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Abstract—This paper describes a new approach for
bundle adjustment (BA), which is based on a non-linear
optimization of only the camera pose for all the views in
a given sequence of images and does not involve iterative
structure estimation. If required, structure reconstruction
can be performed based on the camera matrices after
convergence of the optimization process. Instead of ap-
plying the projection equations, the cost function being
optimized in the suggested approach is based on the three-
view geometry constraints that should be satisfied for any
three views with a common overlapping area. Significant
reduction in computational complexity is obtained com-
pared to a standard BA, since the number of unknown
parameters participating in the iterative optimization is
much smaller. The optimization problem is formulated
relative to the camera pose of the first view, as commonly
used in robotics navigation aplications. The proposed
method is demonstrated on a publiclly available dataset
of real images and the optimized camera pose and the
recovered structure are compared to the ground truth.

I. INTRODUCTION

Bundle adjustment (BA) has been at the focus of many
research efforts in the past several decades. The goal in
BA is to estimate the camera matrices and the 3D coordi-
nates of observed landmarks given a set of images. Data
association, namely, the pixels correspondence between
the given views, is usually assumed to be solved.

The general approach for solving the BA problem is
to perform a non-linear optimization, minimizing the
error between the measured and the projected image
coordinates of the 3D landmarks. The optimization pro-
cess involves simultaneously solving for all the cam-
era matrices (pose) and the 3D landmark coordinates
(structure). Taking into account the sparse nature of
the problem allows to significantly reduce the involved
computational burden. A review of different theoretic
and implementation aspects of BA can be found in [18].

Performing BA on long sequences of views is not
an easy task even for now-days computers, both due
to a high computational cost and to numerical stability

issues. Several approaches were proposed for reducing
the involved computational burden [20], [10], [13], [9]
while approximating different aspects of the overall re-
projection error cost function. For example, Zhang and
Shan [20] applied bundle adjustment to a sliding window
of triples of images; In [13], only the last cameras
and the observed 3D points in these and some of the
earlier cameras, are optimized; Konolige and Agrawal
[9] proposed to maintain only part of the images, while
the rest of the images and the observed 3D points in these
images are accounted for by marginalization. In [15], a
relative formulation was suggested, allowing adjusting
only part of the variables in the BA optimization.

In this paper, a new BA formulation is proposed,
in which the optimization involves only the camera
pose along the given sequence of views. This approach,
referred as light bundle adjustment (LBA), reduces the
number of unknowns in the optimization and leads to a
significant computational gain, since as opposed to con-
ventional BA, the observed landmarks are no longer part
of the optimization. The observed landmarks, or a partial
set of them, can be estimated based on the optimized
camera poses, using structure reconstruction techniques
[4]. The obtained solution for camera matrices can also
be used as initial conditions in the full BA optimization.

Instead of minimizing the overall re-projection er-
ror, the cost function minimized in LBA is formulated
using multi-view constraints [4], [12]. Application of
multi-view constraints for BA-related problems has been
already proposed in the literature. For example, [3]
suggested estimating the trifocal tensors between con-
secutive triplets of images as well as the observed 3D
points in each such triplet, followed by registration of
the triplets sequence (and the involved structure) into
a single reference frame. Liu et al. [10] considered
structure reconstruction from a given sequence of images
with known camera pose, and proposed correcting the
image coordinates of corresponding points by applying
epipolar constraints between pairs of images, thereby



yielding an improvement in estimation of 3D points. Avi-
dan and Shashua [1] suggested using trifocal tensors for
consistently concatenating camera matrices, and applied
their method on a sliding window of triplets of images.

As opposed to the above-cited works, methods for
solving the full BA problem using multi-view con-
straints, and in particular capable of incorporating loop
closures, are much less in common. The work by Steffen
et al. [16], is arguably the most relevant to this paper.
Similarly to [16], the cost function is formulated without
any structure parameters, and the optimization is applied
on the whole sequence of images, thereby naturally ac-
commodating any loop closures. However, while Steffen
et al. [16] use trifocal constraints, the current paper
applies the recently-developed three-view constraints [5]
in the optimization formulation. These constraints are
attractive due to their simple form and were already
proposed for real time vision-aided navigation [6] and
cooperative navigation [8].

