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Abstract

This paper presents a new method for distributed vision-aided cooperative localization and
navigation for multiple inter-communicating autonomous vehicles based on three-view geometry
constraints. Each vehicle is equipped with a standard inertial navigation system and an on-board
camera only. In contrast to the traditional approach for cooperative localization, which is based on
relative pose measurements, the proposed method formulates a measurement whenever the same
scene is observed by different vehicles. Each such measurement is comprising of three images,
which are not necessarily captured at the same time. The captured images, to which some navigation
parameters are attached, are stored in repositories by some of the vehicles in the group. A graph-
based approach is applied for calculating the correlation terms between the navigation parameters
associated to images participating in the same measurement. The proposed method is examined
using a statistical simulation and is further validated in an experiment that involved two vehicles in
a holding pattern scenario. The experiments show that the cooperative three-view-based vision-aided
navigation may considerably improve the performance of an inferior INS.

I. INTRODUCTION

Cooperative localization and navigation has been an active research field for over a decade.
Research efforts have been devoted to developing methods enabling a group of vehicles to
autonomously perform various missions. These missions include cooperative mapping and
localization [1], [2], [3], formation flying [4], autonomous multi-vehicle transport [5], and
other applications.

Precise navigation is a key requirement for carrying out any autonomous mission by a
group of cooperative vehicles. If the global positioning system (GPS) is available, then each
of the vehicles is capable of computing the navigation solution on its own, usually by fusing
the GPS data with an inertial navigation system (INS). However, whenever the GPS signal is
absent, such as when operating indoors, underwater, in space, in urban environments, or on
other planets, alternative methods should be devised for updating the navigation system due
to the evolving dead reckoning errors.

While various methods exist for navigation-aiding of a single vehicle, collaboration among
several, possibly heterogeneous, vehicles, each equipped with its own set of sensors, is
expected to improve performance even further [6]. Indeed, different methods have been
developed for effectively localizing a group of vehicles with respect to some static coordinate
system or with respect to themselves. Typically, these methods assume that each vehicle is
capable of measuring the relative range and bearing to other vehicles.
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One of the pioneering works on cooperative localization proposed to restrain the develop-

ment of navigation errors by using some of the robots as static landmarks for updating the
other robots in the group, and then switching between the roles after a certain amount of
time [7]. While the method was further improved by others, all the derived methods share
the same drawback: some of the robots must stop for updating the others.

Another important work is by Roumeliotis and Bekey [6], wherein a centralized approach
for sensor fusion was applied based on the available relative pose measurements between
the vehicles in the group. This architecture was then de-centralized and distributed among
the vehicles. In [8], an extension was proposed to handle more general relative observation
models. A similar setup has also been studied in other works, including [5], [9], [10], [11]
and [12].

A different body of works [13], [14], [15] suggests to maintain in each vehicle an estimation
of parameters for all the vehicles in the group. For example, in [13] and [14] each vehicle
estimates the pose of every other vehicle relative to itself, while in [15] each vehicle estimates
the navigation state (position, velocity and attitude) of all the other vehicles by exchanging
information from inertial measurement units (IMU) and relative pose measurements.

The current work proposes to utilize vision-based navigation-aiding techniques for coop-
erative navigation. Each vehicle has a standard INS and a camera. No further sensors or
a priori information is used. Several works [16], [17] on cooperative navigation have been
published relying on this setup. In [16], a leader-follower formation of mobile ground vehicles
is considered, in which each vehicle is equipped with a camera that provides bearing to the
other vehicles. It is shown that it is possible to estimate the relative pose between the followers
and the leader, except for configurations that are not observable. The authors of [17] propose
to estimate the relative location of two moving ground robots by fusing camera bearing
measurements with the robots’ odometry.

The method proposed herein relies on a recently-developed technique [18], [19] for vision-
aided navigation of a single vehicle based on a three-view geometry of a general scene.
Cooperative navigation is a natural extension of this technique. As opposed to all the methods
for cooperative localization and navigation mentioned above, the vehicle’s camera is not
required to be aimed at other vehicles for obtaining measurements of relative parameters
(bearing, range). Instead, a measurement is formulated whenever the same scene is observed
by different vehicles.

A similar concept has been proposed in [3] and [20], considering measurements that
combine pairs of vehicles. In [20], a homography matrix is estimated whenever two airborne
vehicles capture images of the same scene, which is assumed to be planar. Next, the relative
motion between the two vehicles is extracted from the homography matrix. Assuming the
position of the first vehicle and its height above ground level are known, the estimated relative
motion is then used for updating the position of the second vehicle. Kim et al. [3] perform
nonlinear optimization, involving the pose history of all the vehicles in the group, each time
a new measurement arrives, considering relative pose and two-view measurements between
pairs of vehicles.

In this work, three views of a common general scene are required for each measurement.
These views are acquired by at least two different vehicles, i. e. either each view is captured
by a different vehicle, or two of the three views are captured by the same vehicle. The
scenario in which all the views were captured by the same vehicle is handled in [18], [19].
The constraints stemming from a general scene, observed from three different views reduce
the navigation errors of the updated vehicle without any additional a priori information or
sensors.

Another key aspect of the proposed method is that the three images of the same region
are not necessarily captured at the same time. All, or some, of the vehicles maintain a local
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repository of captured images that are associated with some navigation parameters [18], [19].
These repositories are accessed on demand to check if a region, currently observed by one
of the vehicles – the querying vehicle – has been observed in the past by other vehicles in
the group. Images containing the same region are transmitted, with the attached navigation
data, to the querying vehicle. The received information from other vehicles, in addition to
the navigation and imagery data of the querying vehicle, allow updating the querying vehicle
navigation system.

The navigation information participating in the update process can be statistically depen-
dent. Therefore, in order to obtain a consistent navigation solution, the involved correlation
terms should be either maintained or calculated upon demand. However, maintaining the
correlation terms is impractical since the time instances of the images participating in the
measurements are a priori unknown, in addition to the a priori unknown identity of the
vehicles that captured these images. Thus, one has to neglect the involved correlation terms
or calculate them upon request. This paper follows the latter approach, adopting a graph-based
technique for calculating correlation for general multi-vehicle measurement models.

Consequently, the main contribution of this paper is a new method for vision-aided coop-
erative navigation that reduces navigation errors, including position and velocity errors in all
axes, using only a single camera and an INS, without requiring any range measurements.

II. METHOD OVERVIEW

Figure 1 shows the concept of the proposed method for multi-vehicle vision-aided nav-
igation. The proposed method assumes a group of cooperative vehicles capable of inter-
communication. Each vehicle is equipped with a standard INS and an onboard camera, which
may be gimballed. Some, or all, of the vehicles maintain a local repository comprised of
images captured along the mission. These images are attached with navigation data when
they are captured. The INS uses IMU measurements for calculating a navigation solution,
which is accompanied by errors that develop over time.

In a typical scenario, a vehicle captures an image and broadcasts it, along with its current
navigation solution, to other vehicles in the group, inquiring if they have previously captured
images containing the same region. Upon receiving such a query, each vehicle performs a
check in its repository looking for appropriate images. Among these images, only images
with a smaller navigation uncertainty compared to the uncertainty in the navigation data of
the query image, are transmitted back. Vehicles that do not maintain a repository perform the
check only on the currently-captured image.

The process of the querying vehicle is schematically described in Fig. 1. After receiving
the images and the attached navigation data from other vehicles in the group, two best images
are chosen and, together with the querying image, are used for formulating the three-view
constraints (Section III). These constraints are then transformed into a measurement and are
used for updating the navigation system of the querying vehicle, as described in Section IV.
Since the navigation data attached to the chosen three images may be correlated, a graph-
based technique is applied for calculating the required cross-covariance terms for the fusion
process. This technique is discussed in Section V. The overall protocol for information sharing
among the vehicles in the group is presented in Section VI.

Throughout this paper, the following coordinate systems are used:
• L - Local-level, local-north (LLLN) reference frame, also known as a north-east-down

(NED) coordinate system. Its origin is set at the location of the navigation system. XL

points north, YL points east and ZL completes a Cartesian right hand system.
• B - Body-fixed reference frame. Its origin is set at the vehicle’s center-of-mass. XB

points towards the vehicle’s front, YB points right when viewed from above, and ZB

completes the setup to yield a Cartesian right hand system.
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Fig. 1. Multi-vehicle navigation aiding - querying vehicle scheme. “A” denotes the corrected navigation solution, “B”
represents the estimated parameterization of IMU errors, and “C” denotes the filter matrices calculated in the update step.

• C - Camera-fixed reference frame. Its origin is set at the camera center-of-projection. ZC

points toward the FOV center, XC points toward the right half of the FOV when viewed
from the camera center-of-projection, and YC completes the setup to yield a Cartesian
right hand system.

III. THREE-VIEW GEOMETRY CONSTRAINTS

Assume that some general scene is observed from three different views, captured by
different vehicles. Fig. 2 depicts such a scenario, in which a static landmark p is observed in
the three images I1, I2 and I3. Image I3 is the currently-captured image of the third vehicle,
while I1 and I2 are two images captured by the first two vehicles. These two images can be
the currently-captured images of these vehicles, but they could also be captured in the past
and stored in the repository of each vehicle, as illustrated in the figure. Alternatively, I1 and
I2 could also be captured by the same vehicle.

