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H
igh-accuracy localization is a fundamental capability that is essen-
tial for autonomous reliable operation in numerous applications, 
including autonomous driving, monitoring of an environmental 
phenomena, mapping, and tracking. The problem can be formu-
lated as inference over the robot’s state and possibly additional 

variables of interest based on incoming sensor measurements and a priori 
information, if such information exists. Moreover, in numerous applications, 
this inference problem has to be solved in real time, thus requiring computa-
tionally efficient inference methods.

Localization approaches often consider the existence of absolute information 
from which the robot state can be determined. For example, numerous naviga-
tion algorithms rely on the Global Navigation Satellite System (GNSS) signal 
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that, together with additional sensors such as wheel odometry 
or inertial sensors, can be used in real time for calculating the 
navigation solution. Unfortunately, many scenarios exist 
where the GNSS is either unavailable or unreliable or where 
the obtained accuracy is insufficient. Indoor and urban navi-
gation is one representative case for such scenarios.

Alternatively, localization approaches typically assume 
the map of the environment in which the robot has to oper-
ate is known a priori. Given such a map, it is possible to local-
ize the robot by associating incoming sensor observations 
(for example from a laser range sensor or a camera) with the 
appropriate region in the map.

Yet, it is often the case that the robot has to operate in 
unknown, uncertain, or dynamically changing environ-
ments. In these scenarios, the map is thus either unavail-
able, only partially reliable, or has become partially obsolete 
as a result of a change in the environment. For example, 
numerous buildings collapsed in the Fukushima earth-
quake in 2011. The maps of these buildings, even if avail-
able, are of little use when sending robots for search and 
rescue missions and should be updated on the fly as the 
robots explore these environments.

Therefore, without reliable sources of absolute informa-
tion (such as a GNSS signal or an a priori known valid 
map), solving the localization problem also requires map-
ping the environment in which the robot is to operate. This 
problem, known as simultaneous localization and map-
ping (SLAM), has been extensively investigated by the ro-
botics research community in the past two decades. 
“Overview of Graph-Based Simultaneous Localization and 
Mapping Algorithms” provides an overview of the state-of-
the-art approaches in SLAM.

Collaboration between multiple robots can yield high-
er levels of performance and is a key capability in multi-
robot autonomous systems that is of interest in a variety 
of problem domains, including surveillance, tracking, 
localization, mapping, and SLAM. Cooperatively infer-
ring variables of interest, such as robot trajectories, ob-
served objects, and tracked targets, results in higher 
levels of accuracy, flexibility, and robustness to failure. 
An illustrative example of multirobot inference is the ex-
periment with autonomous flying vehicles shown in Fig-
ure 1. Robot trajectories and environment map are 
inferred in this example.

Overview of Graph-Based Simultaneous Localization and Mapping Algorithms

S imultaneous localization and mapping (SlaM) is a funda-

mental problem in robotics, consisting of robot (or sensor) 

localization while operating in environments that are partially or 

completely unknown, uncertain, or dynamically changing. as 

the robot moves, it observes the surrounding environment with 

its onboard sensors (for example, cameras or range sensors). 

Given these observations, the general concept is to concur-

rently estimate a map, representing the observed environment, 

while at the same time to also infer robot pose with respect to 

that map.

SlaM approaches can be classified into two types, pose 

SlaM and full SlaM, which differ in the variables to be inferred 

and in the way constraints are formulated. More specifically, 

the pose SlaM approach can be probabilistically formulated as

 ( ) ( ) ( , ),p X Z p x p u x xposeSLAM
,

,
i j

i j i j0= %  (S1)

where ( )p x0  is the prior on the initial state x0  and the term 

( , )p u x x,i j i j  represents a nonlinear constraint involving the ro-

bot states xi  and ,x j  and a relative motion between these two 

states .u ,i j  in the context of pose SlaM, the latter typically rep-

resents the relative motion calculated from raw observations zi  

and z j  acquired at time instances ti  and .t j  For example, zi  and 

z j  can be laser scan observations, as considered in this article. 

it is important to note that the calculation of u ,i j  from zi  and z j  

is done by an external process that is often treated as a black 

box (for example, iCp or image-based motion estimation).

