Towards Planning in the Generalized Belief Space

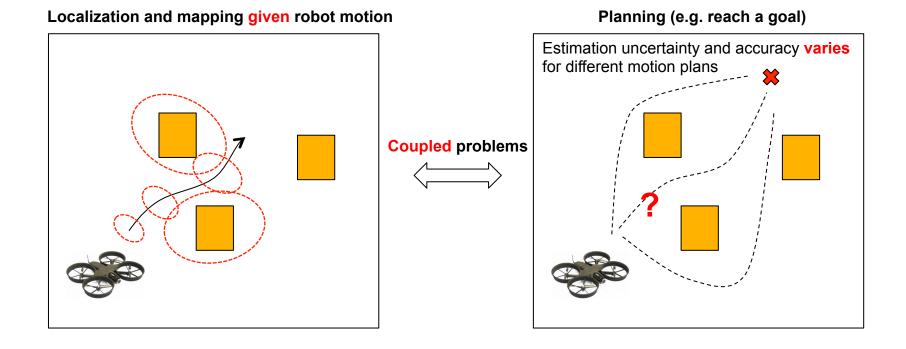
Vadim Indelman, Luca Carlone and Frank Dellaert

Institute of Robotics and Intelligent Machines (IRIM) Georgia Institute of Technology

International Symposium on Robotics Research (ISRR), December 2013

Introduction

- Key components for autonomous operation include
 - <u>Perception</u>: Where am I? What is the surrounding environment?
 - <u>Planning</u>: What to do next?



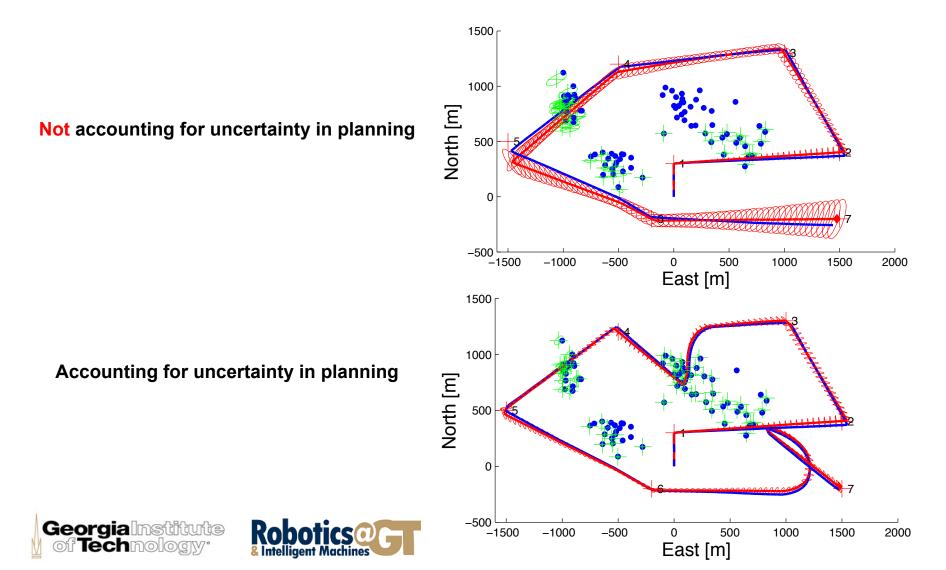
Introduction

- Key components for autonomous operation include
 - **<u>Perception</u>**: Where am I? What is the surrounding environment?
 - Planning: What to do next?
- Reliable operation in complex scenarios
 - Planning should account for different sources of uncertainty
 - What if environment is partially unknown or uncertain?

Integrated planning and perception

Introduction – Motivating Example

• Autonomous navigation to different goals in an unknown environment



Related Work

Existing approaches often

- Assume environment (e.g. map) is a priori known [Prentice and Roy 2009], [Van den Berg et al. 2012], [Hollinger et al. 2013]
- Discretize state and control space performance depends on grid resolution [Stachniss et al. 2004], [Bryson and Sukkarieh 2008], [Valencia et al. 2012], [Kim and Eustice 2013]
- Assume maximum likelihood observations [Miller et al. 2009], [Platt et al. 2010]
- This work Planning in the Generalized Belief Space (GBS)
 - Probabilistic description of the robot and the environment states
 - General framework
 - Closely related to [Van den Berg et al. 2012]
 - Environment is a priori unknown
 - Planning is done in the continuous space
 - Maximum likelihood observations assumption is avoided