Denote by Tij the translation vector from the ith to the jth view, with i, j ∈ {1, 2, 3} and
i ̸= j. Let also qi and λi be a line of sight (LOS) vector and a scale parameter, respectively,
to the landmark p at time ti, such that ||λiqi|| is the range to this landmark. In particular, if
qi is a unit LOS vector, then λi is the range to p. The constraints resulting from observing
the same landmark from three different views can be formulated as follows [18], [19]:

qT
1 (T12 × q2) = 0 (1a)

qT
2 (T23 × q3) = 0 (1b)

(q2 × q1)
T (q3 ×T23) = (q1 ×T12)

T (q3 × q2) (1c)

All the parameters in Eqs. (1) should be expressed in the same coordinate system using the
appropriate rotation matrices taken from the navigation systems of the vehicles. It is assumed
that this coordinate system is the LLLN system of the vehicle that captured the second image
at t2. Since the navigation parameters involved in formulating the three-view constraints (1)
(such as rotation matrices from LLLN to camera frames) contain errors, these constraints
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Fig. 2. Three-view geometry: a static landmark p observed by three different vehicles. Images I1 and I2 were captured
by the first two vehicles in the past, while image I3, is the currently-acquired image by the third vehicle.

will not be satisfied in practice. The next section discusses how to estimate these errors and
subsequently perform navigation aiding.

Recall that Eqs. (1a) and (1b) are the well-known epipolar constraints [22], forcing the
translation vectors to be co-planar with the LOS vectors. Thus, given multiple matching
features, the translation vectors T12 and T23 can be determined only up to scale. The two
scale parameters are different in the general case. Eq. (1c) relates between these two scale
parameters, thereby allowing to calculate one of the translation vectors given the other [18],
[19].

In practice, the three views will have more than a single landmark in common. Therefore,
three different sets of matching LOS vectors are defined: A set of matching pairs of features
between the first and second view, another set of matching pairs of features between the
second and third view, and a set of matching triplets between all the three views. All the
LOS vectors are expressed in an LLLN system, as mentioned above. These sets are denoted
by {q1i

,q2i
}N12
i=1 , {q2i

,q3i
}N23
i=1 and {q1i

,q2i
,q3i

}N123
i=1 , respectively, where N12, N23 and N123

are the number of matching features in each set, and qji
is the ith LOS vector in the jth

view, j ∈ (1, 2, 3).
Taking into consideration all the matching pairs and triplets, the constraints (1) turn into

[18]: UF
0


N×3

T23 =

W0
G


N×3

T12 (2)

where N .
= N12 +N23 +N123 and

U =
[
u1 . . . uN123

]T
W =

[
w1 . . . wN123

]T
F =

[
f1 . . . fN23

]T
G =

[
g1 . . . gN12

]T
while the vectors f ,g,u,w ∈ R3×1 are defined as

fT
.
= (q2 × q3)

T

gT .
= (q1 × q2)

T

uT .
= (q1 × q2)

T [q3]× = gT [q3]×

wT .
= (q2 × q3)

T [q1]× = fT [q1]×
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IV. THREE-VIEW-BASED NAVIGATION UPDATE

Let xi denote the navigation solution calculated by the ith vehicle

xi =
[
PosTi VT

i ΨT
i

]T (3)

where Pos,V and Ψ are the position, velocity and attitude of the vehicle, respectively. Denote
by xt

i the (unknown) true navigation solution and let yi,IMU represent the measurements of
the ith vehicle’s inertial navigation sensors. The errors in yi,IMU are modeled by an unknown
vector of parameters βt

i. Denote by β the calculated model of inertial sensor errors, used for
correcting the measurements yi,IMU (cf. Fig. 1). In this paper, a simple parameterization for
β is used:

β =
[
dT
IMU bT

IMU

]T
(4)

where dIMU ∈ R3 is the gyro drift, and bIMU ∈ R3 is the accelerometer bias.
Letting

ζi(tk)
.
=

[
xi(tk)
βi(tk)

]
, ζt

i(tk)
.
=

[
xt
i(tk)

βt
i(tk)

]
(5)

the navigation solution of the ith vehicle is given by

ζi(tk+1) = f(ζi(tk),yi,IMU(tk)) (6)

The following navigation error state vector is defined

Xi(t)
.
= ζi(t)− ζt

i(t) (7)

The evolution of the state vector X can be modeled by the linear time-varying stochastic
model [31], [32]:

Ẋi(t) = Φi(t)Xi(t) + ωi(t) (8)

where Φi is the continuous system matrix and ωi is the process noise, which is assumed to be
white and zero-mean Gaussian. This continuous time model can be replaced by the discrete
model

Xi(tb) = Φi
ta→tb

Xi(ta) + ωi
ta:tb

(9)

where Φi
ta→tb

is the discrete system matrix relating the state between any two time instances
ta and tb, tb > ta, and ωi

ta:tb
is the equivalent discrete process noise. The state vector of each

vehicle is defined as
X =

[
∆PT ∆VT ∆ΨT dT bT

]T
where ∆P ∈ R3,∆V ∈ R3,∆Ψ = (∆ϕ,∆θ,∆ψ)T ∈ [0, 2π) × [0, π) × [0, 2π) are the
position, velocity and attitude errors, respectively, and d and b are the residual gyro drift and
accelerometer bias, respectively:

d
.
= dIMU − dt

IMU , b
.
= bIMU − bt

IMU (10)

with dt
IMU ,b

t
IMU being the unknown true values of dIMU ,bIMU . The position and velocity

errors are expressed in the NED system, while d and b are given in the body-fixed reference
frame. The corresponding transition matrix Φi

ta→tb
satisfying Eq. (9) for the ith vehicle is

given in Appendix A.
Let yi(ti) denote the measurements of the external sensors of the ith vehicle at some time

instant ti (as opposed to yi,IMU(ti) that denotes the IMU measurements). These measurements
are corrupted by a Gaussian white noise vi(ti). Let yt

j(ta)
.
= yj(ta)− vj(ta).

A general multi-vehicle measurement involving information from r vehicles can therefore
be written as [21]:

z(t) = h({ζi(ti),yi(ti)}ri=1) (11)
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While the vehicles can be equipped with various external sensors, in this work we assume
that each vehicle is equipped with a single camera only, and focus on a specific multi-vehicle
measurement, dictated by the three-view constraints (2). Thus, yi(ti) in Eq. (11) represents
the pixel coordinates of the image captuted by the ith vehicle at ti.

When real navigation and imagery data are considered, the constrains (2) will not be
satisfied. Thus, a residual measurement is defined as

z
.
=

UF
0


N×3

T23 −

W0
G


N×3

T12
.
= AT23 − BT12 (12)

Since z is comprising of navigation and imagery data of three views, it can be expressed in
a similar manner to Eq. (11) with r = 3:

z(t) = h (ζ1(t1),y1(t1), ζ2(t2),y2(t2), ζ3(t3),y3(t3)) (13)

Noting that T12 = Pos2(t2) − Pos1(t1) , T23 = Pos3(t3) − Pos2(t2), and the matrices
F,G, U,W are functions of the LOS vectors, the residual measurement z is a nonlinear
function of the following parameters:

z = h
(
Pos3(t3),Ψ3(t3),Pos2(t2),Ψ2(t2),Pos1(t1),Ψ1,

{
qC1
1j
,qC2

2j
,qC3

3j

})
(14)

The notation
{
qC1
1j
,qC2

2j
,qC3

3j

}
in Eq. (14) refers to the fact that LOS vectors from all the three

images are used for calculating the residual measurement z. Each of the matrices F,G, U,W
is a function of a different set of matching points. These LOS vectors can be calculated from
y1(t1),y2(t2) and y3(t3), provided that the camera calibration parameters are known.

Linearizing Eq. (13) about ζt
i(tk) and yt

i(ti) gives

z(t) ≈ H3(t3)X3(t3) +H2(t2)X2(t2) +H1(t1)X1(t1) +Dv (15)

where D .
=

[
D1(t1) D2(t2) D3(t3)

]
and

Hi(ti) = ∇ζt
i(ti)

h , Di(ti) = ∇yt
i(ti)

h , i = 1, 2, 3 (16)

while v
.
=

[
vT
1 (t1) vT

2 (t2) vT
3 (t3)

]T , with vi(ti) representing the image noise in the LOS
vectors from the ith view. In addition, we denote R = E

[
vvT

]
. Since ζt

i(tk) and yt
i(ti) are

unknown, the Jacobian matrices are approximated by

Hi(ti) = ∇ζi(ti)h , Di(ti) = ∇yi(ti)h , i = 1, 2, 3 (17)

Explicit expressions for the Jacobian matrices Hi(ti) and Di(ti) can be found in Appendix
B. The residual measurement z is a function of all the three state vectors, which in the
general case can be correlated. Ignoring this correlation may result in an inconsistent and
over-confident estimations [23], [24]. Assuming the cross-covariance terms relating the three
state vectors are known, all the vehicles involved in the measurement can be updated. This
can be performed by applying an implicit extended Kalman filter (IEKF), as described later.

The following augmented state vector is defined:

X .
=

[
XT

3 (t3) XT
2 (t2) XT

1 (t1)
]T

(18)

with an augmented covariance matrix P .
= E[X̃ X̃ T

], where ã denotes the estimation error
of a. Let also H .

=
[
H3(t3) H2(t2) H1(t1)

]
. The augmented Kalman gain matrix

K .
=

[
K̆T

3 K̆T
2 K̆T

1

]T
(19)
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is computed as [25]

K = P−HT
(
HP−HT +DRDT

)−1
(20)

The a posteriori estimation error of the augmented state vector X is

X̃+
=

[
I − K̆H̆

]
X̃− − K̆Dv (21)

while the augmented covariance matrix is updated according to

P+ = [I −KH]P− [I −KH]T + [KD]R [KD]T (22)

The a posteriori estimation errors of the three state vectors in X can be explicitly written
based on Eq. (21) as:

X̃
+

3 =
[
I − K̆3H3

]
X̃

−
3 − K̆3H2X̃

−
2 − K̆3H1X̃

−
1 − K̆3Dv (23)

X̃
+

2 =
[
I − K̆2H2

]
X̃

−
2 − K̆2H3X̃

−
3 − K̆2H1X̃

−
1 − K̆2Dv (24)

X̃
+

1 =
[
I − K̆1H1

]
X̃

−
1 − K̆1H3X̃

−
3 − K̆1H2X̃

−
2 − K̆1Dv (25)

Having stated how all the vehicles can be updated when all the cross-covariance terms of
Eq. (20) are known, we now explain how these terms can be actually calculated. The main
difficulty in calculating the cross-covariance terms is that it is a priori unknown which vehicles
and what time instances will appear in a three-view measurement. The common approach to
mitigate this difficulty is to maintain the cross-covariance terms between all the possible pairs
of vehicles using an augmented covariance matrix. This approach is suitable whenever the
multi-vehicle measurement, z, involves only concurrent information from different vehicles,
i. e., t1 = t2 = t3 = t, as in the case of relative pose measurements between pairs of vehicles
(cf., e. g., [6]).

