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Abstract We investigate the problem of cooperative multi-robot planning in un-
known environments, which is important in numerous applications in robotics. The
research community has been actively developing belief space planning approaches
that account for the different sources of uncertainty within planning, recently also
considering uncertainty in the environment observed by planning time. We further
advance the state of the art by reasoning about future observations of environments
that are unknown at planning time. The key idea is to incorporate within the belief
indirect multi-robot constraints that correspond to these future observations. Such
a formulation facilitates a framework for active collaborative state estimation while
operating in unknown environments. In particular, it can be used to identify best
robot actions or trajectories among given candidates generated by existing motion
planning approaches, or to refine nominal trajectories into locally optimal trajecto-
ries using direct trajectory optimization techniques. We demonstrate our approach in
a multi-robot autonomous navigation scenario and show that modeling future multi-
robot interaction within the belief allows to determine robot trajectories that yield
significantly improved estimation accuracy.

1 Introduction

Autonomous operation under uncertainty is essential in numerous problem domains,
including autonomous navigation, object manipulation, multi-robot localization and
tracking, and robotic surgery. As the robot state is never accurately known due to
motion uncertainty and imperfect state estimation obtained from partial and noisy
sensor measurements, planning future actions should be performed in the belief
space - a probability distribution function (pdf) over robot states and additional
states of interest.
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Belief space planning has been investigated extensively in the last two decades.
While the corresponding problem can be described in the framework of partially ob-
servable Markov decision process (POMDP), which is known to be computationally
intractable for all but the smallest problems [17], several approaches that tradeoff
optimal performance with computational complexity have been recently developed.
These approaches can be segmented into several categories: point-based value iter-
ation methods, simulation based approaches, sampling based approaches and direct
trajectory optimization approaches.

Point-based value iteration methods (e.g. [14, 19]) select a number of represen-
tative belief points and calculate a control policy over belief space by iteratively
applying value updates to these points. Simulation-based approaches (e.g. [23, 24])
generate a few potential plans and select the best policy according to a given met-
ric. They are referred to as simulation-based approaches, since they simulate the
evolution of the belief for each potential plan to quantify its quality.

Sampling based approaches (e.g. [1, 6, 21]) discretize the state space using ran-
domized exploration strategies to explore the belief space in search of an optimal
plan. While many of these approaches, including probabilistic roadmap (PRM) [13],
rapidly exploring random trees (RRT) [15] and RRT* [12], assume perfect knowl-
edge of the state, deterministic control and a known environment, efforts have been
devoted in recent years to alleviate these restricting assumptions. These include, for
example, the belief roadmap (BRM) [21] and the rapidly-exploring random belief
trees (RRBT) [1], where planning is performed in the belief space, thereby incorpo-
rating the predicted uncertainties of future position estimates. We note that similar
strategies are used to address also informative planning problems (see, e.g., [6]).

Direct trajectory optimization methods (including [9, 18, 20, 25]) calculate lo-
cally optimal trajectories and control policies, starting from a given nominal path.
Approaches in this category perform planning over a continuous state and action
spaces, which is often considered more natural as the robot states (e.g., poses) and
controls (e.g., steering angles) are not constrained to few discrete values. For ex-
ample, Platt et al. [20] apply linear quadratic regulation (LQR) to compute locally
optimal policies, while Van den Berg et al. [25] develop a related method using
optimization in the belief space and avoiding assuming maximum likelihood obser-
vations in predicting the belief evolution. These approaches reduce computational
complexity to polynomial at the cost of guaranteeing only locally optimal solutions.

While typically, belief space planning approaches consider the environment is
known, in certain scenarios of interest (e.g. navigation in unknown environments)
this is not a feasible assumption. In these cases, the environment is either a pri-
ori unknown, uncertain or changes dynamically, and therefore should be appro-
priately modeled as part of the inference and decision making processes. Such a
concept was recently developed in [8, 9], where random variables representing the
observed environment have been incorporated into the belief and locally optimal
motion plans were calculated using a direct trajectory optimization approach. In [7],
the approach was extended to a multi-robot belief space planning centralized frame-
work and was used to facilitate active collaborative estimation in unknown environ-
ments. Simulation- and sampling-based approaches that consider a priori unknown
environments have also been recently developed in the context of active SLAM (see,
e.g. [4, 24]). A limitation of these approaches is that the belief only considers the
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environment observed by planning time and does not reason, in the context of uncer-
tainty reduction, about new environments to be observed in the future as the robot
continues exploration.