The probabilistic formulation for full SlaM differs from (S1) 

and is
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where the set M i  represents landmark indices observed at 

time ,ti  and for each such index ,m z ,i m  is the actual observation 

(for example, image feature) and l Lm !  is the corresponding 

landmark. in both cases, the formulation also includes a motion 

model ( , )p u x x,i i i i1 1- -  that can be expressed in terms of the ki-

nematics model of the robot and controls or can be represented 

instead by odometry, as is common in SlaM literature.

it is helpful to represent both inference problems using 

graphical models, such as a factor graph [S1]. Formally, a fac-

tor graph is a bipartite graph ( , , )G F EH=  with two node types: 

variable nodes j !i H  and factor nodes .f Fi !  Edges e Eij !  

are always between factor and variable nodes.

Variable nodes in pose SlaM are robot poses ,X  while in full 

SlaM these nodes represent both robot poses X  and landmarks 

.L  Factor nodes represent the probabilistic terms in the corre-

sponding formulations (S1) and (S2). it is therefore possible to 

rewrite the pose SlaM formulation in (S1) in terms of factors as

 ( ) ( ),p X Z fposeSLAM i
i

i? H%  (S3)

and full SlaM formulation in (S2) as

 ( , ) ( ).p X L Z ffullSLAM i
i

i? Hl%  (S4)

The factor graphs represented by these two equations are il-

lustrated in a simple example in Figure S1. Observe that since 
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To facilitate cooperative inference, it is essential to estab-
lish a common reference frame and environment map be-
tween the robots so that robots can communicate relevant 
information with each other and correctly interpret that 
information for their needs. Only a few attempts have been 
made to simultaneously determine a common reference 
frame and resolve data association between sensor obser-
vations (for example, images or laser scans) acquired by 
different robots. Here, data association refers to determin-
ing whether different observations describe the same 
scene, where the scene is everything in the perceptual field 
of view of the robot (which varies based on the robot’s sen-
sors). For example, the scene could be the visual representa-
tion of the environment if the robot has a camera or the 
structure of the environment if the robot is equipped with 
a laser scanner.

Solving these two coupled problems is important because 
it enables the robots, which are scattered in a complex, ini-
tially unknown environment, to establish collaboration 
without requiring any prior knowledge or infrastructure. 
For example, starting from some arbitrary guess as to where 
each robot is and by sharing observations from onboard sen-

sors, each robot can infer the trajectories of other robots in 
the group and, as a result, perform map merging.

Data association is a key challenge that shares some 
similarities with loop-closure detection in the single-robot 
case. Incorrect data association can lead to catastrophic de-
terioration in performance and must be avoided at all costs; 
the robotics community has been indeed very active in the 
last two years in developing robust graph-optimization 
techniques [1]–[5] to address this crucial aspect.

Multirobot data association has become an active re-
search area as well [6]–[9], with the same sensitivity to incor-
rect correspondences as in the single-robot case. Multirobot 
data association, however, becomes more complicated when 
initial relative poses (positions and orientations) between 
the robots are unknown. An example is shown in Figure 2. 
Without a common reference frame, the robots must decide 
what information to share with each other. Calculated mul-
tirobot constraints based on this shared information can be 
used to distinguish false positives from correct correspon-
dences between poses of multiple robots. Achieving these 
goals requires reasoning about multirobot data association 
and initial relative poses concurrently.

the underlying constraints in pose SlaM and full SlaM are dif-

ferent, different notations for factors are used. in the figure, the 

nodes xi  and l j  represent, respectively, robot state from time ti  

and the thj  landmark. Edges with different colors represent the 

different nonlinear constraints encoded by factors fi  (and fil) in 

the original probabilistic formulations in (S1) and (S2).

a conceptual difference between the two formulations can 

be observed from Figure S1 and from (S1) and (S2). First, 

pose SlaM approaches only infer the robot past and current 

poses; on the other hand, full SlaM approaches also infer the 

landmarks L  (representing the map). Second, full SlaM for-

mulations typically use raw sensor observations (for example, 

image or range observations), while pose SlaM approaches 

first resort to black-box algorithms that calculate relative motion 

from the raw observations and then formulate corresponding 

constraints using the calculated motion. Because of the latter, 

pose SlaM does not correspond exactly to marginalization of 

landmarks in the general case

 ( ) ( ) ( , ) .p X Z p X Z p X L Z dLposeSLAM fullSLAM! / #  (S5)

recently, accurate and computationally efficient ap-

proaches have been developed to solve the above inference 

problems. For example, to recover the Map estimate for 

pose SlaM

 ( ).arg maxX p X ZposeSLAM
X

=)  (S6)

These approaches typically perform nonlinear iterative opti-

mization while exploiting the sparsity of the involved matrices, 

which can be naturally represented by a factor graph. For fur-

ther details, the reader is referred to [S2] and [45].