Given M vehicles in the group, and an m×m covariance matrix Pi for each vehicle i, the
total covariance matrix of the group, containing also all the cross-covariance terms among
vehicles in the group, is the Mm×Mm matrix

PTotal(t) =


P1 P12 · · · P1M

P21 P2 · · · P2M
...

... . . . ...
PM1 PM2 · · · PM

 (26)

where Pi(t) = E[X̃i(t)X̃
T

i (t)] and Pij(t) = E[X̃i(t)X̃
T

j (t)]. The matrix PTotal can be ef-
ficiently calculated in a distributed manner (i. e. by every vehicle in the group) [6]. Yet,
the measurement model in Eq. (15), involves data from different vehicles and from different
time instances. Maintaining a total covariance matrix PTotal containing a covariance for every
vehicle and cross-covariance terms between each pair of vehicles for any two time instances
is impractical. Thus, an alternative technique should be used.

As a solution to the aforementioned problem, it is proposed to explicitly calculate the
required cross-covariance terms based on an approach developed in [21] for a general multi-
vehicle measurement model. This approach represents the multi-vehicle updates in a directed
acyclic graph, locally maintained by every vehicle in the group. The required cross-covariance
terms are computed based on this graph representation, going back and forth in the time
domain according to the history of the so-far performed multi-vehicle updates.

Another possible approach for consistent data fusion has been recently developed in [3],
considering relative pose and two-view measurements between pairs of vehicles. However,
in this approach a smoothing over the navigation solution of all the vehicles is performed
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whenever any kind of measurement is received. In contrast to this, the computationally-
efficient approach used in this paper allows on-demand calculation of the required cross-
covariance terms without refining the navigation history.

The graph needs to be acyclic, since otherwise a measurement might trigger recursive
updates in past measurements. In a general scenario involving three-view measurements
among different vehicles at different time instances, the graph is guaranteed to be acyclic,
particularly if only vehicles that contributed their current (and not past) image and navigation
data are updated. For simplicity, in this paper we consider only one such vehicle, which is the
querying vehicle, i. e. the vehicle that broadcasts the query image to the rest of the vehicles
in the group. Moreover, without loss of generality, it is assumed that the querying vehicle
captures the third image, as illustrated in Fig. 2.

Thus, referring to Eq. (15), only X3(t3) is estimated, while X2(t2) and X1(t1) are modeled
as random parameters. As a consequence, instead of applying Eqs. (18)-(25), the actual update
equations are as follows. The a posteriori estimation error of the querying vehicle is given
by:

X̃
+

3 = (I −K3H3) X̃
−
3 −K3H2X̃

−
2 −K3H1X̃

−
1 −K3Dv (27)

while the a posteriori covariance is calculated as

P+
3 = (I −K3H3)P

−
3 (I −K3H3)

T +K3RKT
3 (28)

where
R .

=
[
H2 H1

] [P2 P21

P T
21 P1

] [
H2 H1

]T
+DRDT (29)

and K3 is the Kalman filter gain of the querying vehicle, which is calculated as

K3 = PX3(t3)z(t3,t2,t1)P
−1
z(t3,t2,t1)

(30)

with

PX3(t3)z(t3,t2,t1) = P−
3 H

T
3 + P−

32H
T
2 + P−

31H
T
1 (31)

Pz(t3,t2,t1) = H3P
−
3 H

T
3 +R (32)

Referring to Eqs. (19), (20) and (30), one should note that K3 ̸= K̆3.
Since only X3(t3) is estimated, H2X2(t2) +H1X1(t1) +Dv is modeled as measurement

noise (cf. Eq. (15)). However, H2X2(t2) + H1X1(t1) + Dv is statistically dependent on
X3(t3). Thus, one of the basic assumptions of the Kalman filter is violated. Eqs. (31) and
(32) constitute an ad-hoc approach for accommodating the statistical dependence within the
Kalman filter framework. If all the three state vectors, X3(t3),X2(t2) and X1(t1), were to be
estimated (cf. Eqs. (18)-(25)), the measurement noise Dv would still be statistically dependent
on the state vectors. However, this dependence would only be due to the Jacobian D, as
modeled by a standard IEKF formulation [25], [26].

It is worth mentioning that there are specific cases, in which all the vehicles participating in
the measurement can be updated, since it is guaranteed that the graph will always be acyclic.
In these cases, the filter formulation changes to Eqs. (18)-(25). An example of such a scenario
is given in Section VII-B.

V. CROSS-COVARIANCE CALCULATION

In this section, we discuss how the cross-covariance terms can be calculated upon demand
using a graph-based method. Recall that it is unknown a priori what vehicles and which
time instances will participate in each three-view measurement. First, the development of
expressions for the cross-covariance terms is presented in a simple scenario. Then, the concept
of a graph-based technique for automatic calculation of these terms in general scenarios is
discussed.
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A. Simple Scenario

Consider the scenario shown in Fig. 3. Vehicle III is the querying vehicle, and therefore
only this vehicle is updated. Two three-view updates are performed. In each of these updates,
the first two images are transmitted by Vehicle I. For example, the first measurement is
formulated using images and navigation data denoted by a1, a2 and a3, where a1, a2 are
obtained from Vehicle I, and the second measurement is similarly formulated based on imagery
and navigation data b1, b2 and b3 (as shown in the figure). It is assumed that the vehicles do
not apply any updates from other sources. As will be seen in Section VI-C, these restrictions
are not necessary, and are undertaken here for clarifying the basics of the approach.

II

III

I

a1 a2

b3

b1 b2

a3

Fig. 3. Measurement schedule example. Vehicle III is updated based on images transmitted by vehicle I. The filled circle
marks denote images participating in the measurement, square marks indicate update events.

The cross-covariance terms are computed in the following recursive way. Assume the first
measurement, comprised of a1, a2 and a3 was carried out, and that the a priori and a posteriori
covariance and cross-covariance terms are known. Now, it is required to calculate the cross-
covariance terms E[(X̃

−
b3
)(X̃

−
b2
)T ], E[(X̃

−
b3
)(X̃

−
b1
)T ] and E[(X̃

−
b2
)(X̃

−
b1
)T ] for performing the

second three-view update.
The following equations can be written for the state propagation:

X̃
−
b3

= Φa3→b3X̃
+

a3
+ ωa3:b3

X̃
−
bi

= Φa2→biX̃
−
a2
+ ωa2:bi , i = 1, 2

where ωi:j is the equivalent process noise between the time instances ti and tj of the
appropriate vehicle1. The cross-covariance terms E[(X̃

−
b3
)(X̃

−
bi
)T ] with i = 1, 2, may be

calculated as:

E

[(
Φa3→b3X̃

+

a3
+ ωa3:b3

)(
Φa2→biX̃

−
a2
+ ωa2:bi

)T
]

(33)

The a posteriori estimation error X̃
+

a3
is given, according to Eq. (27), by:

X̃
+

a3
= (I −Ka3Ha3) X̃

−
a3
−Ka3Ha2X̃

−
a2
− (34)

− Ka3Ha1X̃
−
a1
−Ka3Dava

1From now on, explicit notations of vehicle identities and time instances are omitted for conciseness, since these may be
concluded by context.
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Since ωa2:b2 is statistically independent of X̃

−
a3
, X̃

−
a2
, X̃

−
a1

, and since ωa3:b3 is statistically
independent of X̃

−
a2

and ωa2:b2 (cf. Fig. 3):

E
[
X̃

+

a3
ωT

a2:b2

]
= 0

E

[
ωa3:b3

(
Φa2→b2X̃

−
a2
+ ωa2:b2

)T
]
= 0

Denoting Pab
.
= E[(X̃a)(X̃b)

T ] and incorporating the above into Eq. (33) yields

P−
b3b2

= Φa3→b3

{
(I −Ka3Ha3)P

−
a3a2

−
−Ka3Ha2P

−
a2a2

−Ka3Ha1P
−
a1a2

}
ΦT

a2→b2
(35)

where the expectation terms involving a3, a2, a1 are known (from previous update). In a similar
manner we get

P−
b3b1

= Φa3→b3

{
(I −Ka3Ha3)P

−
a3a2

−
−Ka3Ha2P

−
a2a2

−Ka3Ha1P
−
a1a2

}
ΦT

a2→b1
(36)

while P−
b2b1

.
= E[(X̃

−
b2
)(X̃

−
b1
)T ] is given by

P−
b2b1

= Φb1→b2P
−
b1b1

(37)

B. Graph-Based Cross-Covariance Calculation
A directed acyclic graph (DAG) G = (V,E) is locally maintained by every vehicle in the

group, where V is the set of nodes and E is the set of directed arcs connecting between
the nodes in V . Two type of nodes exist in this graph: nodes that represent images and
the attached navigation data that participated in some multi-vehicle update, and update-event
nodes. The nodes are connected by directed weighted arcs. The weight of each arc reflects
the information flow between the two connected nodes. Each node in G can be connected
to another node by a transition relation, and, in addition, it may be involved in a three-view
measurement, in which case it would be also connected to an update-event node by an update
relation.