The remainder of this paper is organized as follows.
Section III introduces relevant notations and formulates
the problem; The next section reviews the optimization
performed in a conventional BA; The proposed approach
for light bundle adjustment is elaborated in Section IV-A,
which formulates the new cost function and applies
the mentioned three-view constraints; Section V dis-
cusses structure reconstruction. Results, demonstrating
the method on a dataset of real images, are given
in Section VI, while Section VII suggests concluding
remarks.

II. PROBLEM FORMULATION

Consider a given set of N partially overlapping views
and M unknown landmarks that are observed in some
of these images. For a pinhole camera model, the image
and the world coordinates of the ith landmark are related
by the projection equation [4]:

pij = Kj

[
Rr→j tjj→r

]
Pr

i = MjP
r
i (1)

where Kj is the camera calibration matrix of the jth
camera, Pr

i = [Xr
i , Y

r
i , Z

r
i , 1]T are the homogeneous

3D coordinates of the ith landmark, expressed in some
reference frame r, and pij = [uij , vij , 1]T are the
corresponding homogeneous image coordinates. The ma-
trix Rr→j is the rotation from the reference frame r to
the camera frame of the jth view, while tjj→r is the
translation vector between these two frames, expressed in
the coordinate system of the jth view. Define the camera

pose of the jth view as

xj ,

[
tjj→r

Ψr→j

]
where Ψr→j are the angles representing the rotation
matrix Rr→j .

In this paper it is assumed that the camera calibration
matrices are known and the correspondence problem is
solved. Therefore, each 3D point Pi is associated with
a set of image pixels

{
pij

}
from appropriate views j.

Another assumption in the current work, is that some
initial values for the camera pose are given for each of
the N views. These initial values can be obtained either
by estimating the relative motion between consecutive
views (e. g., by applying the 5-point algorithm [14]),
be encoded as a meta-data to each of the images (e.g.,
images obtained from the internet), or obtained from a
navigation system.

Our general objective is to optimize the camera pose
xj along the sequence of views (j ∈ {1, . . . N}) and the
observed landmarks Pi (with i ∈ {1, . . .M}) given the
image observations pij in the appropriate images.

III. BUNDLE ADJUSTMENT

Conventional bundle adjustment [18] optimizes the
overall re-projection error, which is defined for N views
observing M landmarks as

JBA ,
N∑
j=1

M∑
i=1

d(pij ,p
proj
ij ), (2)

where pij and pproj
ij are the measured and predicted

image coordinates. The prediction is made by the pro-
jection operator Proj, defined by Eq. (1). In the above
equation, the operator d (.) represents some cost func-
tion. Assuming a Gaussian noise distribution, the cost
function is defined as the squared Mahalanobis distance
d (e) , eTΣ−1e, with Σ being the estimated mea-
surement covariance. Eq. (2) can therefore be written
explicitly as

JBA =

N∑
j=1

M∑
i=1

∥∥pij −Proj (xj ,Pi)
∥∥2

Σ
(3)

Eqs. (2)-(3) implicitly assume a zero re-projection error
of any 3D point, that is not observed in some view.

The above cost function JBA is being optimized for
all the unknown parameters, that can be represented in
the following state vector:

xBA =
[

xT
1 . . . xT

N PT
1 . . . PT

M

]T
,



and the total number of the unknown variables is 6N +
3M , i.e. xBA ∈ R(6N+3M)×1.