REfERENCES
[S1] F. Kschischang, B. Frey, and H.-a. loeliger, “Factor graphs and the 
sum-product algorithm,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 
498–519, Feb. 2001.
[S2] r. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, 
“G2o: a general framework for graph optimization,” in Proc. IEEE Int. 
Conf. Robotics Automation, Shanghai, China, May 2011, pp. 3607–3613.

figUre s1 a factor graph representation of (a) full SlaM and 
(b) pose SlaM.
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This article develops a distributed and incremental mul-
tirobot approach that allows a group of robots to concur-
rently establish a common reference frame and resolve 
multirobot data association on the fly. Furthermore, a prob-
abilistic approach for estimating the positions of multiple 
robots is discussed.

The approach is based on the key observation that by 
analyzing the distribution of multirobot relative pose con-
straints [illustrated in Figure 3(b)], it is possible to estimate 
the transformation between the robot reference frames and 
identify the correct data association. Constraints on the pos-
es between robots are formed by sharing and determining 
correspondences between sensor observations from differ-
ent robots. The distribution of pose constraints generated in 
this fashion usually contains one cluster of correspondences 
for the correct transformation between robots and is scat-
tered for outlier correspondences. However, sometimes per-
ceptual aliasing, meaning cases in which two or more places 

are perceived as the same by the robot, can lead to multiple 
clusters corresponding to the correct transformation. For ex-
ample, perceptual aliasing occurs when two identical corri-
dors in the building lead to nearly identical sensor 
measurements. Perceptual aliasing introduces further com-
plications, which are addressed by the approach presented 
in this article. Based on this insight, an expectation maximi-
zation (EM) [10] approach is developed to efficiently perform 
this inference by each of the robots independently, starting 
from several initial guesses and resulting in different locally 
optimal solutions.

Choosing the correct solution is a key challenge, since a 
wrong decision adds outliers to the graph optimization, and 
is particularly important when information is received in-
crementally, which is the case for the real-time operation in 
real autonomous robotic systems; in this case, a judgement 
must be made as to whether a sufficient amount of informa-
tion has been received to perform this decision reliably.

Furthermore, perceptual aliasing presents additional chal-
lenges. Matching sensor observations from two different but 
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figUre 2 Multirobot candidate correspondences F r  between (a) 
red and blue and (b) green and blue robots in the real-world data 
set D1. Since a common reference frame is not yet established, 
robot initial poses are set to arbitrary values.

(a)

(b)

Robot 1
Robot 2
Robot 3
Start Positions

-40 -30 -20 -10 0

X (m)

Y
 (

m
)

10 20 30

-30

-20

-10

0

10

20

30

figUre 1 an example of multirobot inference. (a) Three quadro-
tors (yellow circles) cooperatively generating a map of the environ-
ment. (b) The output trajectories of three robots and the 
environment map of data set D4.
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similar environments (such as two corridors) often results in 
reliable and consistent transformations that erroneously indi-
cate the two environments are the same. These incorrect cor-
respondences (referred to as outliers), and the correct correspon-
dences (referred to as inliers) also form clusters of transformations 
between robots (see, for example, clusters 2–4 in Figure 3) that 
compete with the inliers cluster, leading to  the problem of 
choosing the right cluster among several candidates.

This challenging problem is framed within a model-se-
lection framework [11], to develop a probabilistically sound 
approach for selecting the most probable cluster. Moreover, 
the question of whether there is a correct cluster given the 
information available to each robot thus far is discussed, 
since the robots might not have observed the same environ-
ment yet. This problem is approached by modeling the 
prior probability for each cluster using the Chinese restau-
rant process (CRP) [12], [13]; see “Chinese Restaurant Pro-
cess” for a brief overview.

Finally, this article considers challenges involved in op-
eration in large-scale environments, where, due to drift ac-
cumulating in estimated robot poses, correctly identifying 
inlier multirobot constraints becomes even more difficult. 

To address this problem, a basic modification of the EM ap-
proach is described that performs well in practice in these 
challenging scenarios.