In this work we alleviate this limitation, considering the problem of coopera-
tive multi-robot autonomous navigation in unknown environments. While it is well
known that collaboration between robots can significantly improve estimation ac-
curacy, existing approaches (e.g. [3, 10, 22]) typically focus on the inference part,
considering robot actions to be determined externally. On the other hand, active
multi-robot SLAM approaches (e.g. [2]) typically focus on coordination aspects
and on the trade-off between exploring new regions and reducing uncertainty by
re-observing previously mapped areas (performing loop closures). In contrast, in
this paper we consider the question - how should the robots act to collaboratively
improve state estimation while autonomously navigating to individual goals and op-
erating in unknown environments?

Addressing this question requires incorporating multi-robot collaboration aspects
into belief space planning. To that end, we present an approach to evaluate the prob-
ability distributions of multiple robot states while modeling future observations of
mutual areas that are unknown at planning time (Figure 1a). The key idea is that
although the environment may be unknown a priori, or has not been mapped yet, it
is still possible to reason in terms of robot actions that will result in the same un-
known environments to be observed by multiple robots, possibly at different future
time instances. Such observations can be used to formulate non-linear constraints
between appropriate robot future states. Importantly, these constraints allow col-
laborative state estimation without the need for the robots to actually meet each
other, in contrast to the commonly used direct relative pose observations that re-
quire rendezvous between robots (e.g. [22]). We show how such constraints can
be incorporated within a multi-robot belief, given candidate paths that can be gen-
erated by any motion planning method. One can then identify the best path with
respect to a user-defined objective function (e.g. reaching a goal with minimum
uncertainty), and also refine best alternatives using direct trajectory optimization
techniques (e.g. [9, 18, 25]).

2 Notations and Problem Formulation

Let xr
i represent the pose of robot r at time ti and denote by Lr

i the perceived environ-
ment by that robot, e.g. represented by 3D points, by that time. We let Zr

i represent
the local observations of robot r at time ti, i.e. measurements acquired by its onboard
sensors, and define the joint state Θ r over robot past and current poses and observed
3D points as

Θ
r
k
.
= X r

k ∪Lr
k , X r

k
.
= {xr

0, . . . ,x
r
k} . (1)

The joint probability distribution function (pdf) over this joint state given local ob-
servations Zr

0:k
.
=
{

Zr
0, . . . ,Z

r
k

}
and controls ur

0:k−1
.
=
{

ur
0, . . . ,u

r
k−1

}
is given by

p
(
Θ

r
k |Zr

0:k,u
r
0:k−1

)
∝ p(xr

0)
k

∏
i=1

[
p
(
xr

i |xr
i−1,u

r
i−1
)

p(Zr
i |Θ ro

i )
]
, (2)
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Fig. 1: (a) Illustration of the proposed concept. Multi-robot indirect constraints rep-
resenting mutual future observations of unknown environments are shown in blue.
(b) 3D view of the scenario from Figure 4b: Robots operate in an unknown environ-
ment and follow paths generated by PRM that have been identified by the proposed
approach to provide the best estimation accuracy upon reaching the goals. One can
observe the mutually-observed 3D points that induce indirect multi-robot constraints
involving different time instances; these constraints have been accounted for in the
planning phase. Robot initial positions are denoted by ? marks (at the top of the
figure); uncertainty covariances of robot poses are represented by ellipsoids.

where Θ ro
i ⊆Θ r

i are the involved random variables in the measurement likelihood
term p(Zr

i |Θ ro
i ), which can be further expanded in terms of individual measurements

zr
i, j ∈ Zr

i representing observations of 3D points l j: p(Zr
i |Θ ro

i ) = ∏ j p
(

zr
i, j|xr

i , l j

)
.

The motion and observation models in Eq. (2) are assumed to be with additive Gaus-
sian noise,

xr
i+1 = f (xr

i ,u
r
i )+wr

i , zr
i, j = h(xr

i , l j)+ vr
i (3)

where wi ∼ N (0,Σ r
w) ,vi ∼ N (0,Σ r

v), with Σ r
w and Σ r

v representing the process and
measurement noise covariance matrices, respectively.

We consider now a group of R collaborating robots, and denote by Θk the corre-
sponding joint state

Θk
.
= Xk ∪Lk , Xk

.
= {X r

k}R
r=1 (4)

comprising the past and current poses Xk of all robots, and where Lk represents the
perceived environment by the entire group. Assuming a common reference frame
between the robots is established, Lk includes all the 3D points in Lr

k for each r,
expressed in that reference frame.