The transition relation is given by Eq. (9), relating between the state vectors of the ith
vehicle at two different time instances ta and tb. G will contain two nodes, representing these
two time instances, only if each of them participates in some three-view measurement. In this
case, these two nodes will be connected by an arc, weighted by the transition matrix Φi

ta→tb
.

The noise process covariance matrix Qi
ta:tb

.
= E[ωi

ta:tb
(ωi

ta:tb
)T ] is associated to this arc as

well.
The update relation is given by Eq. (27):

X̃
+

3 = [I −K3H3] X̃
−
3 −K3H2X̃

−
2 −K3H1X̃

−
1 −K3Dv

Thus, G will contain 4 nodes representing the above equation. Let the nodes βi represent
the a priori estimation errors X̃

−
i , with i = 1, 2, 3, and the node α represent the a posteriori

estimation error X̃
+

3 . Then, the arc weights connecting the nodes β1, β2 and β3 with the node
α are −K3H1, −K3H2 and I − K3H3, respectively. Each such arc is also associated with
the relevant measurement noise covariance matrix [21]. It is assumed that the a priori and a
posteriori covariance and cross-covariance terms between the nodes that participated in the
same multi-vehicle update, which had already been carried out, are known (this information
may be stored in the nodes themselves).

Consider, for example, the simple scenario discussed in the previous section (cf. Fig. 3).
The equivalent graph is given in Fig. 4(a). As seen, two update events are carried out, both
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on Vehicle III. At each update, the first two images of the three are transmitted by Vehicle
I, while the third image is the currently-captured image by the querying Vehicle III. Vehicle
II has not transmitted any images and therefore has no nodes in the graph. The transmission
action is denoted by a dashed arc in the graph. Nodes of the first type are denoted as circle
nodes, while the second-type nodes are designated by a square notation. The arc weights are
not explicitly specified in the graph (for clarity of presentation). For example, the weight of
an arc connecting between the nodes a−1 and a−2 is the transition matrix ϕa1→a2 , since no
measurement updates were performed between these two time instances. On the other hand,
the arcs connecting a−1 , a

−
2 and a−3 to a+3 are weighted, according to Eq. (34), as −Ka3Ha1 ,

−Ka3Ha2 and I − Ka3Ha3 , respectively. In addition, each arc is also associated with the
appropriate noise covariance, as mentioned above.

The graph representation suggests a convenient approach for computing the correlation
terms. Assume we need to calculate the cross-covariance between some two nodes c and d
in the graph, representing X̃c and X̃d, respectively. The first step is to construct two inverse-
trees, containing all the possible routes in the graph G to each of the nodes c and d. This
is performed as follows. The first tree, Tc, is initialized with the node c. Each next level
is comprised of the parents of nodes that reside in the previous level, as determined from
the graph G. Thus, for example, the second level of Tc contains all the nodes in G that are
directly connected to c. The same process is executed for constructing a tree Td for the node
d. Fig. 4(b) shows an example of two trees with c .= b−3 and d .

= b−1 , constructed based on the
graph, given in Fig. 4(a), for calculating the cross-covariance P−

b3b1
. This term and the terms

P−
b3b2

, P−
b2b1

are required for carrying out the measurement update b+3 .
Note that each node in Tc and Td has only one child but may have one or three parents.

In the latter case, the node represents an update event.

3b+

3b−

2a−

1a−

1b−

2b−

3a−

3a+

I IIIII

(a)

3a+

3b−

3a−
2a−

1a−

3 1a aK H−
3 2a aK H−

3 3a aI K H−

3 3a bφ →

1b−

2a−

2 1a bφ →

1a−

1a−

(b)

Fig. 4. (a) Graph representation for the scenario shown in Fig. 3. (b) The two inverse-trees T
b−3

and T
b−1

required for
calculating P−

b3b1
.

The concept of the proposed graph-based approach for calculating the cross-covariance
terms is as follows. We start with the two nodes c and d, which are the first-level nodes
in the trees Tc and Td, respectively. Since the term E[X̃cX̃

T

d ] is unknown, we proceed to
the parents of these nodes. As noted above, two types of relations exist for a general graph
topology. Assume, for example, that both of the nodes c and d are related to the nodes in the
next level by a transition relation, and therefore have only one parent. This assumption is made
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only for clarity of explanation2. Denote the parents of c and d as c2 and d2, respectively. The
nodes c2 and d2 constitute the second level in the trees Tc and Td, respectively. For example,
c2 and c are connected via X̃c = Φc2→cX̃c2 +ωc2→c. The convention used here is that if some
node ai has several parents, the jth parent is denoted as aji+1. Also, a ≡ a1.

Now, the required cross-covariance term Pcd
.
= E[X̃cX̃

T

d ] may be written in several forms:

E

[
X̃c

(
Φd2→dX̃d2 + ωd2:d

)T
]

E
[(

Φc2→cX̃c2 + ωc2:c

)
X̃

T

d

]
E

[(
Φc2→cX̃c2 + ωc2:c

)(
Φd2→dX̃d2 + ωd2:d

)T
]

Since the expression from the previous level (the first level) was already checked, it is now
required to check whether any of the expressions involving nodes from the current level are
known. In other words, the question is whether any of the pairs Pcd2 , Pc2d and Pc2d2 are
known. In addition, it is also required to know the correlation between the noise terms and
the state vectors.

Assuming none of the pairs is known, we proceed to the next level, the third level. Each
node in the second level may have either transition or update relation, given by Eqs. (9)
and (27), respectively, with the nodes in the third level. In this case, since the second level
contains only a single node in each tree (c2 and d2), there are four possible cases: transition
relation for c2 and update relation for d2; update relation for c2 and transition relation for d2;
update relations for c2 and d2; transition relations for c2 and d2. At this point, we choose to
analyze the first case. Other cases are treated in a similar manner.

Thus, c2 has a single parent, denoted by c3, while d2 has three parents denoted by d13, d
2
3 and

d33 (in this case d2 represents an update event, while d13, d
2
3, d

3
3 represent the three participating

images and the attached navigation data). The relations for c2 and d2 can be written as

X̃c2 = Φc3→c2X̃c3 + ωc3:c2

X̃d2 = Ad33
X̃d33

+ Ad23
X̃d23

+ Ad13
X̃d13

+ Ad1233
vd1233

where Ad33

.
= (I −Kd33

Hd33
), Ad23

.
= −Kd33

Hd23
, Ad13

.
= −Kd33

Hd13
and Ad1233

.
= −Kd33

Dd1233
.

Having reached a new level, the third level, new expressions for the required term E[X̃cX̃
T

d ]
may be written utilizing nodes from this level and lower levels. Note that all the expressions
from the previous (second) level were already analyzed.

Assume that some term, for example, E[X̃c3X̃
T

d33
], is known, which means that the nodes

c3 and d33 in Tc and Td, respectively, either represent images that participated in the same
three-view update in the past, or that these two nodes are identical (c3 ≡ d33). In any case,
the known term E[X̃c3X̃

T

d33
], accordingly weighted, is part of E[X̃cX̃

T

d ].
Having a known term also means that there is no need to proceed to nodes of higher levels

that are related to this term. In the case of a known E[X̃c3X̃
T

d33
], we would not proceed to

the parents of c3 and d33, unless this is required by the unknown terms in the current level. In
this example, if the unknown terms are E[X̃c3X̃

T

d23
] and E[X̃c3X̃

T

d13
], then we would proceed

to the parents of c3 in Tc, and of d13 and d23 in Td, but not to the parents of d33 in Td.
The procedure proceeds to higher levels until either all the terms required for calculating

the cross-covariance E[X̃cX̃
T

d ] are known, or reaching the top level in both trees. In the latter
case, the unknown terms of cross-covariance are actually zero.

2In practice, c and d will usually represent images that are going to participate in a three-view update event, and therefore
c and d will indeed have only one parent each.
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The process noise terms are assumed to be statistically independent of each other, E[ωi1:i2ω

T
j1:j2

] =
0, if ωi1:i2 and ωj1:j2 belong to different vehicles, or in the case the two noise terms belong
to the same vehicle but (ti1 , ti2) ∩ (tj1 , tj2) = ϕ. The measurement noise is assumed to
be statistically independent with the process noise. On the other hand, the process and
measurement noise terms are not necessarily statistically independent with the involved state
vectors. Their contribution to the required cross-covariance E[X̃cX̃

T

d ] is analyzed in [21].
Thus, in the general case, the process and measurement noise covariance matrices are part
of the calculated cross-covariance terms, while the measurement noise covariance matrices
participate also in Eqs. (27)-(32).

VI. OVERALL DISTRIBUTED SCHEME

Given M cooperative vehicles, each, or some, of these vehicles maintain a repository of
captured images attached with navigation data. All the vehicles maintain a local copy of the
graph, that is updated upon every multi-vehicle update event. This graph contains M threads,
one thread for each vehicle in the group. The graph is initialized to M empty threads. The
formulation of a single multi-vehicle update event is as follows.

The querying vehicle broadcasts its currently-captured image and its navigation solution to
the rest of the vehicles. A vehicle that receives this query, performs a check in its repository
to see whether it has previously captured images of the same region. Vehicles that do not
maintain such a repository perform this check over the currently captured image only. Different
procedures for performing this query may be devised. One possible alternative is to check
only those images in the repository that have a reasonable navigation data attached, e. g.
images that were captured from a vicinity of the transmitted position of the querying vehicle.

Among the chosen images, only images that have a smaller uncertainty in their attached
navigation data, compared to the uncertainly in the transmitted navigation data of the querying
vehicle, are transmitted back to the querying vehicle. Specifically, denote by PQ the covariance
matrix of the querying vehicle, and by P the covariance matrix attached to one of the
chosen images from a repository of some other vehicle in the group. Then, in our current
implementation, this image is transmitted back to the querying vehicle only if its position
uncertainty is smaller than the position uncertainty of the querying vehicle, i. e.:

(P )ii < α(PQ)ii , i = 1, 2, 3 (38)

where (A)ij is the ij entry of some matrix A, and α is a constant satisfying 0 < α ≤ 1.
Other criteria may be applied as well.