This article makes the following contributions: 1) the 
development of a new EM-based approach to determine 
initial relative poses and multirobot data association with-
in an incremental distributed framework; 2) the develop-
ment of a model-selection approach for identifying the 
correct solution among several candidates; in particular, 
this approach uses the CRP to cope with potential percep-
tual aliasing and to account for the possibility there is no 
correct solution given information obtained thus far; and 
3) extensive evaluation in real-world multirobot experi-
ments both in indoor and outdoor environments. In addi-
tion, an extension of the EM-based approach to large-scale 
scenarios, where robot trajectories develop significant 
drift, is suggested.

This article is an extension of [9] and [14]–[16]. An EM-
based approach to solve the multirobot SLAM problem was 
first developed in [9], considering a centralized batch frame-
work and without accounting for perceptual aliasing and 
the additional complexities of an incremental distributed 
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figUre 3 Measurement aliasing in data set D3. (a) shows the multirobot correspondences F r  found between the red robot and blue 
robot. Each correspondence is shown as gray line. (b) shows the calculated relative poses. Four clusters are marked by red circles and 
numbered from 1–4. One relative pose is generated per correspondence between two robots. arrows indicate transformations from one 
robot to another, where each arrow’s direction refers to a rotation and its origin refers to a translation. Cluster 1 represents the correct 
relative-pose transformation, and 2–4 are formed as a result of measurement aliasing. (c)–(f) show the aligned trajectories of red and 
blue robots of clusters 1–4, and the black lines show the correspondences in the cluster. (c) represents the correct transformation, and 
(d)–(f) are incorrect.
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problem setup. The approach was then extended to incre-
mental and distributed configuration with real-time imple-
mentation [14], [16]. Several experimental techniques such as 
subsampling using autocovariance were also investigated 
in [15] to improve computational efficiency. A preliminary 
version of the current article appeared also in [14], which 
outlined the approach to cope with perceptual aliasing in a 
distributed incremental framework considered herein.

This article proceeds as follows. First, related work is 
discussed, and a high-level overview of the developed ap-
proach is provided. Next, the considered problem is formu-
lated, and the EM-based framework to simultaneously 
infer initial relative poses and multirobot data association 
is introduced. The following section then focuses on hy-
pothesis-model-based selection, which is an essential com-
ponent to facilitate incremental operation in (potentially) 
perceptually aliased unknown environments. An analysis 
of computational complexity is then provided, followed by 
an extensive performance evaluation. Finally, approach 

limitations are discussed and suggestions for possible fu-
ture research directions are provided.

RELATED WORk
Distributed cooperative localization and multirobot SLAM 
has been extensively studied over the last decade. Many of 
these research efforts, which can be classified into full 
SLAM [17]–[20] and pose SLAM [18], [21]–[25] approaches, 
assume that the initial relative poses between the robots 
are known and multirobot data association has been exter-
nally established. “Overview of Graph-Based Simultane-
ous Localization and Mapping Algorithms” provides an 
overview on graph-based SLAM algorithms and discusses 
the differences between pose and full SLAM formulations.

Several approaches have been developed to operate 
when the initial relative poses between the robots are un-
known, assuming that perfect multirobot data association 
is given. These approaches, including [26]–[28], often use 
direct relative-pose measurements between the robots and 

Chinese Restaurant Process

According to the Chinese restaurant process (Crp), the 

probability of observing a new place, after previously ob-

serving n  unique places, is

 ,
n 1a
a

+ -
 (S7)

where a  is a concentration parameter. This parameter defines 

the extent to which repeated observations of the same place 

take place; a larger a  corresponds to higher probability of ob-

serving a new place. See Figure S2(a), which describes the 

evolution of the probability in (S7) as a function of n  and .a  The 

probability decreases with n  for a given .a

Based on (S7), it is straightforward to show [43] that, given 

n  observations, the probability of observing n  unique places 

can be written as

 .f n
j 1

j

n

n

1

0
a

a

+ -
=

^
^

h
h%

 (S8)

Figure S2(b) illustrates this probability as a function of n  and 

for different values of .a  This probability decreases with n  for a 

given ,a  corresponding to the above assumption that observing 

only new places becomes less likely as the robot makes more 

observations.

figUre s2 (a) The probability of observing a new place given n  observations (b) the probability of observing n  unique places 
given n  observations.
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assume the identity of the observed robots is known. Re-
laxing this assumption has been investigated in [29]. Multi-
robot pose SLAM using indirect relative-pose constraints, 
corresponding to different robots observing the same envi-
ronment, has been mainly researched under the assump-
tion of perfect data association and an established common 
reference frame between the robots [30], [21], [23], [24].