The joint pdf over Θk, the belief at planning time tk, can now be written as

b(Θk)
.
= p(Θk|Z0:k,u0:k−1) ∝

R

∏
r=1

p
(
Θ

r
k |Zr

0:k,u
r
0:k−1

)
, (5)
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where u0:k−1 represents the controls of all robots and is defined as u0:k−1
.
=
{

ur
0:k−1

}R
r=1.

The joint belief at a future time tk+l can now be similarly defined as

b(Θk+l)
.
= p(Θk+l |Z0:k+l ,u0:k+l−1) , (6)

where uk:k+l−1 are future actions for a planning horizon of l steps and Zk+1:k+l are
the corresponding observations to be obtained. We will discuss in detail how such a
belief can be formulated in the sequel (Sections 3.1 and 3.2).

We can now define a general multi-robot objective function

J (uk:k+L−1)
.
= E

[
L

∑
l=0

cl (b(Θk+l) ,uk+l)+ cL (b(Θk+L))

]
, (7)

that involves L future steps for all robots, and where cl is the immediate cost func-
tion for the lth step. The expectation operator accounts for all the possible future
observations Zk+1:k+l . While for notational convenience the same number L of fu-
ture steps is assumed for all robots in Eq. (7), this assumption can be easily relaxed.

Our objective is to find the optimal controls u?k:k+L−1 for all R robots:

u?k:k+L−1 = argmin
uk:k+L−1

J (uk:k+L−1) . (8)

3 Approach

In this work we show how to incorporate into belief space planning multi-robot
collaboration aspects such that estimation accuracy is significantly improved while
operating in unknown environments. Our approach extends the state of the art by in-
corporating into the belief (6) multi-robot constraints induced by multiple robots ob-
serving, possibly at different future time instances, environments that are unknown
at planning time. In lack of sources of absolute information (such as reliable GPS,
beacons, and known 3D points), these constraints are the key for collaboratively
improving estimation accuracy.

One can then identify best robot actions or motion plans, according to Eq. (8),
among those generated by existing motion planning approaches (e.g. sampling
based approaches), or resort to direct optimization techniques to obtain locally op-
timal solutions in a timely manner. In this work, we focus on the former case, and
consider we are given candidate paths for different robots (generated, e.g. by PRM
or RRT). A schematic illustration of the proposed approach is shown in Figure 1a.

We start with a recursive formulation of the multi-robot belief (Section 3.1) and
then discuss in Section 3.2 our approach to incorporate into the multi-robot belief
future constraints that correspond to mutual observations of unknown scenes. Evalu-
ating the objective function (7) involves simulating belief evolution along candidate
robots paths.
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3.1 Recursive Formulation of a Multi-Robot Belief

We begin with a recursive formulation of the multi-robot belief (6), considering fu-
ture controls u0:k+l−1 for all robots to be given. These are determined from candidate
robot paths that are being evaluated, or alternatively in the case of direct trajectory
optimization approaches, the controls are determined from either nominal or per-
turbed robot paths (see, e.g. [9] for further details).

Given future controls for all robots, the multi-robot belief b(Θk+l) at the lth
future step can be written recursively as follows (see also Eq. (2)):

b(Θk+l)
.
= p(Θk+l |Z0:k+l ,u0:k+l−1)

= ηb(Θk+l−1)
R

∏
r=1

p
(
xr

k+l |xr
k+l−1,u

r
k+l−1

)
p
(
Zr

k+l |Θ ro
k+l
)
, (9)

where η is a normalization constant, and p
(
xr

k+l |xr
k+l−1,u

r
k+l−1

)
and p

(
Zr

k+l |Θ ro
k+l

)
are respectively the motion model and measurement likelihood terms.

We now focus on the measurement likelihood term p
(
Zr

k+l |Θ ro
k+l

)
, noting that

it appears recursively in Eq. (9), for each look ahead step. As earlier, this term
represents sensor observations of the environment (represented e.g. by 3D points),
see Eq. (2). However, now, these are future observations of the environment to be
made according to robot r’s planned motion. It therefore makes sense to distinguish
between the following two cases: (a) observation of 3D points from Lk ⊂Θk rep-
resenting environments already mapped by planning time tk, and (b) observation of
new areas that were not previously explored by any of the robots.