IV. LIGHT BUNDLE ADJUSTMENT

Similarly to [19], [10], [11], it is proposed to approx-
imate the re-projection error εij , pij − Proj (xj ,Pi)
by pij − p̂ij where p̂ij are the predicted image coordi-
nates satisfying a non-linear function h. This function
represents multi-view constraints, and therefore it does
not contain any structure parameters. Using a Lagrange
multiplier vector λ, the new cost function can be written
as

JLBA ,
N∑
j=1

M∑
i=1

∥∥pij − p̂ij

∥∥2

Σij
− 2λTh(x̂, p̂) (4)

where x̂ is the estimated camera pose of all the involved
views, defined as

xLBA =
[

xT
1 . . . xT

N

]T ∈ R6N×1, (5)

and p̂ are the corrected image coordinates in all the views
so that the constraints-function h is satisfied:

h(x̂, p̂) = 0. (6)

The cost function JLBA can be compactly written as

JLBA = ‖p− p̂‖2Σ − 2λTh(x̂, p̂). (7)

The cost function JLBA (7) involves optimizing only
for the pose parameters, since it does not contain any
structure parameters. Therefore, the overall number of
unknowns is reduced to 6N represented by the state
vector xLBA, as opposed to the 6N + 3M unknowns
in conventional BA (cf. Section III).

The non-linear optimization involved with minimizing
the cost function JLBA is described in the Appendix.

While different formulations can be used for multi-
view constraints [4], [12], [19], represented by the func-
tion h in Eqs. (4)-(7), a recently-developed formulation
for three-view constraints [5] is suggested in the next
section.

A. LBA Using Three-View Constraints

The three-view constrains can be written, for any three
views k, l,m ∈ {1, . . . , N} with a common overlapping
area, as [5]:

q̄T
k (t̄k→l × q̄l) = 0 (8)

q̄T
l (t̄l→m × q̄m) = 0 (9)

(q̄l× q̄k) · (q̄m× t̄l→m) = (q̄k× t̄k→l) · (q̄m× q̄l) (10)

where qk,ql and qm are the line-of-sight vectors of the
corresponding pixels in the three views, and tk→l and
tl→m are the translation vectors between these views.
The notation ā denotes the ideal value of some vector
a. The line-of-sight vector q for a given pixel p can be
calculated in the camera system as

q = K−1p.

Appropriate rotation matrices should be used for express-
ing all the vectors in Eqs. (8)-(10) in the same coordinate
system, which can be chosen arbitrary.

Consequently, Eqs. (8)-(10) can be expressed as Eq.
(6), which is part of the LBA cost function JLBA (cf.
Eq. (4)).

The three-view constraints consist of the well-known
epipolar geometry constraints (8)-(9) [4], and of an
additional constraint (10) that allows to maintain a con-
sistent scale between the three given views. As proven
in [5], [7], these constraints are necessary and sufficient
conditions for a general scene observed by the given
three views.

Similar to a conventional BA, the overall set of
equations in LBA is rank-deficient (or in other words,
unobservable) and has 7 degrees of freedom. Therefore,
estimating the absolute camera matrices is not trivial and
requires a proper regularization. Instead of trying opti-
mizing the camera poses with respect to some reference
frame, it is suggested to estimate the camera motion of
all views relative to one of the views in the sequence,
thereby fixing 6 of the 7 degrees of freedom. Further
discussion regarding the additional degree-of-freedom is
provided in Section IV-E.

B. Relative Formulation

As common in robotics applications, the camera poses
are expressed, in this section, relative to the first camera
pose. The relative state vector for the N views in the
sequence is defined as:

xrel .=
[
xT

1→2 · · · xT
1→N

]T ∈ R6(N−1)×1 (11)

with

x1→j ,

[
t1

1→j

Ψ1→j

]
, j ∈ [2, N ] (12)

Different variations of relative formulation have been
also proposed in several BA works, including [15], [16].
In particular, the equivalent projection equations to the
above relative formulation, are [4]

Mj = Kj

[
R1→j tjj→1

]
(13)



with j ∈ {2, . . . , N} and M1 = K1

[
I 0

]
for the

first view.
It is now possible to rewrite the three-view constraints

(8)-(10) in terms of the state vector xrel. Note that the
relative translation terms in Eq. (12) are expressed in the
coordinate system of the first view. Also, the reference
system r does not participate in this relative formulation.