The chosen images, satisfying the above condition, are transmitted to the querying vehi-
cle, along with their attached navigation data. In addition, transition matrices between the
transmitted images are sent, as well as the image noise covariance matrices. In case the
replying vehicle has already participated in at least one multi-vehicle update of any vehicle
in the group, its thread in the graph will contain at least one node. Therefore, transition
matrices bridging the navigation data attached to the images being transmitted in the current
multi-vehicle update to the closest nodes in this thread are also sent.

As an example, consider the scenario shown in Fig. 5. Fig. 6 presents the construction
details of the graph for this scenario, for each of the executed three-view measurement updates.
Assume the first update, a+3 , was performed, and focus on the second update, b+3 . As shown
in Fig. 6(b), vehicle I transmits two images and navigation data, denoted by the nodes b−1 and
b−2 in the graph. This navigation data comprises the navigation solution and the covariance
matrix that were attached to each image that was stored in the vehicle’s repository (cf. Section
II). However, in addition to the transmitted transition matrix and process noise covariance
matrix between these two nodes, ϕb1→b2 and Qb1→b2 , the transition matrix and noise covariance
matrix between the nodes b2 and a3, ϕb2→a3 and Qb2→a3 , are transmitted as well.
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II

III

I

a1 a2 b3 c3

b1 b2 a3 c1

c2

Fig. 5. Three-vehicle scenario

TABLE I
COMMUNICATION BETWEEN THE VEHICLES FOR UPDATING VEHICLE III AT TIME INSTANT tb3 IN THE EXAMPLE

CONSIDERED IN FIG. 6(B).

# Description What is transmitted
1 Vehicle III broadcasts its current image, I1(tb3)

navigation solution and covariance x1(tb3), P
−
b3b3

.
= P−

1 (tb3)

2 Vehicle I transmits imagery and navigation data I1(tb1),x1(tb1), P
−
b1b1

.
= P−

1 (tb1), Rb1
.
= R1(tb1),

from tb1 and tb2 to Vehicle III I1(tb2),x1(tb2), P
−
b2b2

.
= P−

1 (tb2), Rb2
.
= R1(tb2)

3 Vehicle I transmits additional data ϕb1→b2 , ϕb2→a3 , Qb1→b2 , Qb2→a3

4 Vehicle III performs an update -

5 Vehicle III broadcasts update information:
Identities of involved vehicles and time instances Vehicles I and III, tb1 , tb2 , tb3

Additional required matrices ϕb1→b2 , ϕb2→a3 , Qb1→b2 , Qb2→a3

Filter matrices K3, Hi(tbi), Di(tbi), Ri(tbi) , i = 1, 2, 3
Involved a priori covariance P−

b1b1
, P−

b2b2
, P−

b3b3

Calculated a priori cross-covariance P−
b1b2

, P−
b1b3

, P−
b2b3

Calculated a posteriori covariance and cross-covariance P+
b3b3

(and P+
b3b2

, P+
b3b1

if Vehicles I and II were updated)

Upon receiving the transmitted images and the navigation data, two best images are se-
lected3 and the cross-covariance terms are calculated based on the local graph, as discussed
in Section V, followed by computation of all the relevant filter matrices: H3, H2, H1,A,B, D.
Next, the update of the querying vehicle is carried out based on Section IV.

Now, it is only required to update the local graphs of all the vehicles in the group by
the performed update event. The querying vehicle broadcasts the following information: a)
identity of the involved vehicles in the current update; b) time instances (or some other
identifiers) of the involved images; required transition matrices of the involved images; c)
a priori covariance and a posteriori cross-covariance matrices; d) filter matrices K3, H3, H2

and H1 and the required noise covariance matrices. Then, each vehicle updates its own graph
representation. This communication procedure is elaborated in Table I, which presents what
is being actually transmitted for the second update of Vehicle III in the example considered
in Fig. 6(b).

The process described above is summarized in Algorithms 1 and 2. Algorithm 1 contains
a protocol of actions carried out by the querying vehicle, while Algorithm 2 provides the
protocol of actions for the rest of the vehicles in the group. The computational complexity

3The selection is according to some criteria, e. g., Eq. (38). Alternatively, the proposed approach may be also applied on
more than three images [18], [19].
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for updating a single vehicle can be bounded by O(n2log(n)), where n is the number of the
thus-far performed three-view measurement updates that are represented in the graph [19],
[24]. Moreover, the involved communication cost is bounded by O(Nn2), with N being the
number of vehicles in the group.

It is important to mention, that the distributed algorithm does not make any further approx-
imations other than those mentioned in Section IV: The algorithm is exact4 if all the vehicles
involved in the three-view measurements can be updated while keeping the graph acyclic.
If keeping the graph acyclic means that only part of the involved vehicles can be updated,
an approximated solution is obtained due to the applied ad-hoc approach for calculating the
filter’s gain matrix (cf. Section IV). The performance of the algorithm in such a scenario is
provided and analyzed in Section VII-B.

While it is tempting to compare the proposed approach with bundle adjustment (BA)
methods, we believe this comparison is premature since extending the method presented
herein to a BA framework is outside the scope of this paper.

However, it is important to note that one key difference between the proposed method and
approximated BA methods, such as sliding-window BA (e. g. [34]), is the ability to handle
loops, in which a vehicle re-observes the same scene after some a priori unknown time:
Such scenarios cannot be handled by sliding-window BA methods if some of the involved
information is not represented in the sliding-window state vector. The proposed method, on the
other hand, allows to handle loops, as well as multi-vehicle measurements that involve similar
challenges5, by: a) storing only essential information in the graph (cf. Section V-B), while
the rest is stored in the local hierarchical repositories (cf. Section VI-B); b) computing an
approximated solution for only part of the involved vehicles (or time instances) if the acyclic
graph topology requires so. These two aspects allow calculating the cross-covariance terms
by going over the graph, without being forced to go through all the information that would
be processed in a smoothing approach (i.e. the navigation history stored in the hierarchical
repositories). Naturally, applying smoothing is expected to produce better results at the cost
of additional computations.

A. Vehicles Joining or Leaving the Group
Whenever a vehicle joins an existing group of cooperative vehicles, it must obtain the graph

describing the history of multi-vehicle updates among the vehicles in the group. This graph
may be transmitted to the joining vehicle by one of the vehicles in the group. Departure of
a vehicle from the group does not require any specific action.

An interesting scenario is one in which there are several groups of cooperative vehicles,
and a vehicle has to migrate from one group to another. Refer the former and the latter
groups as the source and destination groups. For example, this might be the case when each
cooperative group operates in a distinct location and there is a need to move a vehicle within
these groups. In these scenarios the migrating vehicle has already a local graph representing
the multi-vehicle events of the source group, while the destination group has its own graph.

These two graphs have no common threads only when each vehicle is assigned only to
one group, and, in addition, no migration between the groups have occurred in the past. In
any case, upon receiving the graph of the destination group, the joining vehicle may fuse the
two graphs and broadcast the updated graph to all the vehicles in the destination group.

4Up to the standard linearization approximations involved with the extended Kalman filter framework.
5For example, multi-vehicle three-view measurements that involve considerably different time instances, between which

additional multi-vehicle measurements were executed.
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Fig. 6. Graph update process: a) update event a+
3 ; b) update event b+3 ; c) update event c+3 .

B. Efficient Calculation of Transition and Process Noise Covariance Matrices
The problem this section refers to is calculating the transition matrix and the process

noise covariance matrix between some two time instances that are unknown a priori. These
matrices participate in calculation of the cross-covariance terms, as explained in Section V.
We first handle calculation of transition matrices. Recall that each image stored in the vehicle
repository is associated with navigation parameters taken when the image was captured.

A naive approach for calculating the transition matrix ϕi→j between some image i to some
other image j in the repository would be based on

ϕi→j = ϕj−1→j · . . . · ϕi→i+1 (39)

However, a much more time-efficient alternative is to calculate ϕi→j using transition matrices
bridging between several time instances. For example, if we had the matrix ϕi→j−1, the
computation of ϕi→j would require multiplication of only two matrices: ϕi→j = ϕj−1→j ·
ϕi→j−1. This concept may be realized by maintaining a skip list [27] type database. The
lowest level is comprised of the stored images and the associated navigation data, including
the transition matrices between adjacent stored images. This level is a possible implementation
of the repository maintained by all/some vehicles. Each next level is constructed by skipping
several nodes in the lower level, and assigning the appropriate transition matrix, transferring
from previous node to next node in the same level. No other data are stored outside the first
level nodes.

An example of this concept is given in Fig. 7, in which every two nodes in some level
contribute a node in the next level. Thus, for instance, calculation of ϕ2→5 may be performed



18Algorithm 1 Querying Vehicle Protocol
1: Notations: Q - Querying vehicle; A,B - two other vehicles.
2: Broadcast current image IQ and current navigation data.
3: Receive a set of images and associated navigation data from other vehicles. See steps

2-11 in Algorithm 2.
4: Choose two best images IA, IB transmitted by vehicles A and B, respectively.
5: First graph update:

• Add a new node for each image in the appropriate thread (A,B and Q) in the graph.
• Denote these three new nodes in threads A,B and Q by β1, β2 and β3, respectively.
• Connect each such node to previous and next nodes (if exist) in its thread by directed

arcs associated with the transition matrices and with the process noise covariance
matrices.

6: Calculate cross-covariance terms based on the local graph (cf. Section V).
7: Calculate the measurement z and the filter matrices K3, H3, H2, H1, D based on the three

images IA, IB, IQ and the attached navigation data.
8: Perform navigation update on vehicle Q.
9: Final graph update:

• Add an update-event node, denoted by α, in the thread Q.
• Connect the nodes β1, β2 and β3 to the update-event node α by directed arcs weighted

as −K3H1,−K3H2 and I −K3H3, respectively. Associate also measurement noise
covariance matrix to each arc.