The former case allows to plan single- and multi-robot loop closures (e.g. as
in [9]), i.e. to quantify the expected information gain due to re-observation of previ-
ously mapped areas by any of the robots.

We focus on the latter case, which has not been investigated, to the best of our
knowledge, in the context of collaborative active state estimation and uncertainty
reduction. Since environments that are unknown at planning time tk are considered,
the key question is how to quantify the corresponding measurement likelihood term.

3.2 Incorporating Future Multi-Robot Constraints

Despite the fact that the environments (or objects) to be observed are unknown at
planning time, it is still possible to reason in terms of mutual observations of these
unknown environments to be made by different robots, possibly at different future
time instances. We can then formulate constraints relating appropriate robot states
while marginalizing out the corresponding random variables representing the un-
known environments.

More specifically, let us consider robots r and r′ mutually observing at future
times tk+l and tk+ j, respectively, an unknown environment represented, e.g., by 3D
points Lr,r′

k+l,k+ j, with 1≤ j≤ l. The joint pdf involving the corresponding states and
these 3D points can be written as
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p
(

xr
k+l ,x

r′
k+ j,L

r,r′
k+l,k+ j|zr

k+l ,z
r′
k+ j

)
∝ p

(
zr

k+l |xr
k+l ,L

r,r′
k+l,k+ j

)
p
(

zr′
k+ j|xr′

k+ j,L
r,r′
k+l,k+ j

)
We can now marginalize out the unknown 3D points Lr,r′

k+l,k+ j to get

p
(

zr
k+l ,z

r′
k+ j|xr

k+l ,x
r′
k+ j

)
∝ p

(
xr

k+l ,x
r′
k+ j|zr

k+l ,z
r′
k+ j

)
= (10)

=
∫

p
(

xr
k+l ,x

r′
k+ j,L

r,r′
k+l,k+ j|zr

k+l ,z
r′
k+ j

)
dLr,r′

k+l,k+ j, (11)

which corresponds to a multi-robot constraint involving different time instances.
In the passive problem setting, i.e. controls and measurements are given, this

constraint is typically a nonlinear function that involves the robot poses, say xr
i and

xr′
j , and the measured constraint zr,r′

i, j which is obtained by matching the measure-

ments zr
i and zr′

j . Typical examples include matching laser scans or images using
standard techniques (e.g. ICP, vision-based motion estimation). The corresponding
measurement likelihood term can thus be written as

p(zr,r′
i, j |xr

i ,x
r′
j ) ∝ exp

(
−1

2
‖zr,r′

i, j −g
(

xr
i ,x

r′
j

)
‖2

ΣMR
v

)
(12)

where Σ MR
v is the corresponding measurement noise covariance matrix, and g is

an appropriate measurement function. For example, this function could represent a
nonlinear relative pose constraint.

Coming back to Eq. (10), while in our case the future observations are not given,
the reasoning is very similar: we can denote by zr,r′

k+l,k+ j the measured constraint that

would be obtained by matching zr
k+l and zr′

k+ j if these were known, and considering,
as before, the match is successful (i.e. not outlier), it is possible to quantify the
measurement likelihood (10) as

p
(

zr,r′
k+l,k+ j|xr

k+l ,x
r′
k+ j

)
∝ exp

(
−1

2
‖zr,r′

k+l,k+ j−g
(

xr
k+l ,x

r′
k+ j

)
‖2

ΣMR
v

)
(13)

Note the above assumes robots r and r′ will observe the same unknown scene from
future states xr

k+l and xr′
k+ j. How to determine if two future measurements (e.g. im-

ages, laser scans), to be captured from robot poses xr
k+l and xr′

k+ j, will be over-
lapping, i.e. represent a mutually observed a scene? The answer to this question
is scenario specific. For example, in an aerial scenario with robots equipped with
downward looking cameras, it is possible to assess if the images are overlapping
given robot poses and a rough estimate of height above ground. Ground scenarios
allow similar reasoning, however here it is more likely that the same (unknown)
scene is observed from multiple views (e.g. autonomous driving with a forward
looking camera), and moreover, obstacles, that are unknown at planning time, may
prevent two adjacent views to observe a mutual scene in practice.

In this paper we assume one is able to predict if two future poses will mutually
observe a scene. Specifically, in Section 4 we consider aerial robots with down-
ward facing cameras and take a simplified approach, considering two future poses
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xr
k+l and xr′

k+ j to overlap if they are ”sufficiently” nearby, quantified by a relative
distance below a threshold d. Naturally, more advanced approaches can be consid-
ered (e.g. account also for viewpoint variation) and be encapsulated by an indicator
function as in [16] - we leave the investigation of these aspects to future research.

