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Abstract

This paper presents a probabilistic analysis of the
recently introduced incremental light bundle adjustment
method (iLBA) [6]. In iLBA, the observed 3D points are al-
gebraically eliminated, resulting in a cost function with only
the camera poses as variables, and an incremental smooth-
ing technique is applied for efficiently processing incoming
images. While we have already showed that compared to
conventional bundle adjustment (BA), iLBA yields a signifi-
cant improvement in computational complexity with similar
levels of accuracy, the probabilistic properties of iLBA have
not been analyzed thus far. In this paper we consider the
probability distribution that corresponds to the iLBA cost
function, and analyze how well it represents the true den-
sity of the camera poses given the image measurements. The
latter can be exactly calculated in bundle adjustment (BA)
by marginalizing out the 3D points from the joint distribu-
tion of camera poses and 3D points. We present a theoret-
ical analysis of the differences in the way that LBA and BA
use measurement information. Using indoor and outdoor
datasets we show that the first two moments of the iLBA and
the true probability distributions are very similar in prac-
tice.

1. Introduction
In the past few years, several methods have been pro-

posed for reducing the computational complexity of bun-
dle adjustment (BA). These include methods that exploit
the sparsity of the involved matrices in the optimization
[13, 10], decoupling the BA problem into several submaps
that can be efficiently optimized in parallel [14], construct-
ing a skeletal graph using a small subset of images and
incorporating the rest of the images using pose estimation
[17], and solving a reduced version of the non-linear sys-
tem with only part of the camera poses that are carefully
chosen so that the reduced system approximates well the
full nonlinear problem [11].

Another family of recently suggested methods is

“structure-less” BA [18, 15, 4, 6], in which the camera
poses are optimized without including structure parameters
into the iterative optimization procedure. In structure-less
BA, the 3D points are algebraically eliminated using multi-
view constraints and the optimization minimizes the errors
in satisfying these constraints, as opposed to optimizing the
re-projection errors in conventional BA. If required, all or
some of the 3D points can be calculated using standard
structure reconstruction techniques based on the optimized
camera poses.

The first structure-less BA method was introduced by
Steffen et al. [18] who optimized the corrections of image
observations subject to satisfying trifocal tensor constraints
[2]. A similar concept was developed in [4] using three-
view constraints [5] instead of the trifocal tensor. Rodrı́guez
et al. [15] obtained a reduced computational complexity
by reformulating the optimized cost function and refraining
from correcting the pixels.

Another significant gain in computational complexity
was obtained in our previous work [6], that applied a re-
cently developed technique for incremental smoothing [7,
8] to structure-less BA. The developed method, called in-
cremental light bundle adjustment (iLBA), adaptively iden-
tifies which camera poses should be optimized each time
a new camera is incorporated into the optimization. Typi-
cally, incremental optimization involves only a small num-
ber of cameras as opposed to always optimizing all cameras
in previous structure-less BA methods [18, 15, 4]. iLBA
utilizes three-view constraints, which in contrast to using
only epipolar constraints in structure-less BA [15] , allow
consistent motion estimates even when the camera centers
are co-linear.

In this paper we present a probabilistic analysis of iLBA.
We analyze how well the probability distribution corre-
sponding to the iLBA cost function agrees with the true
probability distribution of the camera poses. The latter can
be calculated in conventional BA from the joint probabil-
ity of camera poses and 3D points. An accurate and reli-
able uncertainties estimate is important in many structure
from motion and robotics applications, yet to the best of
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our knowledge this is the first time that such an analysis is
conducted for structure-less BA methods.

In what follows, we next review the main components
in incremental light bundle adjustment. Section 3 then
presents a probabilistic analysis of iLBA and Section 4
shows results comparing the iLBA and the true probabil-
ity distributions of camera poses given image observations.
Section 5 concludes and suggests some future research di-
rections.

2. Incremental Light Bundle Adjustment

Incremental light bundle adjustment (iLBA) [6] com-
bines the following two key-ideas: algebraic elimination of
3D points, and incremental smoothing. In this section we
review each of these concepts.