• Store a priori and a posteriori covariance and cross-covariance terms (e. g. in the
nodes β1, β2, β3 and α).

10: Broadcast update event information.

Algorithm 2 Replying Vehicle Protocol
1: Notations: Q - Querying vehicle; A - current vehicle.
2: if a query image and its navigation data are received then
3: Search repository for images containing the same scene.
4: Choose images that satisfy the navigation uncertainty criteria (38).
5: For each chosen image, captured at some time instant k, look among all the nodes in

thread A in the local graph, for two nodes with time l and m that are closest to k,
such that l < k < m.

6: Calculate transition matrices ϕl→k and ϕk→m and noise covariance matrices Ql:k and
Qk:m.

7: if more than one image was chosen in step 4 then
8: Calculate transition matrices and noise covariance matrices between the adjacent

chosen images.
9: end if

10: Transmit the chosen images, their navigation data and the calculated transition and
noise covariance matrices to the querying vehicle Q.

11: end if
12: if update message is received from Q then
13: Update local graph following steps 5 and 9 in Algorithm 1.
14: end if

by searching for the appropriate route in the skip list formation, which will yield ϕ2→5 =
ϕ3→5ϕ2→3, instead of carrying out the three matrix multiplications ϕ2→5 = ϕ4→5ϕ3→4ϕ2→3.
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The process noise covariance matrix between any two time instances may be efficiently

calculated following a similar approach. For example, Qi:j , for general i and j, i < j is given
by

Qi:j = Qj−1:j + Φj−1→jQj−2:j−1Φ
T
j−1→j +

+ · · ·+ Φi+1→jQi:i+1Φ
T
i+1→j

However, if each node in the skip list database contains the noise covariance matrix between
the previous node in the same level, Qi:j may be also calculated, for instance, as

Qi:j = Qj−1:j + Φj−1→jQi:j−1Φ
T
j−1→j (40)
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Fig. 7. Skip list repository database example.

C. Incorporating Other Measurements
The proposed graph-based technique for calculating cross-covariance terms may be also

applied when, in additional to the multi-vehicle three-view updates, other measurements
should be incorporated as well. For instance, each vehicle can apply epipolar-geometry
constraints based on images captured by its own camera (e. g. [28]). Moreover, some of
the vehicles may be equipped with additional sensors, or additional information might be
available (e. g. DTM).

For simplicity, we assume at this point a standard measurement model for these additional
measurement types, i. e. z = HX+v. These measurement updates will be referred to as basic
measurement updates. Next, it is shown how the basic measurements may be incorporated
into the proposed approach for cooperative localization and navigation.

Since a standard measurement model was assumed, the a posteriori estimation error is
given by

X̃
+
= (I −KH)X̃

− −Kv (41)
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Going back to the three-view measurement model, consider the simple scenario shown in
Fig. 3. Assume a single basic update was performed between the first update event, at a3,
and the second update event, at b3. Denote by γ the time instant of this additional update,
γ ∈ (a3, b3). X̃

−
b3

is no longer inertially propagated from X̃
+

a3
, but instead may be expressed

as

X̃
−
b3
= ϕγ→b3X̃

+

γ + ωγ:b3 (42)

Based on Eq. (41), X̃
−
b3

may be expressed as

ϕγ→b3

[
(I −KγHγ)

(
ϕa3→γX̃

+

a3
+ ωa3:γ

)
−Kγv

]
+ ωγ:b3

or, alternatively:

X̃
−
b3
= ϕ∗

a3→b3
X̃

+

a3
+ ω∗

a3:b3
(43)

where
ϕ∗
a3→b3

.
= ϕγ→b3(I −KγHγ)ϕa3→γ (44)

is the equivalent transition matrix and

ω∗
a3:b3

.
= ϕγ→b3(I −KγHγ)ωa3:γ − ϕγ→b3Kγv + ωγ:b3 (45)

is the equivalent noise term with noise covariance Q∗
a3:b3

given by

Q∗
a3:b3

.
= ϕγ→b3(I −KγHγ)Qa3:γ [ϕγ→b3(I −KγHγ)]

T + ϕγ→b3KγRK
T
γ ϕ

T
γ→b3

+Qγ:b3 (46)

Thus, for example, P−
b3b1

is given by (cf. Eq. (36)):

P−
b3b1

= Φ∗
a3→b3

{
(I −Ka3Ha3)P

−
a3a2

−
−Ka3Ha2P

−
a2a2

−Ka3Ha1P
−
a1a2

}
ΦT

a2→b1

In the general case, there might be a number of basic updates in each of the vehicles. However,
these updates are treated in a similar manner, by calculating the equivalent transition matrix Φ∗

and noise covariance matrix Q∗ between the time instances that participate in the three-view
measurement and updating accordingly the repository database (cf. Section VI-B).

VII. SIMULATION AND EXPERIMENTAL RESULTS

In this section the proposed approach for vision-aided cooperative navigation is studied in
two different scenarios. First, a formation flying scenario is considered, involving two vehicles,
a leader and a follower. Statistical results, based on simulated navigation data and synthetic
imagery are presented. Next, a holding pattern scenario is demonstrated in an experiment
using real imagery and navigation data.

A. Implementation Details
1) Navigation Simulation: The navigation simulation for each of the two vehicles consists

of the following steps [28]: (a) Trajectory generation; (b) velocity and angular velocity
increments extraction from the created trajectory; (c) IMU error definition and contamination
of pure increments by noise; and (d) strapdown calculations. The strapdown mechanism
provides, at each time step, the calculated position, velocity and attitude of the vehicle.

Each vehicle is handled independently based on its own trajectory. Once a vehicle obtains
three images with a common overlapping area, the developed algorithm is executed: cross-
covariance terms are computed, followed by estimation of the state vector. The estimated
state vector is then used for updating the navigation solution and the IMU measurements (cf.
Fig. 1). Next, the update information is stored and delivered to the second vehicle in the
group.
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2) Image Processing Module: Given three images with a common overlapping area, the

image processing phase includes features extraction from each image using the SIFT algorithm
[29] and computation of sets of matching pairs between the first two images, {xi

1,x
i
2}

N12

i=1 , and
between the last two images, {xi

2,x
i
3}

N23

i=1 , where xi = (xi, yi)T are the image coordinates of
the ith feature. This computation proceeds as follows. First, the features are matched based
on their descriptor vectors (that were computed as part of the SIFT algorithm), yielding the
sets {xi

1,x
i
2}

Ñ12

i=1 , {xi
2,x

i
3}

Ñ23

i=1 . Since this step occasionally produces false matches (outliers),
the RANSAC algorithm [30] is applied over the fundamental matrix [22] model in order to
reject the existing false matches, thus obtaining the refined sets {xi

1,x
i
2}

N12

i=1 and {xi
2,x

i
3}

N23

i=1 .
The fundamental matrices are not used in further computations.

The next step is to use these two sets for calculating matching triplet features, i. e. matching
features in the three given images. This step is performed by matching all x1 ∈ {xi

1,x
i
2}

N12

i=1

with all x3 ∈ {xi
2,x

i
3}

N23

i=1 , yielding a set of matching triplets {xi
1,x

i
2,x

i
3}

N123

i=1 . The matching
process includes the same steps as described above.

When using synthetic imagery data, a set of points in the real-world is randomly drawn.
Then, taking into account the camera motion, known from the true vehicle trajectory, and
assuming specific camera calibration parameters, the image coordinates of the observed real-
world points are calculated using a pinhole projection [22] at the appropriate time instances.
See, for example, Ref. [26] for further details. Consequently, a list of features for each time
instant of the three time instances, which are manually specified, is obtained: {xi

1}, {xi
2}

and {xi
3}. The mapping between these three sets is known, since these sets were calculated

using the pinhole projection based on the same real-world points. Thus, in order to find the
matching sets {xi

1,x
i
2,x

i
3}

N123

i=1 , {xi
1,x

i
2}

N12

i=1 and {xi
2,x

i
3}

N23

i=1 it is only required to check which
features are within the camera field of view at the appropriate time instances.

Finally, the calculated sets of matching features are transformed into sets of matching LOS
vectors. A LOS vector, expressed in the camera system for some feature x = (x, y)T , is
calculated as qC = (x, y, f)T , where f is the camera focal length. As a result, three matching
LOS sets are obtained:

{
qC1
1i
,qC2

2i
,qC3

3i

}N123

i=1
,
{
qC1
1i
,qC2

2i

}N12

i=1
and

{
qC2
2i
,qC3

3i

}N23

i=1
. When han-

dling real imagery, the camera focal length, as well as other camera parameters, are found
during the camera calibration process. In addition, a radial distortion correction [22] was
applied to camera-captured images, or alternatively, to the extracted feature coordinates.

B. Formation Flying Scenario - Statistical Results
In this section the proposed method for vision-aided cooperative navigation is applied on a

formation flying scenario, comprised of a leader vehicle and a single follower vehicle. Each
vehicle is equipped with a camera and an IMU. In this scenario, the leader’s IMU is of a
better quality than the follower’s IMU. It is also assumed that the leader’s initial navigation
errors are small compared to those of the follower. Table II summarizes the assumed 1σ
values of the initial navigation errors and IMU bias and drift for the two vehicles.

Both vehicles perform the same trajectory, which is a straight and level north-headed flight
at a velocity of 100 m/s. The mean height above ground level is 2000 m. The distance between
the leader and follower vehicles is 2000 meters (the follower is behind the leader), i. e. 20
seconds delay. The initial navigation errors, as well as the accelerometers bias and gyroscopes
drift, were assumed to be of a zero-mean Gaussian distribution, with standard deviation values
specified in Table II. In each simulation run, the drawn values of initial navigation errors were
used for calculating the actual initial navigation solution, while the drawn drift and bias were
applied to corrupt the ground-truth IMU measurements. The IMU measurements were also
contaminated by a zero-mean Gaussian noise with a standard deviation of 100 µg/

√
Hz and

0.001 deg/
√
hr for the accelerometers and gyroscopes, respectively.