Notations and Probabilistic Formulation

Joint state vector

$$X_k \doteq \{x_0, \dots, x_k, L_k\}$$

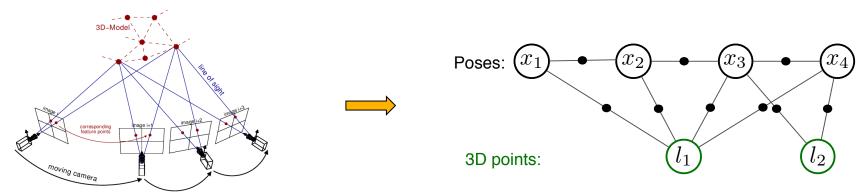
Past & current Mapped robot states environment

• Joint probability distribution function $p(X_k | \mathcal{Z}_k, \mathcal{U}_{k-1})$

$$p(X_k | \mathcal{Z}_k, \mathcal{U}_{k-1}) = priors \cdot \prod_{i=1}^k p(x_i | x_{i-1}, u_{i-1}) p(z_i | X_i^o)$$
General observation
model $X_i^o \subseteq X_i$

Computationally-efficient maximum a posteriori inference e.g. [Kaess et al. 2012]

$$p(X_k|\mathcal{Z}_k,\mathcal{U}_{k-1}) \sim N(X_k^*,\Sigma_k)$$

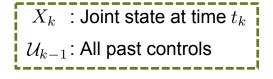


- Plan (locally) optimal control sequence over L look-ahead steps: $u_{k:k+L-1}^*$
 - By minimizing an objective function (can now include uncertainty)
 - Operating over the generalized belief
 - Model predictive control framework
- What is the generalized belief?
 - Probabilistic description of the robot and the environment states
 - Generalized belief at planning time t_k : $gb(X_k) \doteq p(X_k | \mathcal{Z}_k, \mathcal{U}_{k-1}) \sim N(X_k^*, \Sigma_k)$

Known (from perception)

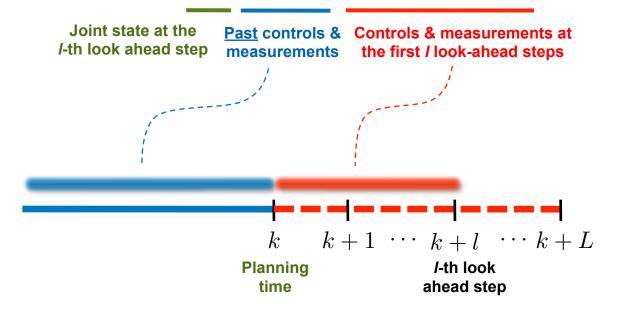


Generalized belief at planning time = joint pdf



- Generalized belief at the *l*-th look-ahead step
 - Describes the joint pdf (robot and environment states) at that time

$$gb(X_{k+l}) \doteq p(X_{k+l}|\mathcal{Z}_k, \mathcal{U}_{k-1}, Z_{k+1:k+l}, u_{k:k+l-1})$$



- Generalized belief at the *l*-th look-ahead step
 - Describes the joint pdf (robot and environment states) at that time

$$gb(X_{k+l}) \doteq p(X_{k+l}|\mathcal{Z}_k, \mathcal{U}_{k-1}, Z_{k+1:k+l}, u_{k:k+l-1})$$

Joint state at the Past controls & Controls & measurements at *I*-th look ahead step measurements the first *I* look-ahead steps

 Objective function can now involve uncertainty (e.g. covariance) in robot and environment states

$$J_{k}\left(u_{k:k+L-1}\right) \doteq \mathbb{E}_{Z_{k+1:k+L}}\left\{\sum_{l=0}^{L-1} c_{l}\left(gb\left(X_{k+l}\right), u_{k+l}\right) + c_{L}\left(gb\left(X_{k+L}\right)\right)\right\}$$

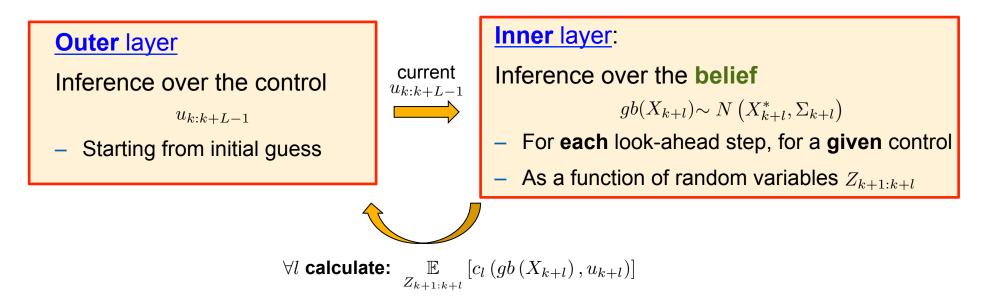
For example, plan motion to minimize uncertainty in robot state