2.1. Algebraic Elimination of 3D points

Consider a sequence ofN views observingM 3D points,
and denote the ith camera pose by xi and the measured
image observation of the jth 3D point lj by zji . Let also
X

.
=
{
xT1 , . . . , x

T
N

}T
and L .

=
{
lT1 , . . . , l

T
M

}T
.

The joint pdf p (X,L|Z) can be explicitly written in
terms of the prior information and the actual measurement
models:

p (X,L|Z) = priors ·
∏
i

∏
j

p
(
zji |xi, lj

)
, (1)

where p
(
zji |xi, lj

)
is the measurement model correspond-

ing to the probability density of observing the 3D point lj
from a camera pose xi at the pixel location zji . Assuming
Gaussian distributions, the maximum a posteriori (MAP)
estimation

X∗, L∗ = arg max
X,L

p (X,L|Z) ,

corresponds to the following nonlinear optimization

JBA (X,L) =
∑
i

∑
j

∥∥∥zji − proj (xi, lj)
∥∥∥2

Σ
, (2)

where proj (·) is the projection function [2] for a stan-
dard pinhole camera model, and ‖a‖2Σ

.
= aT Σ−1a is the

squared Mahalanobis distance with the measurement co-
variance matrix Σ.

Considering the robot poses that observe some common
3D point l and writing down all the appropriate projection
equations, it is possible to algebraically eliminate l, which
results in constraints between triplets of poses [19, 6]. One
possible formulation of these constraints, recently devel-
oped in the context of vision-aided navigation [3, 5], is the

three-view constraints. Assuming three overlapping views
k, l and m, these constraints are

g2v (xk, xl, zk, zl) = qk · (tk→l × ql) (3)
g2v (xl, xm, zl, zm) = ql · (tl→m × qm) (4)
g3v (xk, xl, xm, zk, zl, zm) = (5)
(ql × qk) · (qm × tl→m)− (qk × tk→l) · (qm × ql)

where qi
.
= RT

i K
−1
i z for any view i and image observation

z,Ki is the calibration matrix of this view,Ri represents the
rotation matrix from some arbitrary global frame to the ith

view’s frame, and ti→j denotes the translation vector from
view i to view j, expressed in the global frame. The first
two constraints are the two-view constraints g2v between
appropriate pairs of views, while the third constraint, g3v ,
involves all the three views.

When a 3D point is observed by more than three views,
we add a single two-view and three-view constraint between
each new view and past views, as further explained in [6].

Consequently, rather than optimizing the bundle adjust-
ment cost function (2), which involves both the pose and
landmark variables, in light bundle adjustment (LBA) the
cost function is [6]:

JLBA(X)
.
=

Nh∑
i=1

‖hi(Xi, Zi)‖2Σi
, (6)

where hi represents a single two- or three-view constraint
(hi ∈ {g2v, g3v}) that is a function of several camera poses
Xi ⊂ X and image observations Zi in the appropriate
views, and Nh is the overall number of such constraints.

One can observe that Eq. (6) indeed does not contain any
structure parameters, and hence the overall number of vari-
ables in the optimization is significantly reduced compared
to the bundle adjustment cost function (2) [6].

2.2. Incremental Smoothing

The second component in iLBA is incremental smooth-
ing [9, 8], which re-calculates only part of the robot’s poses
each time a new measurement is incorporated into the op-
timization. Since a detailed exposition of the incremen-
tal smoothing approach is beyond the scope of this paper,
in this section we only discuss the essentials and refer the
reader to [9, 8] for further details.

We represent the probability distributions in BA and
LBA formulations using a graphical model, known as the
factor graph [12], upon which incremental smoothing is per-
formed. This representation is also used later on in Section
3.