Given candidate robot paths it is possible to determine using the above method
which future views (poses) will overlap and formulate the corresponding multi-robot
constraints (13). In particular, multi-robot constraints between robot r at time tk+l
and other robots r′ at time tk+ j with 0≤ j ≤ l can be enumerated as

∏
j

p
(

zr,r′
k+l,k+ j|xr

k+l ,x
r′
k+ j

)
. (14)

We can now write the measurement likelihood term p
(
Zr

k+l |Θ ro
k+l

)
from Eq. (9) as:

p
(
Zr

k+l |Θ ro
k+l
)
= ∏

l j∈Θ ro
k+l

p
(
zr

k+l, j|xr
k+l , l j

)
p
(
zr

k+l,k+l−1|xr
k+l ,x

r
k+l−1

)
·

· ∏
j

p
(

zr,r′
k+l,k+ j|xr

k+l ,x
r′
k+ j

)
. (15)

The first product represents observations of previously mapped 3D points l j ∈ Lk,
with Θ ro

k+l including those 3D points that are actually visible from xr
k+l . The second

term p
(

zr
k+l,k+l−1|xr

k+l ,x
r
k+l−1

)
denotes a constraint stemming from robot r observ-

ing a mutual unknown scene from adjacent views, while the last product represents
multi-robot constraints (14) that correspond to different robots observing common
areas that have not yet been mapped by planning time tk. See schematic illustration
in Figure 1a, where these future constraints are shown in blue.

Substituting Eq. (15) into Eq. (9) yields the final expression for b(Θk+l):

b(Θk+l) = ηb(Θk+l−1)
R

∏
r=1

p
(
xr

k+l |xr
k+l−1,u

r
k+l−1

)
∏

l j∈Θ ro
k+l

p
(
zr

k+l, j|xr
k+l , l j

)
p
(
zr

k+l,k+l−1|xr
k+l ,x

r
k+l−1

)
·∏

j
p
(

zr,r′
k+l,k+ j|xr

k+l ,x
r′
k+ j

)]
. (16)

Several remarks are in order at this point. First, observe that direct multi-robot con-
straints, where a robot measures its pose relative to another robot, are naturally
supported in the above formulation by considering the same (future) time index, i.e.
p
(

zr,r′
k+l,k+l |xr

k+l ,x
r′
k+l

)
. Of course, being able to formulate constraints involving also

different future time instances, as in Eq. (16), provides enhanced flexibility since
planning rendezvous between robots is no longer required. Second, observe the for-
mulation (14) is an approximation of the underlying joint pdf of multiple views X
making observations Z of an unknown scene L, since it only considers pairwise po-
tentials. More concretely, marginalizing L out, p(X |Z) = ∫ p(X ,L|Z)dL, introduces
mutual information between all views in X , i.e. any two views in X become corre-
lated. Thus, a more accurate formulation than (14) would consider all robot poses
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observing a mutual scene together. Finally, one could also incorporate reasoning
regarding (robust) data association, i.e. whether a match zr,r′

k+l,k+ j from raw measure-

ments (images, laser scans) zr
k+l and zr′

k+ j is expected to be an inlier, as for example
done in [11] for the passive case. These aspects are left to future research.

3.3 Inference Over Multi-Robot Belief Given Controls

Having described in detail the formulation of a multi-robot belief b(Θk+l−1) at each
future time tk+l , this section focuses on simulating belief evolution over time given
robot controls or paths. As discussed in Section 3, this calculation is required both
for sampling based motion planning and direct trajectory optimization approaches.

Thus, we are interested in evaluating the belief b(Θk+l) from Eq. (16)

b(Θk+l)≡ p(Θk+l |Z0:k+l ,u0:k+l−1) = N
(
Θ

?
k+l , Ik+l

)
. (17)

which is required for evaluating the objective function (7). Observe that for concise-
ness we are using here Ik+l ≡ Ik+l|k+l and Θ ?

k+l ≡ Θ̂k+l|k+l .
This process involves a maximum a posteriori (MAP) inference

Θ
?
k+l = argmax

Θk+l

b(Θk+l) = argmin
Θk+l

[− logb(Θk+l)], (18)

which also determines the corresponding information matrix Ik+l = Σ
−1
k+l .