Determining data association is often treated as a pre-
processing step separate from inference over the robot 
states. In [6], an approach for distributed data association 
was developed based on random sample consensus 
(RANSAC) [31], and further a distributed framework com-
puting global correspondences by identifying inconsistent 
data association is developed [7]. While these approaches 
do not require a common reference frame between the ro-
bots, they operate within the full SLAM paradigm, explic-
itly performing inference also over the observed structure 
(for example, three-dimensional points or objects) in addi-
tion to robot states.

In contrast, the following approach is formulated in the 
pose SLAM framework, which has computational advan-
tages over full SLAM. Consistency-based outlier rejection 
has also been developed for multirobot pose SLAM [8] as-
suming direct relative-pose measurements, still assuming 
a common reference frame between the robots is known.

Another related line of research is multirobot map 
merging [32]–[34], where the aim is to integrate maps pro-
duced by different robots, typically without assuming a 
known common reference frame between the robots. For 
example, a topological approach that merges maps is devel-
oped in [34] by using a probabilistic generalized Voronoi 
diagram representation that accounts for the confidence 
levels (uncertainties) of different areas in the local maps. 
However, map-merging approaches do not typically reason 
about potential outliers in multirobot data association and 
have not been investigated, to the best of the authors’ 
knowledge, in an incremental framework.

To be resilient to outliers overlooked by data-association 
approaches, the robotics community has been focusing on 
robust graph-optimization techniques [1]–[5], including the 
application of EM [10] for the single-robot case [4]. These 
new approaches, in particular, aim to be robust to loop-
closure outliers since current state-of-the-art methods for 
generating loop-closure constraints (for example, FAB-
MAP [35] place recognition) are not error free. However, 
the majority of robust graph-optimization approaches are 
developed for the single-robot case. In contrast, this article 
focuses on a multirobot distributed and incremental prob-
lem formulation. The incremental component introduces 
additional challenges, such as determining whether suffi-
cient data has been accumulated for resolving multirobot 
data association, in particular, in the presence of perceptu-
al aliasing. It is also noted that since, initially, the robots do 
not have a common reference frame established, the data-
association problem is in particular challenging.

AppROACh OvERvIEW
The approach considers a group of R  robots deployed to col-
laboratively operate in an unknown environment, initially 
unaware of each other. The objective is for each robot r  to 
estimate its own trajectory Xr  (current and past poses) and 
additional variables of interest, such as the trajectories of 
other robots, in a distributed incremental framework. Such a 
capability is important for multirobot cooperation in numer-
ous applications; additionally, it allows the robots to extend 
their sensing horizon and establish a common environment 
map, observed so far by the entire group. Although the com-
mon map is not explicitly inferred, it can be always recov-
ered from the estimated poses and sensor observations [36].

table 1 the main notations used throughout the article.

symbol Description

R Number of robots

R Set of all robots: , ,R1R f0 " ,

xi
r pose of robot r  at time ti

Xr Trajectory (in terms of poses) of robot : { }r xi
r

XR Trajectories of all robots in the group: Xr
R r

1, =

Xr Variables inferred by robot :r Xr  and additional 
variables of interest (for example, trajectories of 
other robots)

u ,
,

l l
r r
l
l Multirobot constraint calculated from raw 

observations zl
r  and zl

r
l
l

zi
r raw sensor observation (for example, a laser 

scan) obtained by robot r  at time ti

Zr local observations of robot r

ZR Observations of all the robots in the group

Zr
Observations available to robot :r  local 
observations Zr  and observations shared by 
other robots

FR Set of multirobot correspondences { , , , }r r l ll l^ h

F r Set of multirobot correspondences { , , , }r r l ll l^ h  
available to robot r

j ,
,

l l
r r
l
l Binary variable, models whether the 

correspondence ( , , , )r r l ll l  is inlier or outlier

Jr
Set of all binary variables j ,

,
l l
r r
l
l  that correspond to 

correspondences F r

Tr
rl Transformation between the reference frames of 

robots r  and rl

h Hypothesis, defined in terms of inliers I  and 
outliers O  such that I O Jr, =

H Set of all hypotheses
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The main notational conventions used in this article are 
summarized in Table 1. Superscripts and subscripts denote, 
respectively, a robot’s identity and time indices. For exam-
ple, xi

r  represents the pose of robot r  at time .ti

In a centralized problem setting, this problem corresponds 
to calculating the maximum a posteriori (MAP) estimate

 ,arg max pX X Z
R

X

R R

R

=t ^ h  (1)

where , , ,R1R f0 " ,  and XX r
R r

1
R ,0 =  and ZR  represent 

the poses and the sensor observations of all the robots in 
the group. Here, Xr  represents the trajectory of robot r  in 
terms of past and current poses.