Due to image noise and imperfect estimation of xrel,
the constraints (8)-(10) will not be satisfied: there will
always be some residual error. The three-view constraints
(8)-(10), for some three views k, l,m ∈ {1, . . . , N}
observing the ith landmark (i ∈ {1, . . . ,M}), can be
expressed as

z1 , qT
k (tk→l × ql) (14)

z2 , qT
l (tl→m × qm) (15)

z3 , (ql × qk)T (qm × tl→m)− (qk × tk→l)
T (qm × ql)

(16)

with

tk→l = t1
1→l − t1

1→k (17)

tl→m = t1
1→m − t1

1→l (18)

qk = RT
1→kK

−1
k pk

i (19)

ql = RT
1→lK

−1
l pl

i (20)

qm = RT
1→mK

−1
m pm

i (21)

where R1→s, s ∈ {k, l,m}, is a rotation matrix com-
puted using Ψ1→s, that is part of the state vector xrel.

Denote the residual error for the ith observed land-
mark (i ∈ {1, . . . ,M}) by

z
(k,l,m)
i ,

[
z1 z2 z3

]T
. (22)

This residual can therefore be written as

z
(k,l,m)
i = h

(k,l,m)
i (x̂1→k, x̂1→l, x̂1→m,p

k
i ,p

l
i,p

m
i )

(23)
and thus

z
(k,l,m)
i = h

(k,l,m)
i (x̂rel,pk

i ,p
l
i,p

m
i ) (24)

where h
(k,l,m)
i represents the nonlinear, known, function

given by the three-view constraints (19)-(21). In Eqs.
(23)-(24), â denotes the estimation of some vector a.

C. General Observations of Landmarks

So far, only three-view correspondences were con-
sidered. In practice, landmarks can be observed in any
number of views. Consider the ith landmark Pi is
observed in ni ∈ {1, . . . , N} views.

When the landmark is observed by less than three
views, it is only possible to apply the epipolar geom-
etry constraint (14) in case of a two-view observation
(ni = 2). No multi-view constraints can be formulated
at all if the landmark is only observed in a single view.

The more interesting case, however, occurs when ni >
3. One possible alternative is to apply the three-view
constraints (14)-(16) on three views chosen from the ni
views. Different reasoning can be applied when choosing
these three views. The drawback of such an alternative
is that not all the available information is actually used,
since the other ni − 3 views do not participate in the
constraints.

In order to exploit all the available information in
the ni corresponding points, the sequence of ni views
{kj}ni

j=1 can be split into sequential, overlapping, triplets
as follows:

{(k1, k2, k3) , (k2, k3, k4) , . . . , (kni−2, kni−1, kni
)}
(25)

For example, the first triplet would be composed of views
k1, k2 and k3, while the next triplet would be views
k2, k3 and k4.

To avoid double-counting, only independent three-
view constraints along the given sequence should be
applied. In case of the previous example, applying the
three-view constraints (14)-(16) would yield the same
epipolar constraint between views k2 and k3 twice: once
as the constraint (15) when processing the views k1, k2

and k3, and once as the constraint (14) while processing
the views k2, k3 and k4.

Consequently, to avoid using the same measurements
(and constraints) more than once, after formulating the
three-view constraints (14)-(16) for the first three views
k1, k2 and k3, only two constraints (15) and (16) are
applied for the following ni−3 triplets of views. Denote
by z

(klm)∗
i the residuals in this reduced version:

z
(k,l,m)∗
i ,

[
z2 z3

]T
Stacking all the constraints that can be written for the

ni views that observe the ith landmark yields

zi ,


z

(k1k2k3)
i

z
(k2,k3,k4)∗
i

...

z
(kni−2,kni−1,kni)∗
i


Since only the first triplet contributes all the three-view
constraints (14)-(16), while each of the ni − 3 other



Table I
CONSIDERED SCENARIO IN A BASIC EXAMPLE

View 1 View 2 View 3 View 4 View 5
3D point #1 × × ×
3D point #2 × × × ×
3D point #3 × × ×

triplets contribute two constraints, the dimensions of zi
are (2ni − 3)× 1.