To perform this inference, recall the recursive formulation (9) and denote the
MAP inference of the belief at a previous time by b(Θk+l−1) = N

(
Θ ?

k+l−1, Ik+l−1
)
.

The belief at time tk+l can therefore be written as

− logb(Θk+l) =
∥∥Θk+l−1−Θ

?
k+l−1

∥∥2
Σk+l−1

+

+
R

∑
r=1

[∥∥xr
k+l− f (xr

k+l−1,u
r
k+l−1)

∥∥2
ΣQ
− log p

(
Zr

k+l |Θ ro
k+l
)]

(19)

We now focus on the term − log p
(
Zr

k+l |Θ ro
k+l

)
. Recalling the discussion from Sec-

tion 3.2 and Eq. (15), this term can be written as

− log p
(
Zr

k+l |Θ ro
k+l
)
= ∑

l j∈Θ ro
k+l

∥∥zr
k+l, j−h(xr

k+l , l j)
∥∥2

Σv
+

+
∥∥zr

k+l,k+l−1−g(xr
k+l ,x

r
k+l−1)

∥∥2
Σv
+∑

j

∥∥∥zr,r′
k+l,k+ j−g(xr

k+l ,x
r′
k+ j)

∥∥∥2

ΣMR
v

, (20)

where the motion and measurement models f and h are defined in Section 2, and the
nonlinear function g was introduced in Eqs. (12) and (13). We note that while here
we consider the measurement noise covariance Σ MR

v to be constant, one could go
further and model also accuracy deterioration, e.g. as the relative distance between
robot poses increases.
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We now proceed with the MAP inference (18), which, if the future observations
Zr

k+l were known, could be solved using standard iterative non-linear optimization
techniques (e.g. Gauss-Newton and Levenberg-Marquardt): in each iteration the
system is linearized, the delta vector ∆Θk+l is recovered and used to update the
linearization point, and the process is repeated until convergence.

Let us first describe in more detail this fairly standard approach, considering for
a moment the future measurements Zr

k+l are known. The linearization point Θ̄k+l is
discussed first. Recalling that we are to evaluate belief evolution given robot paths,
these paths can be considered as the linearization point for robot poses. On the other
hand, in the case of direct trajectory optimization approaches, the nominal controls
over the planning horizon can be used to generate the corresponding nominal trajec-
tories according to (similar to the single robot case, see, e.g. [9])

x̄r
k+l =

{
f (x̄r

k+l−1,u
r
k+l−1), l > 1

f (x̂r
k,u

r
k), l = 1 (21)

The linearizaiton point for the landmarks Lk ⊂Θk+l (see Section 2) is taken as their
most recent MAP estimate. We first linearize Eq. (19)

− logb(Θk+l) = ‖Bk+l∆Θk+l‖2
Σk+l−1

+

+
R

∑
r=1

[∥∥Fr
k+l∆Θk+l−br

k+l

∥∥2
ΣQ
− log p

(
Zr

k+l |Θ ro
k+l
)]

(22)

and then linearize the term − log p
(
Zr

k+l |Θ ro
k+l

)
from Eq. (20):

− log p
(
Zr

k+l |Θ ro
k+l
)
= ∑

l j∈Θ ro
k+l

∥∥Hr
k+l, j∆Θk+l−br

k+l, j

∥∥2
Σv
+ (23)

+
∥∥Gr

k+l,k+l−1∆Θk+l−br
k+l,k+l−1)

∥∥2
Σv
+∑

j

∥∥∥Gr,r′
k+l,k+ j∆Θk+l−br,r′

k+l,k+ j)
∥∥∥2

ΣMR
v

,

where the matrices F , H and G and the vectors b are the appropriate Jacobians and
right-hand-side (rhs) vectors. The binary matrix Bk+l in Eq. (22) is conveniently
defined such that Bk+l∆Θk+l = ∆Θk+l−1.