The robots are assumed to share sensor observations of 
different parts of the environment with each other, which, 
given data association, can be used to formulate constraints 
between appropriate poses of different robots. These con-
straints become part of the underlying graph structure of 
p X ZR R^ h and are essential for facilitating collaboration 
between the robots.

Each such constraint u ,
,

l l
r r
l
l  can involve two poses xl

r  and 
xl

r
l
l  of two different robots r  and rl at (potentially) different 

time instances represented by the indices l  and .ll  Denoting 
by FR  the multirobot correspondences , , ,r r l ll l^ h between 
all robots in the group, and letting Zr  represent the local 
observations of each robot ,r ZR  in (1) is

 , , , .Z u r r l lZ F,
,

r
R r

l l
r r r

1
R , ,0 != l ll

l ^ h" ,  (2)

Assuming a common reference frame is known, the robots 
can identify and share with each other only observations 
of areas that are likely to be observed by other robots. 
However, without a common reference frame, it is not ob-
vious what information the robots must communicate 
with each other since each robot r  represents its trajectory 
Xr  in its own local frame. Consequently, data association 
becomes much more challenging because of the high num-
ber of outlier correspondences, and the problem becomes 
is coupled with establishing a common reference frame 
between the robots.

A distributed setting further complicates this problem, 
since each robot r  has only access to ,Z Zr R3  composed of 
its own observations and observations shared by other ro-
bots. Letting X Xr R3  represent the trajectory of robot r  
and additional variables of interest, in this case, the appro-
priate trajectories of other robots (as defined below), the 
inference solved by each robot r  is

 .arg max pX X Z
r r r

Xr
=t ^ h  (3)

An EM-based approach for solving this problem in an in-
cremental and distributed setting with unknown multiro-
bot data association and initial relative poses is described 
below. Since this approach requires the initial relative pos-
es to be first roughly determined, the first part of the ap-

proach allows each robot to infer the initial relative poses 
and multirobot data association simultaneously. Directly 
solving the corresponding inference problem is computa-
tionally intractable because it involves introducing binary 
latent variables to model whether each individual multiro-
bot correspondence is inlier or outlier and jointly account-
ing for all the possible values each of these variables can 
assume. In contrast, the developed EM approach enables 
significant reduction in computational complexity. The in-
formation available to each robot in an incremental prob-
lem setting at a given time often supports several possible 
solutions. The problem then turns into choosing the most 
probable solution and identifying whether a sufficient 
amount of information has been accumulated to make this 
choice reliably. The problem of choosing the most probable 
solution is particularly important in the incremental set-
ting in the presence of measurement aliasing. A model selec-
tion-based paradigm is used to address this issue.

After the relative transformation between robots is com-
puted, robot trajectories are inferred while continually us-
ing the incoming multirobot correspondences. Inlier 
correspondences are incrementally accepted using an EM 
approach. An extension is suggested to cope with signifi-
cant trajectory drift by introducing modeling of pose un-
certainty within EM.

Figure 4 shows a diagram of the approach. The input to 
the algorithm is the set of sensor observations from the local 
and remote sensors. Remote sensor observations are ob-
tained by filtering and sharing observations subject to sa-
liency and geometric criteria, such as the ability to rigidly 
register the sensor measurement with itself under a pertur-
bation (one measure of saliency) or distance between cap-
tures. Local and remote sensor observations are compared 
and used to generate multirobot correspondences. Depend-
ing on whether the relative transformation is built or not, 
the workflow is switched: If the relative transformation is 
not determined, an EM optimization is performed from dif-
ferent initial guesses (for example, in Figure 3, four clusters 
represent four initial guesses). Each EM optimization con-
verges to a local minimum, and each minimum represents a 
single hypothesis [in Figure 3, parts (c)–(f) represent four hy-
potheses, in which (c) is the correct one]. A model selection 
framework is used to determine the correct hypothesis once 
enough information is available. If the relative transforma-
tion has been determined already, EM optimization is per-
formed using input correspondences. Identified inliers are 
inserted into a pose graph that is optimized. The output of 
the algorithm is the set of optimized poses and the identifi-
cation of inlier and outlier correspondences.

pRObAbILISTIC fORMuLATION
A Bayesian formulation is developed here for the inference 
problem (3) to be solved by each robot .r  The formulation be-
gins with a probabilistic formulation for a single robot r  and is 
extended to a multirobot incremental distributed framework.
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Single-Robot Formulation
Denoting by Zr  the available sensor observations from ro-
bot srl  onboard sensors, the joint probability distribution 
function (pdf) can be written as

 ( ) ( ) ( , ),p X Z p x p u x x,
r r r

k l
r

k
r

l
r

u Z

0

,k l
r r

?
!