22TABLE II
INITIAL NAVIGATION ERRORS AND IMU ERRORS IN THE FORMATION FLYING SCENARIO

Parameter Description Leader Follower Units
∆P Initial position error (1σ) (10, 10, 10)T (100, 100, 100)T m

∆V Initial velocity error (1σ) (0.1, 0.1, 0.1)T (0.3, 0.3, 0.3)T m/s

∆Ψ Initial attitude error (1σ) (0.1, 0.1, 0.1)T (0.1, 0.1, 0.1)T deg

d IMU drift (1σ) (1, 1, 1)T (10, 10, 10)T deg/hr

b IMU bias (1σ) (1, 1, 1)T (10, 10, 10)T mg

The synthetic imagery data were obtained by assuming a 200 × 300 field of view, focal
length of 1570 pixels, and image noise of 0.5 pixel. The ground landmarks were randomly
drawn with a height variation of ±200 meters relative to the mean ground level.

The follower was updated using the proposed method every 10 seconds, applying the same
measurement schedule as in Fig. 3 (Vehicle I in the figure is the leader, Vehicle III is the
follower). The first update was carried out after 27 seconds of inertial flight, while the leader
vehicle performed an inertial flight the whole time duration. The true translation motion
between any three views participating in the same measurement is T12 = 200 meters and
T23 = 400 meters, in the north direction.

In each update, two of the three images6 that participate in the measurement were taken
from the leader. Since the two vehicles perform the same trajectory, with a 20 seconds time
delay, these two images have been acquired by the leader 20 seconds before the measurement.
Therefore they were stored in the leader’s repository and retrieved upon request. The cross-
covariance terms were calculated in each update according to Eqs. (35)-(37).

The Monte-Carlo results (1000 runs) for the follower vehicle are presented in Figs. 8-10, in
terms of the mean navigation error (µ), standard deviation (σ) and square root covariance of
the filter. In addition, the results are compared to inertial navigation of the follower and to the
navigation errors of the leader vehicle (only standard deviation of these errors is presented;
the mean error is zero in all cases). As seen, the position and velocity errors (Fig. 8) are
significantly reduced, compared to the inertial scenario, in all axes. The bias state is estimated
also in all axes, while the drift state is only partially estimated (Fig. 10). The updates yielded
a mild reduction in Euler angle errors as well (Fig. 9).

A comparison of the follower navigation errors to the leader navigation errors, reveals
further insight. The position errors (and velocity errors to a less extent) of the follower are
lower than those of the leader, despite the fact that the leader has a considerably better
navigation system, and the follower is updated solely based on the leader’s navigation data.
The reason for this phenomenon is that the measurement z, given in Eq. (14), is a function of
both the follower’s and the leader’s navigation parameters, while only the follower is actually
updated (cf. Section IV). Carrying out the updates on both vehicles, using a similar filter
formulation to the formulation discussed in Section IV, will yield an improvement also in
the leader’s navigation errors [6]. Assuming the measurement schedule given in Fig. 3, it is
guaranteed that the graph will remain acyclic even if both of the vehicles are updated each
measurement7.

The fact that the obtained filter is unbiased and consistent, whereas neglecting the cross-
covariance terms renders the filter biased and inconsistent [19], suggests that the calculated
values for the cross-covariance terms are close to the true values.

6Since in this section a synthetic imagery data is used, the term “image” refers to a synthetic data, e. g. features coordinates.
7Provided that the leader is updated only at the time instant of the second image (e. g. referring to Fig. 3, Vehicle I that

represents the leader, can be only updated at a2 and b2, and not at a1 and b1).
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It is also worth mentioning that should the leader perform self-updates based on the available

sensors and information (e. g. epipolar constraints, GPS, DTM), improved navigation errors
will be obtained not only in the leader but also in the follower navigation system.
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Fig. 8. Formation flying scenario - Monte Carlo (1000 runs) results; Follower navigation errors compared to inertial
navigation and to navigation errors of the Leader: Reduced position and velocity errors in all axes. Position and velocity
errors are reduced below the Leader level of errors.

C. Holding Pattern Scenario - Experiment Results
In this section the proposed method is demonstrated in an experiment. The experiment

setup consists of a single ground vehicle, equipped with a 207MW Axis network camera8

and MTi-G Xsens IMU/INS9. The vehicle was manually commanded using a joystick, while
the camera captured images perpendicular to the motion heading. As in [18], the IMU and
imagery data was recored for post-processing at 100 Hz and 15 Hz, respectively. These two
sources of data were synchronized.

The vehicle performed two different trajectories. The IMU and the camera were turned off
between these two trajectories, thereby allowing to treat each trajectory as if it were performed

8http://www.axis.com/products/cam 207mw/index.htm.
9http://www.xsens.com/en/general/mti-g.
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Fig. 9. Formation flying scenario - Monte Carlo (1000 runs) results; Follower navigation errors compared to inertial
navigation and to navigation errors of the Leader: Euler angles errors. Euler angles are mildly reduced, however do not
reach the Leader’s levels due to poor estimation of the drift state (cf. Fig. 10(a)).

by a different vehicle, equipped with a similar hardware (IMU and camera), as opposed to
Section VII-B, where one of the vehicles was assumed to be equipped with a better navigation
system. Thus, we have two ground vehicles, each performing its own trajectory and recording
its own IMU and imagery data.

The only available ground-truth data is the manually measured trajectories, since the
experiment was carried out indoors and GPS was therefore unavailable. The two trajectories
represent a holding pattern scenario. Each vehicle performs the same basic trajectory: Vehicle
I performs this basic trajectory twice, while Vehicle II performs the basic trajectory once,
starting from a different point along the trajectory, and reaching the starting point of Vehicle
I after about 26 seconds. The reference trajectories of Vehicle I and II are shown in Fig. 11.
The diamond and square marks denote the manual measurements of the vehicles position.
Each two adjacent marks of the same vehicle are connected using a linear interpolation.

The proposed method for multi-vehicle (MV) three-view based updates was applied several
times in the experiment. In addition, the method was executed in a self-update mode, in
which all the images are captured by the same vehicle. The cross-covariance terms in this
case were computed exactly as in the case of multi-vehicle updates. A schematic sketch of the
measurements schedule is given in Fig. 12. Table III provides further information, including
the time instances of each participating triplet of images in the applied measurements.

As seen, Vehicle I is updated twice using data obtained from Vehicle II (measurements c
and e), and four times based on its own images (measurements f ,g,h and i). Vehicle II is
updated three times utilizing the information received from Vehicle I (measurements a,b and
d). The vehicles performed inertial navigation elsewhere, by processing the recorded IMU
data.

The images participating in each three-view update were manually identified and chosen.
Fig. 13 shows, for example, the three images of measurement a: images 13(a) and 13(b) were
captured by Vehicle I, while image 13(c) was captured by Vehicle II. Features that were found
common to all the three images (triplets) are also shown in the figure. Note that two objects
(a bottle, and a bag) that appear in images 13(a) and 13(b) are missing in image 13(c). These
two objects were removed between the two trajectories. Therefore, as seen in Fig. 13, these
two objects are not represented by matched triplets of features (but can be represented by
matched pairs of features between the first two views).

The experiment results are given in Figs. 14-15: Figs. 14(a) and 14(b) show the position



25

0 50 100 150
−5

0
5

10
15

 

 

d x [d
eg

/h
r]

0 50 100 150
−5

0
5

10
15

d x [d
eg

/h
r]

0 50 100 150
−5

0
5

10
15

Time [sec]

d x [d
eg

/h
r]

µ σ Sqrt. Cov. σ Leader

(a) Drift estimation errors.

0 50 100 150
−5

0
5

10
15

b x [m
g]

 

 

0 50 100 150
−5

0
5

10
15

b y [m
g]

0 50 100 150
0

5

10

15

b z [m
g]

Time [sec]

µ σ Sqrt cov. σ Leader

(b) Bias estimation errors.

Fig. 10. Formation flying scenario - Monte Carlo (1000 runs) results: Poor drift estimation. Bias estimation to the Leader’s
bias levels (1 mg).

errors for Vehicle I and II, while Figs. 15(a) and 15(b) show the velocity errors. Each figure
consists of three curves: navigation error, square root covariance of the filter, and navigation
error in an inertial scenario (given for reference). The measurement type (MV-update or
self-update) is also denoted in the appropriate locations.

The position error was calculated by subtracting the navigation solution from the true
trajectories (cf. Fig. 11). In a similar manner, the velocity error was computed by subtracting
the navigation solution from the true velocity profiles. However, since velocity was not
measured in the experiment, it was only possible to obtain an approximation thereof. The
approximated velocity was calculated assuming that the vehicles moved with a constant
velocity in each phase10.

As seen from Fig. 14(a), the position error of Vehicle I was nearly nullified in all axes
as the result of the first update, which was of MV type. The next update (also MV) caused
to another reduction in the north position error. After completing a loop in the trajectory, it
became possible to apply the three-view updates in a self-update mode for Vehicle I, i. e.

10The phase duration and the translation that each vehicle has undergone in each phase are known from analyzing the
IMU measurements and from the true trajectories.
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Fig. 12. Schematic sketch of the measurement schedule in the experiment. Further information regarding each measurement
is given in Table III.

all the three images were captured by Vehicle I. Overall, due to the applied 6 three-view
updates, the position error of Vehicle I has been confined to around 50 meters in the north
and east directions, and 10 meters in altitude. As a comparison, the position error of Vehicle I
in an inertial scenario reaches 900, 200 and 50 meters in the north, east and down directions,
respectively, after 150 seconds of operation. The position error of Vehicle II (cf. Fig. 14(b)) is
also dramatically reduced as the result of the three-view multi-vehicle updates. For example,
after the third update (t ≈ 60 seconds), the position error was nearly nullified in north
direction and reduced from 50 to 20 meters in the east direction. The velocity errors are also
considerably reduced in all axes (cf. Fig. 15).

