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Incremental Distributed Robust Inference from
Arbitrary Robot Poses via EM and Model Selection

Vadim Indelman*^, Nathan Michael†, and Frank Dellaert*

Abstract—We present a novel approach for multi-robot dis-

tributed and incremental inference over variables of interest,

such as robot trajectories, considering the initial relative poses

between the robots and multi-robot data association are both

unknown. Assuming robots share with each other informative

observations, this inference problem is formulated within an

Expectation-Maximization (EM) optimization, performed by each

robot separately, alternating between inference over variables

of interest and multi-robot data association. To facilitate this

process, a common reference frame between the robots should

first be established. We show the latter is coupled with deter-

mining multi-robot data association, and therefore concurrently

infer both using a separate EM optimization. This optimization is

performed by each robot starting from several promising initial

solutions, converging to locally-optimal hypotheses regarding

data association and reference frame transformation. Choosing

the best hypothesis in an incremental problem setting is in par-

ticular challenging due to high sensitivity to perceptual aliasing
and possibly insufficient amount of data. Selecting an incorrect

hypothesis introduces outliers and can lead to catastrophic

results. To address these challenges we develop a model-selection

based approach to choose the most probable hypothesis and use

the Chinese restaurant process to disambiguate the hypotheses

prior probabilities over time.

I. INTRODUCTION

Distributed inference is a key capability in multi-robot
autonomous systems that is of interest in a variety of problem
domains, including surveillance, tracking, localization and
mapping. Cooperatively inferring variables of interest, such as
robot trajectories, observed objects and tracked targets, results
in higher levels of performance, flexibility and robustness to
failure. The research community has been addressing different
aspects of this problem, considering both centralized and
decentralized frameworks (e.g. [10, 3, 6, 4]).

To facilitate cooperative inference it is essential to establish
a common reference frame and world model between the
robots, so that these can communicate with each other relevant
information and correctly interpret it for their needs. While
each of these problems has been previously addressed assum-
ing the other problem is solved, only few attempts have been
made to solve the two problems simultaneously: determining
a common reference frame between the robots, and resolving
data association between measurements (e.g. images or laser
scans) acquired by different robots.

Solving these coupled problems is important as it enables
the robots, scattered in a previously unknown environment, to
establish collaboration without requiring any prior knowledge
or infrastructure. For example, starting from arbitrary guess
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Figure 1: Multi-robot correspondences Fr between (a) red
and blue, and (b) green and blue robots. As a common
reference frame is not yet established, robot initial poses are
set to arbitrary values.(c) Blue robot estimates of its own
and red robot’s trajectories expressed right after a common
reference frame between the two robots has been established.
The identified inlier (black) and outlier (gray) correspondences
right. (d) Ground truth.

as to where each robot is and by sharing measurements of
onboard sensors, each robot will be capable of inferring the
trajectories of other robots in the group (Fig. 1).

Multi-robot data association is a key challenge that shares
some similarities with loop closure detection in the single-
robot case. Incorrect data association can lead to catastrophic
deterioration in performance and should be avoided at all costs;
the robotics community has been indeed very active in the last
two years in developing robust graph optimization techniques
[7, 11, 8] to address this crucial aspect.

Multi-robot data association has recently become an active
research area as well (e.g. [2, 9, 5]), with the same sensitivity
to incorrect correspondences as in the single-robot case. This
problem, however, becomes more complicated when the initial
relative poses between the robots are unknown. Without a
common reference frame, how can the robot decide what
information to share with each other? Given the calculated
multi-robot constraints based on this shared information, how
to determine the inlier correspondences? Addressing this prob-
lem requires reasoning about multi-robot data association and
initial relative poses concurrently.

Recently, an Expectation-Maximization (EM) approach has
been developed in [8] for the single-robot case, as well as by
the authors [5] in the multi-robot problem setting. Here, we
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present a distributed and incremental multi-robot approach that
allows a group of robots to simultaneously establish a common
reference frame and resolve multi-robot data association on-
the-fly. To that end, each robot performs an EM optimization
from several initial guesses, resulting in different locally-
optimal solutions.

Our approach is based on the observation [5] that by ana-
lyzing the distribution of multi-robot relative pose constraints
(Figs. 3a and 4a) it is possible to estimate the transformation
between the robot reference frames and identify the inliers
in these constraints. Choosing the correct solution is a key
challenge, as a wrong decision will effectively introduce
outliers to the graph optimization. This is particularly true
when information is received incrementally: in this case, one
needs also to decide whether sufficient amount of information
has been received to perform this decision reliably.