%  (4)

with p xr
0^ h being the prior on the initial pose ,xr

0  and 
x Xi

r r!  representing the robot pose at time step ,i  both ex-
pressed relative to some local reference frame.

The measurement likelihood term ( , )p u x x,k l
r

k
r

l
r  in (4) in-

volves the relative-pose measurement .u Z,k l
r r!  This mea-

surement can be directly calculated 
from vision or laser sensor observations 
at the two time instances tk  and tl  or 
can be obtained from odometry mea-
surements. This measurement likeli-
hood term is therefore used to represent 
both sequential pair-wise and loop-clo-
sure constraints, depending on the in-
volved time instances. Following a 
standard assumption in SLAM commu-
nity, this term is modeled as a Gaussian
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where R is the measurement noise cova-
riance, and h  is a measurement model. In 
the case where robot poses are expressed 
in the same reference frame, this mea-
surement model is , .h x x x xi

r
i
r

i
r

i
r

1 160- -^ h  
The notation 6  in a b6  is used to ex-
press b  locally in the  frame of .a  The 
MAP estimate of the rth robot poses Xr  
using only local information is

 .arg maxX p X Zr

X

r r

r
=t ^ h  (6)

Multirobot Incremental Distributed 
Formulation
In a distributed incremental problem 
setting, the inference problem to be 
solved by each robot r  is (3). Before pro-
ceeding with this inference problem, 
however, an approach for sharing in-
formation between robots is discussed 
for the case when a common reference 
frame between the robots is unknown.

Considering a distributed setting,  
the set of multirobot data association 
available to robot r  is denoted ,F r  with 
each individual data association , , ,r r ll^  
l F r!lh  representing a relative-pose 

constraint u ,
,

l l
r r
l
l relating between the pose of robot r  at time tl  

and the pose of robot rl at time .tll  This constraint can repre-
sent both the direct measurement of one robot pose relative to 
another robot and also the estimated relative pose based on 
sensor observations of a common scene by two robots. In the 
latter case, it is computed from the sensor observations of the 
two robots z Zl

r r!  and ,z Zl
r r!l
l l  which can represent, for ex-

ample, laser scans or image observations.
Since a common reference frame between the robots is 

unknown, an approach is required for information shar-
ing. Each robot rl is assumed to share at each time tll  its 
current sensor observation ,zl

r
l
l  if it is informative, and also 
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figUre 4 a diagram of the approach.
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tracks all these informative observations zi
r
l
l" , over time. 

Different methods can be used for quantifying the infor-
mativeness of a sensor observation. As discussed in detail 
later, in this article the observation saliency is used as a 
measure of informativeness; only highly salient observa-
tions are shared with other robots. Moreover, the observa-
tion saliency calculation and actual information sharing is 
done at a fixed frequency or upon moving a sufficient dis-
tance (0.5 m in the current implementation).

Additionally, robot rl shares local observations from its 
onboard sensors, which correspond to individual terms of 
p X Zr r^ h in (4). Using that information it is possible for ro-
bot r  to recover the poses of robot rl using (6). While the 
amount of shared information may seem large, in practice 
these measurements can be represented by a single rela-
tive-pose constraint with an appropriate covariance [37]. Of 
course, if the robots only briefly interact, they might be ca-
pable of sharing only parts of their trajectories, instead of 

.p X Zr r^ h  In particular, this strategy would involve only 
sharing the probability distributions over robot poses di-
rectly involved in the multirobot measurements, while 
marginalizing out the rest of the variables. See [37] for fur-
ther details and note that, while [37] considers a multirobot 
full SLAM framework, a similar approach can be used for 
the pose SLAM formulation in this article. A related ap-
proach was also described in [23] in the context of collab-
orative vision-aided navigation. While sharing only part of 
the variables is supported in implementation, for simplicity 
of the derivations to follow, the entire joint pdf p X Zr rl l^ h is 
assumed to be shared by each robot .rl  Following this sim-
plification, the random variables Xr  that are inferred by 
each robot r  are

 .XXr r

r
0'  (7)

Communicating only local observations, or the corre-
sponding marginal ,p X Zr r^ h  guarantees consistent estima-
tion because double counting is avoided [38], [37]. In other 
words, each raw sensor observation from some robot rm  
that was previously transmitted to robot r  will not be re-
tained in the marginal distribution that robot r  shares with 
any other robot .rl  As a result, raw sensor observations 
from any robot are used at most once.