Using the relation Σ−1 ≡ Σ−
T
2 Σ−

1
2 to switch from ‖a‖2

Σ
to ‖Σ− 1

2 a‖2 and stack-
ing all the Jacobians and rhs vectors into Ak+l and b̆k+l , respectively, we get

∆Θ
?
k+l = argmin

∆Θk+l

∥∥Ak+l∆Θk+l− b̆k+l
∥∥2

. (24)

The a posteriori information matrix Ik+l of the joint state vector Θk+l can thus be
calculated as Ik+l = A T

k+lAk+l .
This constitutes the first iteration of the nonlinear optimization. Recalling again

that the future observations Zr
k+l are unknown, it is not difficult to show [9] that,

while the a posteriori information matrix Ik+l is not a function of these observations,
the equivalent rhs vector b̆k+l from Eq. (24) does depend on Zr

k+l . This presents dif-
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ficulties in carrying out additional iterations as the linearization point itself becomes
a function of the unknown random variables Zr

k+l .
As common in related works (e.g. [9, 18, 20, 25]), we assume a single iteration

sufficiently captures the impact of a candidate action(s). Alternatively, to better pre-
dict uncertainty evolution, one could resort to using the unscented transformation, as
in [5], or to particle filtering techniques. Furthermore, for simplicity in this paper we
also make the maximum-likelihood measurement assumption, according to which
a future measurement z is assumed equal to the predicted measurement using the
most recent state estimate. As a result, it can be shown that the rhs vector b̆k+l be-
comes zero and thus Θ ?

k+l = Θ̄k+l . We note one could avoid making this assumption
altogether at the cost of more complicated expressions, see, e.g. [9, 25].

To summarize, the output of the described inference procedure is a Gaussian that
models the multi-robot belief as in Eq. (17): b(Θk+l) = N

(
Θ ?

k+l , Ik+l
)
.

3.4 Evaluation of Candidate Paths

Given candidate paths for robots in the group, one can identify the best candidates
by evaluating the objective function J from Eq. (7) for different path combinations.
Such a process involves simulating belief evolution along the candidate paths of
different robots in the group, as discussed in Section 3.3, while accounting for multi-
robot collaboration in terms of mutual observations of unknown environments (as
discussed in Section 3.2).

4 Simulation Results

In this section we demonstrate the proposed approach considering the problem of
multi-robot autonomous navigation while operating in unknown GPS-deprived en-
vironments. We consider an aerial scenario, where each robot has its own goal and
the objective is to reach these goals in minimum time but also with highest accuracy.
This can be quantified by the follwing objective function:

J = ∑
R
r=1

[
κ

rtr
goal +(1−κ

r)tr
(
Σ

r
goal
)]
, (25)

where Σ r
goal and tr

goal represent, respectively, the covariance upon reaching the goal
and time of travel (or path length) for robot r. The parameter κr ∈ [0,1] weights the
importance of each term.

As the environment is unknown and there are no beacons, radio sources or any
other means to reset estimation error, the robots can only rely on onboard sensing
capabilities and collaboration with each other to reduce drift as much as possible.
We assume each robot is equipped with camera and range sensors and can observe
natural landmarks in the environment, which are used to estimate robot pose within
a standard SLAM framework. However, since the environment is unknown ahead
of time, these landmarks are discovered on the fly while the planning process has
access only to environments observed by planning time (Section 3). Initial relative
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poses between the robots are assumed to be known, such that the robots have a
common reference frame - approaches that relax this assumption do exist (e.g. [11]).

In this basic study we use a state of the art sampling based motion planning
approach, a probabilistic roadmap (PRM) [13], to discretize the environment and
generate candidate paths for different robots over the generated roadmap. Figure 2
shows some of these candidate paths considering a scenario of two robots starting
operating from different locations. In each case we also show the belief evolution (in
terms of uncertainty covariance) along each path, calculated as described in Section
3.3, and the multi-robot constraints that have been incorporated into the appropriate
beliefs (denoted by cyan color). In the current implementation, these constraints,
possibly involving different future time instances, are formulated between any two
poses with relative distance closer than d meters. We use d = 300 meters for this
threshold parameter (in the considered scenario the aerial robots height is about 500
meters). More advanced methods could be implemented of course, considering also
viewpoint variation and incorporating statistical knowledge.

As seen in Figure 2, only in two of the considered cases (Figures 2b and 2c),
robot paths were sufficiently close to facilitate multi-robot constraints within belief
space planning. In practice, however, only in the latter case numerous informative
constraints have been incorporated. Figure 3 compares between the two terms in the
considered objective function (25), path length and uncertainty upon reaching the
goal, for the candidate paths shown in Figure 2.

The lowest predicted uncertainty covariances are obtained for candidate paths
with identified multi-robot constraints as shown in Figure 3b. In particular, the pre-
dicted uncertainty is reduced by about 40% from 35 meters to below 20 meters for
the first (red) robot. There is a price to pay, however, in terms of path lengths (or
time of arrival): as shown in Figure 3a, to attain these levels of uncertainty, the path
of the second (gree) robot is not the shortest among the considered candidate paths.
The decision what solution is the best therefore depends on the parameter κ from
Eq. (25) that weights the importance of each term in the objective function.