Furthermore, as we discuss in the sequel, perceptual aliasing
presents additional challenges, leading to additional clusters
that compete with the inliers cluster, and the problem becomes
how to choose the right cluster among several candidates.

We consider this challenging problem and frame it within
a model selection framework, developing a probabilistically-
sound approach for selecting the most probable cluster. More-
over, we address the question wether there is a correct cluster
given the information available to each robot thus far, as the
robots might have not observed the same environment yet.
We approach this problem by modeling the prior probability
for each cluster using the Chinese restaurant process (e.g.,
[1]) that allows to disambiguate this decision-making as more
information is accumulated.

II. PROBLEM FORMULATION

We consider a group of R robots deployed to collaboratively
operate in an unknown environment, initially unaware of each
other. Our objective is for each robot r to estimate X r which
comprises its own trajectory Xr (current and past poses) and
additional variables of interest, such as the trajectories of other
robots, in a distributed incremental framework. In a distributed
setting the inference solved by each robot r is

ˆX r

= argmax

X r
p (X r|Zr

) , (1)

where Zr represents the available measurements to robot r:
its own observations and observations shared by other robots.

We assume each robot r shares at each time t
k

its current
measurement zr

k

, if it is informative, and also tracks all these
informative measurements {zr

i

} over time. Any robot r that
receives a measurement zr

0

k

from some robot r0, generates
candidate correspondences by matching zr

0

k

with its own
informative measurements {zr

i

}. Each such successful match
ur

0
,r

k,l

between zr
0

k

and zr
l

2 {zr
i

} represents a (relative-pose)
constraint involving the poses xr

0

k

and xr

l

, with l  k . We
denote by Fr the set of multi-robot data association, that is
available to robot r, where each individual data association
(r0, k, l) 2 Fr represents the constraint ur

0
,r

k,l

.
An example of the multi-robot candidate correspondences

set Fr is shown in Fig. 1. The figure illustrates the candidate
correspondences in Fr between the blue robot and other

robots (green and red). Since the initial relative poses between
the robots are unknown, these transformations were set to
arbitrary values, i.e. the initial pose of each robot was chosen
arbitrarily.

Observe that many of these correspondences in Fr are
outliers. Moreover, perceptual aliasing will often result in
numerous false data associations that are consistent with each
other: A typical example is matching between laser scans (or
images) from different but similar in appearance corridors;
the result of this match will typically erroneously indicate the
two places are the same. Not only this estimate is completely
wrong, but also similar erroneous estimates will be obtained
for all such matches, making it difficult to identify these are
all outliers.

III. APPROACH

Given the multi-robot data association Fr, and the appro-
priate constraints ur

0
,r

k,l

, the joint pdf from Eq. (1) can be
expressed as

p(X r|Zr

)/p (Xr|Zr

) p
⇣
XR\{r}|ZR\{r}

local

⌘Y

(r0,k,l)2Fr

p
⇣
ur

0
,r

k,l

|xr

0

k

, xr

l

⌘
,

(2)
where the set XR\{r} represents all the poses xr

0

i

of robots
r0 2 R that contributed at least one correspondence to Fr,
and ZR\{r}

local

are the local observations of these robots.
As the robots express their local trajectories with respect to

different reference systems, the measurement likelihood term
in Eq. (2) is

p
⇣
ur

0
,r

k,l

|xr

0

k

, xr

l

⌘
/exp

✓
�1

2

���err
⇣
ur

0
,r

k,l

, xr

0

k

, xr

l

⌘���
2

⌃

◆
, (3)

with

err
⇣
ur

0
,r

k,l

, xr

0

k

, xr

l

⌘
.
= ur

0
,r

k,l

 h
⇣
xr

0

k

, xr

l

⌘
, (4)

and h
⇣
xr

0

k

, xr

l

⌘
.
= xr

0

k

 
⇣
T r

0

r

� xr

l

⌘
. The transformation T r

0

r

represents a common reference frame between robots r and
r0. This transformation, as well as multi-robot data association
are both unknown.