$$gb(X_{k+l}) \doteq p(X_{k+l} | \mathcal{Z}_k, \mathcal{U}_{k-1}, Z_{k+1:k+l}, u_{k:k+l-1}) \sim N(X_{k+l}^*, \Sigma_{k+l})$$
$$J_k(u_{k:k+L-1}) \doteq \mathbb{E}_{Z_{k+1:k+L}} \left\{ \sum_{l=0}^{L-1} c_l(gb(X_{k+l}), u_{k+l}) + c_L(gb(X_{k+L})) \right\}$$

How to calculate (locally) optimal control policy?

$$u_{k:k+L-1}^{*} = \pi \left(gb\left(X_{k} \right) \right) = \arg\min_{u_{k:k+L-1}} J_{k} \left(u_{k:k+L-1} \right)$$

Dual-layer iterative optimization

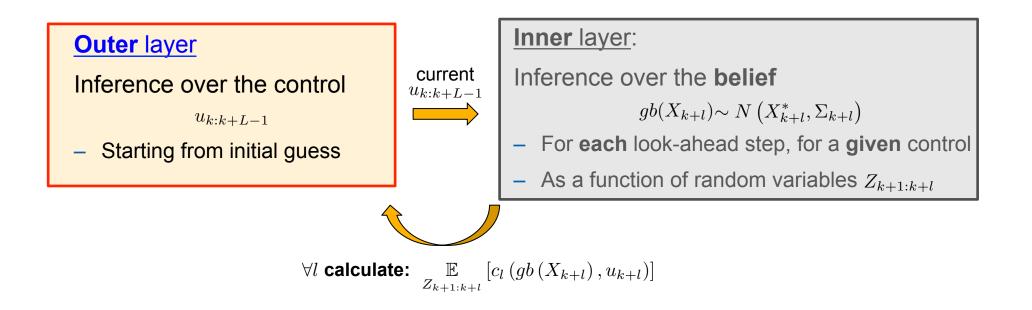


Outer Layer: Inference over the Control

Iterative optimization over the nonlinear objective function $J_k(u_{k:k+L-1})$

$$J_{k}\left(u_{k:k+L-1}\right) \doteq \mathbb{E}_{Z_{k+1:k+L}}\left\{\sum_{l=0}^{L-1} c_{l}\left(gb\left(X_{k+l}\right), u_{k+l}\right) + c_{L}\left(gb\left(X_{k+L}\right)\right)\right\}$$

- In each iteration:
 - Look for $\Delta u_{k:k+L-1}$
 - Update $u_{k:k+L-1}^{(i+1)} \leftarrow u_{k:k+L-1}^{(i)} + \Delta u_{k:k+L-1}$



Inner Layer: Inference Over the Belief

Given current controls $u_{k:k+L-1}$, for each look ahead step l:

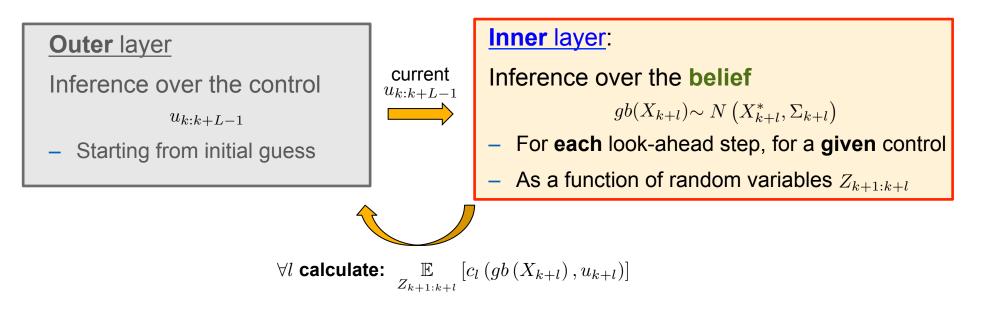
• Compute the Gaussian approximation X_{k+l}^*, Σ_{k+l} such that

 $gb\left(X_{k+l}\right) \doteq p\left(X_{k+l} | \mathcal{Z}_k, \mathcal{U}_{k-1}, Z_{k+1:k+l}, u_{k:k+l-1}\right) \sim N\left(X_{k+l}^*, \Sigma_{k+l}\right)$