Considering all the observed 3D points Pi with i =
1, . . . ,M , the overall residual vector z can be written
for the given sequence of N views and the M observed
3D points as:

z ,
[

zT1 . . . zTM
]

= h
(
x̂rel,y

)
where y is a vector of all the pixel observations.

The multi-view constraints function h is part of the
cost function JLBA, defined in Eqs. (4) and (7).

D. A Basic Example

Consider a scenario of 5 views observing 3 3D points
(N = 5,M = 3), as shown in Table I. As seen, the
first and third 3D points (P1 and P3) are observed in 3
images: views (1, 3, 4) and views (3, 4, 5), respectively.
The second 3D point (P2) is observed in all views except
the second view.

Thus, n1 = n3 = 3 and n2 = 4, while the sequence
of views

{
kij

}ni

i=1
for each landmark is

{k1
j }

n1=3

j=1 = {1, 3, 4} (26)

{k2
j }n2=4

j=1 = {1, 2, 4, 5} (27)

{k3
j }

n3=3
j=1 = {3, 4, 5} (28)

Since the second landmark is observed by more than
three views, the following sequential overlapping triplets
are used when applying the three-view constraints (cf.
Eq. (25)):{(1, 2, 4) , (2, 4, 5)}.

Consequently, the residual vectors zi are

z1 = z
(1,3,4)
1 ∈ R3×1 (29)

z2 =

[
z

(1,2,4)
2

z
(2,4,5)∗
2

]
∈ R5×1 (30)

z3 = z
(3,4,5)
3 ∈ R3×1 (31)

and the overall residual z is

z =
[
zT1 zT2 zT3

]T ∈ R11×1 (32)

E. Rank Deficiency and an Additional Scale Constraint

It is well known, that relying purely on imagery infor-
mation and assuming calibrated cameras, it is possible
to estimate the camera matrices and to perform structure
reconstruction only up to a similarity transformation.
This similarity transformation represents a 7 degree-
of-freedom (DOF) ambiguity [4], [17]: translation and
rotation of the reference system and the overall scale of
the observed scene. Thus, the resulting set of equations
is rank-deficient, with 7 zero singular values.

While the relative formulation (cf. Section IV-A) fixes
the translation and rotation DOFs, the overall scale is not
determined: The three-view constraints (8)-(10) allow es-
timating the camera matrices in the whole sequence with
a consistent, but unknown, scale. Therefore, the system
remains to be rank-deficient and should be handled with
a proper regularization.

One possible alternative for performing a regular-
ization, is to impose an additional set of constraints
g
(
xrel

)
on the system, which in the general case, are

non-linear. This set of constraints can be introduced to
the cost function JLBA, defined in Eq. (4), either by
augmentation to the multi-view constraints h, or by a
new Lagrange multipliers vector. In the latter case, the
new cost function would be

JLBA = ‖p− p̂‖2Σ − 2λT
1 h
(
x̂rel, p̂

)
− 2λT2 g

(
x̂rel

)
In certain applications, it makes sense to explicitly

specify the scale parameter, thereby significantly improv-
ing the condition number of the system. For example,
in the context of inertial navigation, it is reasonable to
assume that the navigation solution at the first few mo-
ments is relatively accurate (compared to the navigation
accuracy after some time) since the inertial navigation
errors have not yet become significant. Consequently, the
scale parameter can be determined, with the proper un-
certainty, based on the navigation information from these
first moments. In particular, it is possible to calculate the
translation vector, including the magnitude, between the
first two views in the sequence, thus implicitly setting
the scale of the problem. In such cases, the resulting
scale constraint will be linear.

V. STRUCTURE RECONSTRUCTION

After estimating the relative state vector xrel, it is
possible to perform structure reconstruction. This is as
opposed to the conventional BA, in which structure
reconstruction and pose estimation are performed simul-
taneously.