Defining the projection factor for some view x, landmark
l and image observation z as

fproj (x, l)
.
= exp

(
−1

2
‖z − proj (x, l)‖2Σ

)
,
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Figure 1: Factor graph formulation for (a) BA and (b) LBA. (c) Factor graph after marginalizing out the landmark l1.

and assuming a Gaussian distribution, the joint pdf
p (X,L|Z), defined in Eq. (1), can be written as

p (X,L|Z) ∝
∏
i

∏
j

fproj (xi, lj) . (7)

In a similar manner, the LBA cost function (6) corresponds
to some probability distribution pLBA (X|Z), which is for-
mulated next. The following two- and three-view factors
are defined:

f2v (xk, xl)
.
= exp

(
−1

2
‖g2v (xk, xl, zk, zl)‖2Σ2v

)
and

f3v (xk, xl, xm)
.
= (8)

exp

(
−1

2
‖g3v (xk, xl, xm, zk, zl, zm)‖2Σ3v

)
,

where the covariance matrices Σ2v and Σ3v are given in [6].
Taking into account all the available two- and three-view

factors, pLBA (X|Z) can be written as

pLBA (X|Z) ∝
Nh∏
i=1

f2v/3v (Xi, Zi) , (9)

with f2v/3v ∈ {f2v, f3v} and Xi, Zi are defined in Section
2. In practice, in order to avoid the trivial solution of zero
translation, we normalize each of the constraints g2v and
g3v by a translation vector and modify the Jacobian matrices
accordingly.

Figures 1a-1b illustrate factor graphs that represent
p (X,L|Z) and pLBA (X|Z) in a simple case of 4 camera
poses observing 2 different 3D points. Each method uses
different factors as discussed above.

In incremental smoothing, the factor graph is converted
into a Bayes tree, which is similar to a junction tree but
with directed edges, which represents a factorization of
the square root information matrix at a given lineariza-
tion point. Instead of recalculating this factorization from
scratch each time a new measurement is added, the fac-
torization from the previous time step is updated by first

adaptively identifying the affected parts in the tree and
then recalculating their factorization while re-using calcu-
lations elsewhere. Additionally, variables are adaptively re-
linearized, such that a MAP estimate up to a tolerance is
always available [9, 8].

3. Probabilistic Analysis
This section analyzes how well the LBA distribution

pLBA (X|Z) represents the true density p (X|Z). An exact
calculation of the latter would marginalize the landmarks
from the joint p (X,L|Z)

p (X|Z) =

ˆ

L

p (X,L|Z) dL.

While in practice, LBA represents a similar probability
density over cameras as BA, there are two root effects that
cause the LBA distribution to be an approximation of the
true density: First, LBA discards some mutual information
in large camera cliques, by considering only the mutual
information between camera pairs and triplets introduced
by them observing the same landmark. Bundle adjustment,
on the other hand, induces mutual information between all
cameras observing the same landmark. Second, LBA du-
plicates some information for image measurements used in
multiple factors, double-counting measurements that appear
in multiple two- or three-view factors.

As an example of both of these effects, consider observ-
ing a landmark l by four views x1, x2, x3 and x4, as illus-
trated in Figure 1. The joint pdf is given by

p (X4, l|Z4) ∝
4∏

i=1

fproj (xi, l) , (10)

whereX4 and Z4 denote the four camera poses and the four
image observations, respectively. On the other hand, the
LBA pdf is

pLBA (X4|Z4) ∝ f2v (x1, x2) f2v (x2, x3) f3v (x1, x2, x3)

f2v (x3, x4) f3v (x2, x3, x4) (11)
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which corresponds to the set of two- and three-view factors,
as shown in Figure 1.

The first effect, discarding of mutual information, can be
seen when comparing the LBA pdf with the pdf resulting
from eliminating the landmarks from the BA pdf,

p (X4|Z4) =

ˆ

X4

p (X,L|Z) dX4

= p (x1, x2, x3, x4|z1, z2, z3, z4) (12)

The result in the case of BA is a single clique over all cam-
eras. In general, there is no way to exactly factor such a
dense clique in a way that reduces complexity. The multi-
ple factors of LBA over pairs and triplets (Eq. (11)) reduce
complexity instead by discarding some “links” that would
otherwise be introduced between cameras.

The second effect, duplication of some image measure-
ment information, can be seen in the sharing of cameras be-
tween LBA factors in Eq. (11). Any two factors sharing a
camera in common both use the information from the shared
camera, effectively duplicating it. For example, f2v (x1, x2)
and f2v (x2, x3) both use the information from the measure-
ments in camera 2.