Instead of assuming multi-robot data association is given,
we introduce a latent binary variable jr

0
,r

k,l

for each corre-
spondence (r0, k, l) 2 Fr and use the convention that this
correspondence is an inlier if jr

0
,r

k,l

= inlier and accordingly
outlier when jr

0
,r

k,l

= outlier. Denoting all the latent variables
representing data association between robot r and other robots
by J r and considering it to be part of the inference, the
probabilistic formulation (2) turns into:

p (X r,J r|Zr

) / p (Xr|Zr

) · p
⇣
XR\{r}|ZR\{r}

local

⌘

Y

(r0,k,l)2Fr

p
⇣
jr

0
,r

k,l

⌘
p
⇣
ur

0
,r

k,l

|xr

0

k

, xr

l

, jr,r
0

k,l

⌘
. (5)

We let ⌃

in

and ⌃

out

to represent the covariances corre-
sponding to inlier and outlier distributions, respectively, with
⌃

in

⌧ ⌃

out

. The probability p
⇣
ur

0
,r

k,l

|xr

0

k

, xr

l

, jr,r
0

k,l

⌘
in Eq. (5)

can be evaluated for both jr,r
0

k,l

= inlier, outlier using Eq. (3).
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(a) Ground truth T r0
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(b) Inferred T r0
r

Figure 2: Distribution of the actual inlier and outlier corre-
spondences error over time evaluated using (a) ground truth
and (b) inferred initial relative pose transformation T r

0

r

. Using
ground truth T r

0

r

the inliers can be easily distinguished from
outliers (a) . In contrast, (b) shows that for arbitrary value of
T r

0

r

the errors for inlier and outlier correspondences overlap,
and only after estimating the transformation T r

0

r

(around pose
index 140), inliers and outliers become distinguishable.

As calculating the MAP estimate over robot states ˆX r

=

argmaxX r

P
J r p (X r,J r|Zr

) is computationally expensive,
we resort to an Expectation-Maximization approach, a single
iteration of which can be formulated as

ˆX r

(i+1)=argmax

X r
p
⇣
Jr| ˆX r

(i),Zr

⌘
log

h
p
⇣
X r| ˆJ r

(i),Zr

⌘i
, (6)

where the notation (i) represents an iteration number.
Observe that when the initial relative pose T r

0

r

between two
robots r and r0 is unknown, performing inference over Eqs. (6)
or (5) is doomed to failure: since T r

0

r

is unknown and can only
be arbitrarily set, each candidate multi-robot data association
(r0, k, l) 2 Fr with a corresponding constraint ur

0
,r

k,l

will
typically result high errors (4) both for inlier and outlier
correspondences. However, since ⌃

in

⌧ ⌃

out

, the probability
p
⇣
ur

0
,r

k,l

|xr

0

k

, xr

l

, jr
0
,r

k,l

⌘
will be higher for jr

0
,r

k,l

= outlier than

jr
0
,r

k,l

= inlier, regardless if the correspondence (r0, k, l) 2 Fr

is an inlier or outlier in practice. As a result, all candidate
correspondences in Fr will be identified as outliers. It is for
this reason that initial relative poses must be first estimated so
that the error in Eq. (4) could be used to distinguish between
inlier and outlier correspondences.

This observation is illustrated in Fig. 2 for the candidate
correspondences between the blue and red robots shown in
Fig. 1. The figure summarizes the errors (4) for all such cor-
respondences evaluated using ground truth value for the initial
relative pose transformation T r

0

r

(Fig. 2a) and the inferred
transformation ˆT r

0

r

at each time step. As seen, when using
the true transformation T r

0

r

, the errors substantially differ for
inliers and outliers, and can be distinguished from each other.
On the other hand, evaluating Eq. (4) using the arbitrarily
chosen robot reference frames, results in high errors and,
more importantly, the inlier and outlier error levels overlap
each other and therefore the inlier and outliers cannot be
easily distinguished. Only after this transformation is correctly
established, the errors drop and a natural segmentation into
inliers and outliers arises (right area in Fig. 2b).

Consequently, we propose first to infer the transformations
T r

0

r

and only then proceed to infer robot trajectories via the

EM optimization (6). Our approach is based on the following
key observation [5]: given local robot trajectories, each candi-
date multi-robot correspondence (r0, k, l) 2 Fr, regardless if it
is inlier or outlier, suggests a solution for the transformation
T r

0

r

. However, only the inlier correspondences will produce
similar transformations, while those calculated from outlier
correspondences will typically disagree amongst each other,
unless these outliers are caused by perceptual aliasing.