The projection matrix relating between the unknown
3D point coordinates P, expressed relative to the first
view, and the image coordinate pj of this 3D point in
some view j ∈ {1, . . . , N} is:

pj = MjP

with the projection matrix Mj defined in Eq. (13):

Mj = Kj

[
R1→j tjj→1

]
.

This matrix can be calculated based on the optimized
values of xrel.

The actual structure reconstruction process can be
carried out using a standard procedure [4]. Each view
j contributes two independent equations of the form

AjP̃ = bj (33)

with P̃ denoting inhomogeneous coordinates of the 3D
point. These equations can be written in a homogeneous
form as: [

ujM
3T
j −M1T

j

vjM
3T
j −M2T

j

]
P = 0 (34)

where MuT
j indicates the uth row of M . Stacking the

equations together from all the relevant views, yields
a homogeneous over-determined system of equations,
which can be solved using non-iterative least-squares
(e.g., using SVD).

However, in practical applications, the camera matri-
ces and the image features are imperfect and accompa-
nied with uncertainty covariance matrices. In particular,
the optimized camera poses, represented by xrel, are
accompanied with an a posteriori covariance matrix, cal-
culated during the optimization process (cf. Appendix).
Such information can be used as regularization terms,
as described in the Appendix, in the structure estimation
process.

To this end, the inhomogeneous form of the re-
projection equation (33) is used. Stacking equations (33)
for all the participating views j together yields:

AP̃ = b (35)

Applying the optimization on the above equation allows
to recover the landmark P and the uncertainty covari-
ance, while using the a posteriori covariance of xrel as
a regularization term.

VI. RESULTS

In this section the developed approach is demonstrated
on the on-line available Pozzoveggiani dataset1 [2]. The
dataset contains real imagery and a ground truth data
for the camera pose and the observed 3D points. Figure
1 shows several images from the dataset, while Figure
2 shows the 3D points cloud and the camera locations
(only part of the dataset is shown). The proposed ap-
proach for light bundle adjustment was applied on a set
of 42 images out of the 48 images in the dataset.

Initial values of the relative state vector xrel were ob-
tained by contaminating the ground truth data as follows.
Position and attitude errors were drawn from a zero-
mean Gaussian distribution with a standard deviation of
50 meters and 0.1 degrees, respectively, in each axis.
These errors were then used for corrupting the camera
pose ground truth of all the views in the sequence.

The assumed standard deviation for initial position
errors is very large for the considered scenario, as the
location of all cameras in the dataset can be bounded by
a 70× 70 meters area (cf. Figure 2). These errors were
drawn independently for each view, as if the images were
taken by different users or captured by independently
moving robots (or any other uncorrelated sources).

Since measured image pixels are not included in
the dataset, ideal pixel coordinates were calculated by
projecting the ground truth 3D points using ground truth
camera pose data. The measured image pixels were taken
as the ideal image pixels, corrupted with a Gaussian
zero-mean noise with a 0.5 pixel standard deviation.

As described in Section IV-E, an additional scale con-
straint as a regularization term. In the current implemen-
tation, this scale constraint was obtained by assuming
a perfect translation between the first two views in the
sequence.

Figure 3 shows the estimated camera position (relative
to the first view) for all the 42 views in the sequence,
compared to the ground truth values and to the initial
camera pose values (that were used as initial solution
in the optimization process). As can be observed, the a
posteriori camera position is very improved. The actual
position estimation errors are shown in Figure 4(b): a
priori errors are on the order of 50 meters, in each axis,
errors after the optimization are reduced to a few meters.

Structure estimation was performed using initial cam-
era pose values and based on the optimized camera
pose values, as described in Section V. Figure 5 shows
the structure estimation errors in each case. Errors after

1http://profs.sci.univr.it/~fusiello/demo/samantha/



Figure 1. Several images from the Pozzoveggiani dataset. Red
markings indicate ground truth features (see text).
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Figure 2. 3D points cloud and camera locations in the Pozzoveggiani
dataset (only part of the data is shown). Blue star markings represent
camera locations, 3D points are indicated by black dot markings.
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the optimization are significantly reduced, with typical
values on the order of one meters in each axis (with a few
exceptions). A priori errors are on the order of 100−200
meters in each axis, with several extremely large errors
obtained for landmarks that are observed from only a
few cameras.