VIII. CONCLUSIONS

This paper presented a new method for distributed vision-aided cooperative navigation
based on three-view geometry constraints. Whereas traditional approaches for cooperative
localization and navigation utilize relative pose measurements, in the newly-proposed method
a measurement is formulated whenever the same general scene is observed by different
vehicles.



27TABLE III
MEASUREMENT DETAILS IN THE EXPERIMENT.

Notation Type Querying vehicle t3 [sec] Replying vehicle t1, t2 [sec]
a MV update II 32.6 I 8.4, 14.2

b MV update II 53.2 I 35.9, 39.1

c MV update I 60.0 II 2.3, 5.6

d MV update II 60.6 I 47.9, 49.2

e MV update I 66.8 II 10.3, 12.1

f Self update I 81.1 I 0.3, 1.3

g Self update I 97.0 I 22.8, 24.3

h Self update I 124.7 I 54.3, 55.6

i Self update I 142.0 I 70.8, 72.1

(a) (b)

(c)

Fig. 13. Images participating in measurement a and matched triplets of features. Images (a) and (b) were captured by
Vehicle I; Image (c) was captued by Vehicle II. The images (a),(b) and (c) are represented in Fig. 12 as a1, a2 and a3.

Three images of a common region are required for each measurement. These images
are not necessarily captured at the same time. All, or some, of the vehicles maintain a
local repository of captured images, that are associated with some navigation parameters.
In a typical scenario, a vehicle captures an image and broadcasts it, along with its current
navigation solution, to other vehicles in the group, inquiring if they have previously captured
images containing the same region. Upon receiving such a query, each vehicle performs a
check in its repository looking for appropriate images. Among these images, only images
with a smaller navigation uncertainty compared to the uncertainty in the navigation data of
the query image, are transmitted back.

The proposed method was studied in a simulated environment and in an experiment.
Statistical results based on simulated navigation and synthetic imagery data were presented for
a leader-follower scenario, in which the leader is equipped with a higher quality INS compared
to the follower’s INS. The developed method reduced the rapidly-developing navigation errors
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Fig. 14. Position errors of Vehicles I and II in the experiment.

of the follower to the level of errors of the leader. A holding pattern scenario was demonstrated
in an experiment involving two ground vehicles equipped with identical inertial measurement
units and cameras. Significant reduction in the navigation errors of both vehicles was obtained
as a result of activating the newly-developed method.



29

0 50 100 150
−5

0

5

10

V
N

 

 

0 50 100 150
−2

0

2

4

V
E

0 50 100 150
−1

0

1

V
D

Time [sec]

Nav. error Sqrt. Cov. Inertial MV Self

(a) Velocity errors - vehicle I

0 20 40 60 80 100
−2

0

2

4

V
N

 

 

0 20 40 60 80 100

0

5

10

V
E

0 20 40 60 80 100
−0.5

0

0.5

1

V
D

Time [sec]

Nav. error Sqrt. Cov. Inertial MV

(b) Velocity errors - vehicle II

Fig. 15. Velocity errors of Vehicles I and II in the experiment.
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APPENDIX A

The transition matrix Φta→tb satisfying Eq. (9) is calculated according to

Φta→tb = eΦc∆t (47)

where ∆t
.
= tb − ta and Φc is the following continuous system matrix

Φc =


03×3 I3×3 03×3 03×3 03×3

03×3 03×3 As 03×3 CB
L

03×3 03×3 03×3 −CB
L 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

 (48)

In the above equation, the matrix CB
L is a directional cosine matrix transforming from body

system to LLLN system and As is a skew-symmetric matrix of the specific force vector
f =

(
fx fy fz

)T , measured by the accelerometers and expressed in the NED system:

As =

 0 −fD fE
fD 0 −fN
−fE fN 0

 fNfE
fD

 = CB
L

fxfy
fz

 (49)

The expression for the continuous system matrix Φc, given in Eq. (48), is valid for short
periods of operation, significantly smaller than the Schuler period (around 84 minutes) [32].
While the scenario examples considered in this paper indeed satisfy this condition, one could
adopt less degenerated process models (for medium-term and long-term scenarios [32]) as
well. It is worth noting that a similar model of the system matrix is widely used also in the
SLAM community (e. g. [33]).

APPENDIX B
In this appendix we present explicit expressions for the Jacobian matrices

Hi(ti) = ∇ζi(ti)h , Di(ti) = ∇yi(ti)h , i = 1, 2, 3 (50)

The reader is referred to [18] and [19] for further details.

Expressions for Hi(ti)

The matrices Hi(ti), i = 1, 2, 3 are of the following form:

Hi =
[
HPos(ti) 0 HΨ(ti) 0 0

]
(51)

with

HPos(t3) = A (52)
HPos(t2) = − (A+ B) (53)
HPos(t1) = B (54)

and

HΨ(t3) =

N123∑
i=1

ei

[
TT

12

∂wi

∂q3i

−TT
23

∂ui

∂q3i

]
CL3

L2
[qL3

3i
]× −

N23∑
i=1

eN123+iT
T
23

∂f i
∂q3i

CL3
L2
[qL3

3i
]× (55)
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HΨ(t2) =

N123∑
i=1

ei

[
TT

12

∂wi

∂q2i

−TT
23

∂ui

∂q2i

]
[qL2

2i
]× −

N23∑
i=1

eN123+iT
T
23

∂f i
∂q2i

[qL2
2i
]× +

+

N12∑
i=1

eN123+N23+iT
T
12

∂gi

∂q2i

[qL2
2i
]× (56)

HΨ(t1) =

N123∑
i=1

ei

[
TT

12

∂wi

∂q1i

−TT
23

∂ui

∂q1i

]
CL1

L2
[qL1

1i
]× +

N12∑
i=1

eN123+N23+iT
T
12

∂gi

∂q1i

CL1
L2
[qL1

1i
]× (57)

In the above expressions, ej is a N × 1 vector that is comprised of zero entries except for
the jth element which is equal to one.

Expressions for D and R
Instead of calculating Di(ti), we present expressions for E[Dv(Dv)T ]

.
= DRD. Recall

that

D
.
= ∇{qC1

1i
,q

C2
2i

,q
C3
3i
}h (58)

R
.
= cov

({
qC1
1i
,qC2

2i
,qC3

3i

})
(59)

Let Rv be a 3× 3 covariance matrix of the image noise

Rv =

Rx 0 0
0 Ry 0
0 0 Rf

 (60)

with Rx = E(vxv
T
x ) and Ry = E(vyv

T
y ). Rf represents the uncertainty in the camera focal

length. Assuming the focal length is known precisely, it can be chosen as zero.
Let ∆N12 and ∆N23 be the number of additional pairs in {q1i

,q2i
}N12
i=1 and {q2i

,q3i
}N23
i=1

that are not present in {q1i
,q2i

,q3i
}N123
i=1 : N12 = N123 + ∆N12 and N23 = N123 + ∆N23.

Although the overall number of matches in the sets

{q1i
,q2i

}N12
i=1 , {q2i

,q3i
}N23
i=1 , {q1i

,q2i
,q3i

}N123
i=1 (61)

is N = N123 +N12 +N23, the actual number of different matches is N123 +∆N12 +∆N23.
The matrix DRD is given by:

DRDT =

N123+∆N12∑
i=1

∂h

∂qC1
1i

Rv
∂hT

∂qC1
1i

+

N123+∆N12+∆N23∑
i=1

∂h

∂qC2
2i

Rv
∂hT

∂qC2
2i

+

+

N123+∆N23∑
i=1

∂h

∂qC3
3i

Rv
∂hT

∂qC3
3i

(62)
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where

∂h

∂qC1
1i

|N×3 =

[
∂AT23

∂ui

∂ui

∂qL2
1i

− ∂BT12

∂wi

∂wi

∂qL2
1i

− ∂BT12

∂gi

∂gi

∂qL2
1i

]
∂qL2

1i

∂qC1
1i

=

=


{
ei

[
TT

23
∂ui

∂q
L2
1i

−TT
12

∂wi

∂q
L2
1i

]
− eN123+N23+iT

T
12

∂gi

∂q
L2
1i

}
CC1

L2
i ≤ N123

−eN123+N23+iT
T
12

∂gi

∂q
L2
1i

CC1
L2

N123 < i ≤ N̆12

(63)

∂h

∂qC2
2i

|N×3 =



ei

[
TT

23
∂ui

∂q
L2
2i

−TT
12

∂wi

∂q
L2
2i

]
CC2

L2
+

+

[
eN123+iT

T
23

∂f i

∂q
L2
2i

− eN123+N23+iT
T
12

∂gi

∂q
L2
2i

]
CC2

L2
i ≤ N123

eN123+iT
T
23

∂f i

∂q
L2
2i

CC2
L2

N123 < i ≤ N̆23

−e2N123+iT
T
12

∂gi

∂q
L2
2i

CC2
L2

N̆23 < i ≤ N̆23 +∆N12

(64)

∂h

∂qC3
3i

|N×3 =


{
ei

[
TT

23
∂ui

∂q
L2
3i

−TT
12

∂wi

∂q
L2
3i

]
+ eN123+iT

T
23

∂f i

∂q
L2
3i

}
CC3

L2
i ≤ N123

eN123+iT
T
23

∂f i

∂q
L2
3i

CC3
L2

N123 < i ≤ N̆23

(65)

with N̆12
.
= N123 +∆N12 and N̆23

.
= N123 +∆N23.
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