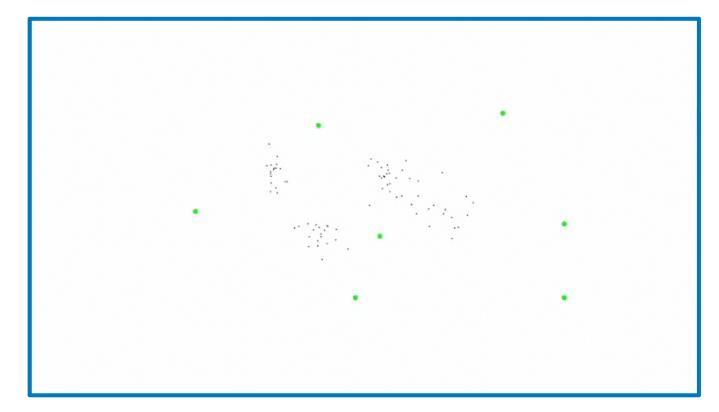
- Maximum a posteriori (MAP) estimate:

 $X_{k+l}^* = \operatorname*{arg\,max}_{X_{k+l}} gb\left(X_{k+l}\right)$

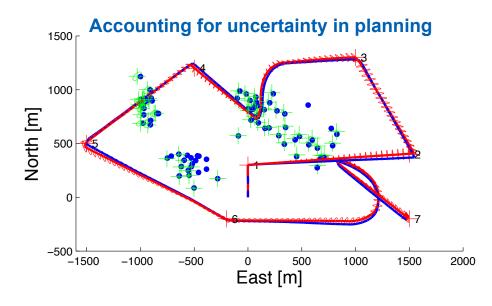
- Typically solved by iterative optimization methods (e.g. Gauss Newton)

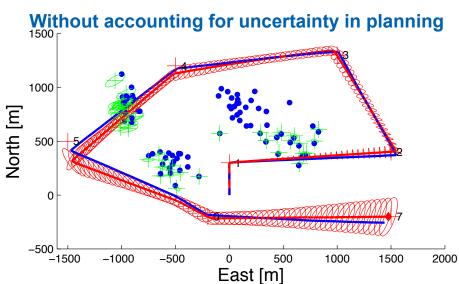


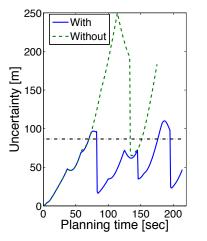
- Autonomous navigation to different goals in an unknown environment
 - Objective function: penalize control usage, uncertainty and distance to goal
 - No absolute information
 - Onboard sensors: camera and range sensor
 - Control: heading angle



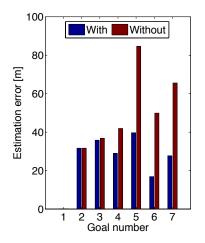
Results







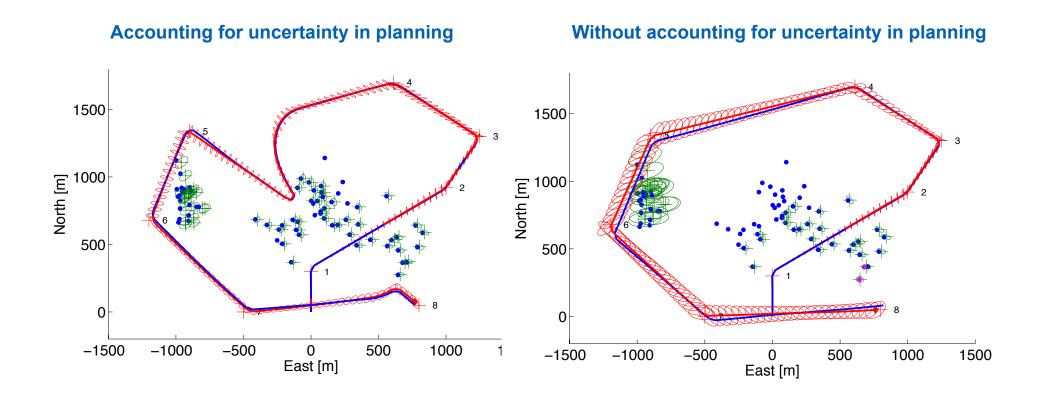
Estimation errors



Indelman et al., Planning in Generalized Belief Space

Results

Another example



Indelman et al., Planning in Generalized Belief Space

Conclusions

Planning in the Generalized Belief Space

- General framework for planning under uncertainty
 - Including uncertainty in perception and state estimation
 - Does not assume known environment
 - Planning over continuous control space
- Computational efficiency
 - Perception computationally efficient (exploit sparsity, re-use information)
 - Planning Future work