As we show in Section 4, despite the above two aspects,
the actual LBA distribution is very similar to the true distri-
bution p (X|Z). It is worth mentioning that the presented
probabilistic analysis is valid for other existing structure-
less BA methods [18, 15, 4] as well.

3.1. Method for Comparing the PDFs of LBA and
BA

Because computing the true marginal over cameras for
BA p (X|Z) is not tractable in closed form, we use an al-
ternate method to compare the PDFs of LBA and BA. This
method evaluates how well LBA and BA agree in both the
absolute uncertainty of each camera in a global frame, and
the relative uncertainty between all pairs of cameras.

In order to compare uncertainties, we first assume that
pLBA (X|Z) and p(X|Z) both are well-approximated as
multivariate Gaussian distributions about their MAP esti-
mates

pLBA (X|Z) = N (µLBA,ΣLBA)

p (X|Z) = N (µ,Σ) .

Comparing the accuracy of the MAP estimates themselves
was already addressed in [6], where it was demonstrated
that LBA yields similar, although a bit degraded, estimates
but allow a significant gain in computational complexity. In
this paper, we focus on comparing the covariance matrices
ΣLBA and Σ. In addition, we present larger datasets that
reinforce the previous claim of comparable MAP accuracy
between LBA and BA.

In order to compare relative uncertainty between cam-
eras, we compare conditional densities p (xi|xj , Z) be-
tween all pairs of cameras. This calculation quantifies how
well LBA agrees with BA in relative uncertainty, while
avoiding calculating the full covariance matrix on all cam-
eras, which quickly becomes intractable for large numbers
of cameras. The conditionals are obtained by integrating
out all variables other than xi and xj ,

p (xi|xj , Z) =

ˆ

X\{xi,xj},L

p (X,L|Z) /p (xj |Z) .

In practice, we do this analytically by approximating the
joint as a Gaussian around its MAP estimate, and applying
sparse factorization,

p (X,L|Z) = p (X\ {xi, xj} , L|xi, xj , Z)

p (xi|xj , Z) p (xj |Z) (13)

from which the desired conditional p (xi|xj , Z) can be read
off.

4. Results
We use two datasets to evaluate how well the iLBA dis-

tribution pLBA (X|Z) represents the true density p (X|Z).
In the first dataset (Cubicle) the camera observes a cu-
bicle desk in an open space environment from different
viewpoints and distances. In the second dataset, Outdoor,
the camera follows a trajectory encircling a courtyard and
building and performing loop closures as shown in Figure
2. Figure 3 shows typical images from these datasets, while
Table 1 provides further details regarding the number of
views (N) and 3D points (M ), as well as the number of
total observations in the two datasets.

All methods were implemented using the GTSAM factor
graph optimization library1 [1, 8]. Incremental smoothing
was used in all cases, denoted by the prefix i (i.e. iLBA and
iBA). Image correspondences, as well as the camera cali-
bration matrices, were obtained by first running Bundler2

[16] on each dataset. Additional implementation details can
be found in [6].

Before discussing probabilistic aspects, we show per-
formance results, in terms of accuracy and computational
complexity. As seen in Table 1 and Figure 2, while iLBA
yields a similar, but a bit degraded accuracy, the computa-
tional cost is significantly lower for iLBA, as compared with
BA. A similar observation was made in [6] using smaller
datasets.

To eliminate gauge freedoms, the first camera was fixed
to the origin and the overall reconstruction scale was de-
termined by setting the range between the first and second

1http://tinyurl.com/gtsam.
2http://phototour.cs.washington.edu/bundler.
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Dataset N , M , #Obsrv iLBA avg. reproj. error iBA avg. reproj. error

Cubicle 148, 31910, 164358 0.552 pix 0.533 pix

Outdoor 308, 74070, 316696 0.418 pix 0.405 pix

Table 1: Dataset details and performance of iLBA and BA: Re-projection errors and computational cost using incremental
smoothing in all methods.
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Figure 2: Estimated trajectory in Outdoor dataset. LBA and
conventional BA produce very similar results.
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Figure 3: Typical images in the Cubicle (a) and Outdoor (b)
datasets.

camera to some constant number. Consequently, the covari-
ance of the first camera is very small.