VII. CONCLUSIONS

This paper presented a new approach for bundle
adjustment, in which the non-linear optimization process
involved only the camera poses in a given sequence
of views. While structure variables are not part of the
optimization, structure reconstruction can be performed
based on the optimized camera poses. As opposed to
the projection equations that are used in conventional
bundle adjustment, the cost function in the proposed
approach was formulated using a recently developed
formulation for three-view geometry constraints. The
reduced number of the optimized variables yielded an
improvement in the computational complexity of the
optimization process. Preliminary results were provided,
demonstrating the proposed method on a publicly avail-
able dataset of real images.

APPENDIX

This appendix describes the optimization process for
the cost function JLBA, defined in Eqs. (4) and (7).
Denote by x̂k and p̂k the corrected camera poses and
fitted measurements obtained at the kth iteration, and by
∆xk and ∆pk the actual corrections:

x̂k = x̂k−1 + ∆xk

p̂k = p̂k−1 + ∆pk
(36)
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Figure 4. (top) Position errors before and after optimization.
(bottom) Zoom on position errors after optimization.

with x̂0 being the initial value of x and p̂0 ≡ p. Consider
minimizing this cost function at the kth iteration:

JLBA
k , ‖p− p̂k‖

2
Σ − 2λTh(x̂k, p̂k) (37)

The goal at the kth iteration is to find ∆xk and ∆pk that
minimize JLBA

k . Denoting v = p − p̂k and linearizing
the constraints function h gives

JLBA
k = ‖v‖2Σ − 2λT (zk +Ak∆xk +Bkv)

where Ak, Bk are the Jacobian matrices

Ak , ∇xh , Bk , ∇ph (38)

evaluated about x̂k−1, p̂k−1 and

zk , h(x̂k−1, p̂k−1)
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Figure 5. Structure reconstruction errors. Typical precision after
light bundle adjustment is around 1 meter. Estimation errors of
individual few points are larger. (top) Comparison between structure
reconstruction based on initial camera pose values and camera pose
after the optimization. (bottom) Zoom on estimation errors based on
optimized camera pose values.

Taking derivatives of JLBA
k with respect to pk,xk and

λ produces the following expressions for ∆pk,∆xk:

∆xk = −
(
AT

kM
−1Ak

)−1
AT

kM
−1zk (39)

∆pk = −ΣBT
kM

−1 (zk +Ak∆xk) (40)

where M , BkΣBT
k . After convergence of the itera-

tions, it is possible to calculate the a posteriori covariance
P+ as

P+ =
vTΣ−1v

ny − nx
(
AT

kM
−1Ak

)−1
(41)

where nx is the number of parameters in x, and ny is
the number of elements in y: x ∈ Rnx×1,y ∈ Rny×1.



If the initial solution for camera poses is accompa-
nied with an uncertainty covariance P0, as common
in robotics navigation applications, it is possible to
introduce a regularization term into the cost function
JLBA:

JLBA
k = ‖v‖2Σ + ‖∆x0‖2P0

− 2λTh(x̂k,p)

Bringing this cost function to a minimum, and noting
the relation ∆x0 = ∆xk + x̂k−1− x̂0, the expression for
∆xk changes from Eq. (39) into:

∆xk = −
(
AT

kM
−1Ak + P−1

0

)−1
u

with
u , P−1

0 (x̂k−1 − x̂0) +AT
kM

−1zk.

In addition, the expression for calculating the a posteriori
covariance P+ changes (from Eq. (41)) to

P+ =
vTΣ−1v

ny − nx
(
AT

kM
−1Ak + P−1

0

)−1

while ∆pk is calculated without any change (cf. Eq.
(40)).
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