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See paper…



Results
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ThreeThree--viewview measurement model:

Details: “Distributed Vision-Aided Cooperative Navigation 

Based on Three-View Geometry”, Indelman V. et al., 2011
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Simulation Results – Leader-Follower Scenario

� 2 robots: Leader, Follower

– Leader is equipped with a better IMU

� Scenario:

– Trajectory: Straight and level, north heading flight

– Leader is 20 sec ahead

LeaderFollower
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– Follower is updated every 10 seconds

– Leader is not updated (inertial navigation)

– Synthetic imagery



Simulation Results – Leader-Follower Scenario (cont.)

Monte Carlo results (1000 runs): Follower’s navigation errors
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Position errors – compared 
to Leader’s errors
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Conclusions

� A method for on-demand explicit cross-covariance calculation was 
presented

– Multi-Robot general measurement model. A measurement is composed from 

information obtained from

• Any number of robots

• Not necessarily at the same time
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• Not necessarily at the same time

– Graph-based approach was applied

• Allows properly handling noise covariance terms

– The method was demonstrated for a three-view measurement model