Next, we consider actual performance while navigating to pre-defined goals in
unknown environments using as controls the identified robot paths in the planning
phase described above. The results are shown in Figure 4 for two alternatives from
Figures 2a and 2c. Only the latter included multi-robot constraints within planning.
One can observe that also in practice, using controls from Configuration C drives
the robots sufficiently close to make mutual observations of 3D points (that were
unknown at planning time) and as a result significantly improve estimation accuracy
for both robots (see Figures 4c and 4d, and Figure 1b for a 3D view).

5 Discussion and Future Work

Results from the previous section indicate estimation accuracy can be significantly
improved by modeling multi-robot mutual observations of unknown areas within
belief space planning. More generally, we believe similar reasoning can be used to
improve multi-robot collaboration aspects while operating also in uncertain, possi-
bly dynamic, environments.
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Fig. 2: Different candidate paths for red and green robots calculated over a PRM.
Robot initial positions are denoted by ? marks; each robot has to navigate to a dif-
ferent goal, while operating in an unknown environment. The figures show the co-
variance evolution along each path. Multi-robot constraints have been incorporated
(denoted by cyan color) whenever robot poses are sufficiently close, which happens
mainly in (c); as a result, uncertainty covariances are drastically reduced. Note these
constraints involve different future time instances. Covariances were artificially in-
flated by a constant factor for visualization - actual values are shown in Figure 3.

In this basic study we have made several simplifying assumptions and did not
address some of the challenges that are expected to arise in practical applications.

• Obstacles: While initially the environment is unknown, it may be that after some
time obstacles are identified as the robots continue in exploration. These obsta-
cles can be efficiently avoided upon discovery by discarding appropriate paths,
as commonly done in sampling based approaches.

• Scalability: Although current implementation uses PRM, our approach can be
formulated within any motion planning algorithm. The combinatorial problem
associated with evaluating candidate trajectories of different robots is a topic of
future research. We note approaches addressing related problems have been ac-
tively developed in recent years (e.g. [16]). An interesting direction is to also
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Fig. 3: Quantitative comparison between the four alternatives shown in Figure 2:
(a) Path length; (b) covariance upon reaching the goals. Multi-robot constraints lead
to lowest predicted uncertainty represented by Configuration C from Figure 2c.

consider generalization of BRM and RRBT to the multi-robot case. A compli-
mentary aspect is to consider direct trajectory optimization approaches, which
could allow reducing sampling resolution.

• Belief consistency: While here we consider a centralized approach, decentralized
or distributed approaches are often more suitable in practice for numerous rea-
sons. Resorting to these architectures requires the beliefs maintained by different
robots to be consistent with each other.

6 Conclusions

We presented an approach for collaborative multi-robot belief space planning while
operating in unknown environments. Our approach advances the state of the art
in belief space planning by reasoning about observations of environments that are
unknown at planning time. The key idea is to incorporate within the belief con-
straints that represent multi-robot observations of unknown mutual environments.
These constraints can involve different future time instances, thereby providing en-
hanced flexibility to the group as rendezvous are no longer necessary. The corre-
sponding formulation facilitates an active collaborative state estimation framework.
Given candidate robot actions or trajectories, it allows to determine best trajectories
according to a user-defined objective function, while modeling future multi-robot
interaction and its impact on the belief evolution. Candidate robot trajectories can
be generated by existing motion planning algorithms, and most promising candi-
dates could be further refined into locally optimal solutions using direct trajectory
optimization approaches. The approach was demonstrated in simulation consider-
ing the problem of cooperative autonomous navigation in unknown environments,
yielding significantly reduced estimation errors.
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Fig. 4: Autonomous navigation to goals according to identified robot paths in the
planning phase. The environment, represented by a sparse set of landmarks, is ini-
tially unknown and only gradually discovered. Figures (a) and (b) show robot trajec-
tories and landmark observations using paths defined, respectively, by Configuration
A and C (see Figure 2). The latter involves numerous mutual observations of land-
marks, that induce indirectly multi-robot constraints. A 3D view is also shown in
Figure 1b. Figures (c) and (d) show the corresponding estimation errors and de-
veloping covariance over time, which, in overall, agree with the predicted belief
evolution from Figure 3b.
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