Yet, real-world scenarios often exhibit some level of mea-
surement aliasing, which typically leads to multiple clusters
and further complicate the identification of the correct trans-
formation T r

0

r

. See Figs. 3a and 4a. Our approach addresses
this challenge within a model selection framework, where
we calculate the probability of each hypothesis h = {I,O},
representing a partition of the multi-robot correspondences J
into inliers I and O. The set of hypotheses H is determined
by identifying the most dominant clusters.

Furthermore, we address the question whether sufficient
amount of information has been accumulated to make a
decision regarding the most likely hypothesis, which is used
for initializing the transformation ˆT r

0

r

participating in the EM
optimization (6). In other words, given a set H there is always
a hypothesis with the highest measurement likelihood (i.e.
highest number of inliers); how to decide if that hypothesis
is unambiguous and should be indeed chosen?

This aspect is particularly crucial in the incremental set-
ting in the context of perceptual aliasing that can lead to
a dominant hypothesis of consistent outliers (see Fig. 4a).
Relying only on the measurement likelihood term, it is easy to
mistakenly choose this incorrect hypothesis, which will lead to
catastrophic results - see Fig. 4b where the robot trajectories
are completely misaligned.

To address this crucial issue we argue the hypothesis prior,
p
⇣
h| ˆX r

⌘
, can provide insight as to how likely is the hy-

pothesis h = {I,O} is the first place. Given the robot local
trajectories, one can reason about the partitioning of the set Fr

into inlier and outlier sets I and O, respectively, even without
the actual measurements of the corresponding constraints. We
introduce an additional hypothesis h0 = {I0, O0} into the set
H: this hypothesis, that we denote as the null-hypothesis, cor-
responds to perceptual aliasing, i.e. it represents the possibility
that all of the correspondences are actually outliers (I0 ⌘ �).

The prior probabilities of all hypotheses can now be cal-
culated. Our basic assumption is that since the robots are
operating in closed indoor environments, they will eventually
observe common places. Each given candidate correspondence
can therefore represent the same place, observed by two
different robots, or two different places. However, the number
of unique places is unknown ahead of time. To capture this
probabilistically, we resort to the Chinese restaurant process
(see e.g. [1]) and formulate the following lemma.
Lemma. The ratio between hypotheses prior probabilities
increases as more information is accumulated.

The implication of this Lemma is that, as more information
is accumulated, it becomes possible to disambiguate between
the different hypotheses. Fig. 5 shows this process over several
time instances; Fig. 4c shows the resulting correct alignment
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Figure 3: (a) Distribution of the transformations T r

0

r

cal-
culated for each correspondence in set Fr for red and blue
robots. (c) Hypothesis posterior (in log-space) and prior prob-
abilities. The hypothesis h1, corresponding to the dominant
cluster in (a), is chosen. (d) Actual and inferred inliers and
outliers. The method correctly identified all inliers.
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(c)

Figure 4: Effect of perceptual aliasing: (a) Distribution of
the transformations T r

0

r

calculated for each correspondence
in set Fr for red and green robots. Green robot is traveling in
opposite direction but observes similar environments, leading
to the (emphasized) cluster of consistent outliers. (b) Without
using hypothesis prior, this cluster is chosen and the EM op-
timization (6) results in robot trajectories erroneously aligned.
(c) Using hypothesis prior the correct hypothesis is selected
(see Fig. 5), after sufficient information is accumulated and
robot trajectories are then correctly aligned.

between the robots after choosing the correct hypothesis.

IV. CONCLUSIONS

We presented an approach for distributed and incremental
inference by a group of collaborating robots that are initially
unaware of each other’s position and without assuming multi-
robot data association to be given. We formulate this problem
within an EM framework that, starting from promising initial
guesses, converges to a number of locally-optimal hypotheses
regarding data association and reference frame transforma-
tions. Choosing the correct hypothesis is challenging in the
incremental setting due to perceptual aliasing and since there
may be insufficient data to make this decision reliably. We ad-
dress these challenges by developing a model-based selection
approach for choosing the most probable hypothesis, and using
the Chinese restaurant process to disambiguate the hypotheses
prior probability as more information is accumulated.
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