We compare the probability density of the cameras esti-
mated by LBA to that of BA by comparing their discrepancy
both in the marginal uncertainty of each camera, and in rel-
ative uncertainty between each camera pair, as described in
Section 3.1. To make these comparisons, we define a dis-
crepancy measure of the square roots of the traces of each

covariance matrix,

discrepancy (Σ1,Σ2)
∆
= c

(√
tr (Σ1)−

√
tr (Σ2)

)
,

(14)
where c is a scale factor that converts the unit-less 3D re-
constructions into meters, which we determined by physi-
cally measuring the dataset collection area, or superimpos-
ing the trajectory onto a satellite image. We compute this
separately for the blocks of the covariance matrices corre-
sponding to rotation and translation. The units of the dis-
crepancy are radians for rotation (c = 1) and meters for
translation, with c properly determined to correct the recon-
struction scale.

For example, to compare the Gaussian-approximated
conditional density of LBA pLBA (xi|xj , Z) with covari-
ance Σ

i|j
LBA with that of BA p (xi|xj , Z) with covariance

Σ
i|j
BA, we compute discrepancy

(
Σ

i|j
LBA,Σ

i|j
BA

)
. Similarly

for marginals pLBA (xi|Z) and pBA (xi|Z), we compute
discrepancy

(
Σi

LBA,Σ
i
BA

)
. A positive discrepancy value

means that the uncertainty estimate of LBA is conservative,
whereas a negative discrepancy value means that the uncer-
tainty estimate of LBA is overconfident.

A comparison of the absolute uncertainty for the Cubicle
dataset is given in Figure 4 and Figures 5a-5b. Figure 4a
compares, for each camera pose i, between the covariance
trace of Σi

LBA and Σi
BA. As seen, the initial uncertainty

is very small and it increases as the camera moves around
the cubicle deck and drops to low values when the camera
captures previously-observed areas thereby providing loop-
closure measurements. Figure 4b describes the interaction
between the uncertainty of each view and the number of
factors that involve this view. As expected, it can be seen
that the covariance is higher when less factors are involved
and vice versa.

Overall, the absolute uncertainties in LBA and BA are
very similar. This can be also observed in Figures 5a-5b
that show a histogram of the discrepancy (14) both for po-
sition and orientation terms. Typical position discrepancies
are near −10−4 meters. The discrepancies for relative un-
certainties are given in Figures 5c-5d for position and ori-
entation terms.

Figure 6 shows the discrepancy histograms for the Out-
door dataset. The absolute and relative discrepancies be-
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Figure 4: Cubicle dataset: (a) Covariance trace of each cam-
era pose. (b) Trace of covariance and number of factors in
LBA formulation, both are normalized to 1.

tween LBA and BA are small, e.g. less than 5 centimeters
in the absolute position for a trajectory that spans an area of
120 × 150 meters (cf. Figure 2), and on the order of 10−4

radians for the absolute rotation uncertainty.

5. Conclusions

We presented a probabilistic analysis of the recently
developed incremental light bundle adjustment (iLBA)
method. Two key components of this method are algebraic
elimination of the observed 3D points and incremental in-
ference. The first, reduces the number of variables in the
optimization, while the second allows to re-calculate only
part of the past camera poses when incorporating new mea-
surements. In this paper we analyzed how well the iLBA
probability distribution approximates the true distribution of
the camera poses given the image observations. The latter
can be calculated in bundle adjustment (BA) by marginaliz-
ing out the 3D points from the joint density of camera poses
and 3D points. The analysis indicated the following two
issues that cause the iLBA distribution to be an approxima-
tion of the true density: some of the mutual information in
large camera cliques is discarded, and some of the image
measurements are double-counted. In practice, we showed

using indoor and outdoor datasets, that the effects of these
two issues do not lead to significant differences between the
iLBA distribution and the true distribution.
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Figure 6: Discrepancy histograms for the Outdoor dataset: Absolute position (a) and orientation (b); Relative position (c)
and orientation (d) between every camera pair in the sequence.
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