While not at the focus of this work, another solution 
might require that each robot r  transmits, in addition to 

,p X Zr r^ h  the measurement likelihood terms received from 
other robots as a means to propagate information in the sys-
tem, thereby facilitating improved multirobot consistent es-
timation. Such an approach has its roots in [38] and has been 
recently applied to multirobot SLAM [37]. Additional ap-
proaches for consistent distributed estimation include 
[39] and [24].

Any robot r  that receives an observation zl
r
l
l  from some 

robot ,rl  generates candidate correspondences by matching 

zl
r
l
l  with its own informative observations .zi

r" ,  Each such 
correct match u ,

,
l l
r r
l
l  between zl

r
l
l  and z zl

r
i
r! " , represents a 

(relative-pose) constraint involving the poses xl
r
l
l  and ,xl

r  
with ,l l k#l  where k  is the current time index. Many of 
these constraints are outliers. The set F r  of multirobot data 
association, which is available to robot r  at time ,tk  includes 
all such individual multirobot data associations up to time 

, , , , .t r r l l Fk k
r!l l^ h

An example of the multirobot candidate correspondenc-
es set F r  is shown in Figure 2. The figure illustrates the 
candidate correspondences in F r  between the blue robot 
and other robots (green and red). Since the initial relative 
poses between the robots are unknown, these transforma-
tions were set to arbitrary values.

Given the multirobot data association ,F r  and the ap-
propriate constraints ,u ,

,
l l
r r
l
l  the joint pdf p X Zr r^ h from (3) 

can be expressed as

 , ,p p X Z p u x xX Z
, , ,

,
,r r

r

r r

r r l l
l l
r r

l
r

l
r

F r

?
!l l

l
l

l
l^ ^ ^

^
h h h

h
% %  (8)

where Zr  includes both single-robot observations, for each 
robot, and all relative-pose multirobot constraints

 , , , .Z u r r l lZ F Z,
,r

r
R r

l l
r r r

1
R, ,0 ! 3= l ll

l ^ h" ,  (9)

Because the robots express their local trajectories with re-
spect to different reference systems, the measurement likeli-
hood term in (8) is
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 , ,h x x x T xl
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l
r6 50l

l
l l

l^ ^h h  (12)

where Tr
r
l  is a transformation between the reference frames 

of robots r  and ,rl  and the notation 5  represents the trans-
formation compose operator [40]. Since the robots start oper-
ating from different unknown locations, this transformation 
is initially unknown.

Furthermore, while the formulation in (8) assumes mul-
tirobot data association F  is given, in practice it is un-
known ahead of time and must therefore be established. 
The next section focuses on simultaneously solving data 
association and the robot pose inference by introducing a 
latent variable.

Incorporating Multirobot Data Association
Instead of assuming multirobot data association is given, a 
latent binary variable j ,

,
l l
r r
l
l  is used to model inlier and outlier 

correspondences using the convention that correspondence 
, , ,r r l l F r!l l^ h  is an inlier if inlierj ,

,
l l
r r

=l
l  and accordingly an 

outlier when .outlierj ,
,

l l
r r

=l
l  Denoting all the latent variables 

representing data association between robot r  and other 
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robots by ,Jr  calculating the MAP inference over Xr  cor-
responds to

 , ,arg max arg maxp pX X Z X J Z
r r r r r r

X X J
r r r

= =t ^ ^h h/  (13)
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where the term ,p j x x,
,

l l
r r

l
r

l
r

l
l

l
l^ h is considered as the prior 

,p j ,
,

l l
r r
l
l^ h  since it is not conditioned on any observations.

The likelihood term , ,p u x x j,
,

,
,

l l
r r

l
r

l
r

l l
r r

l
l

l
l

l
l^ h can be evaluated 

for both inlierj ,
,

l l
r r

=l
l  and outlierj ,

,
l l
r r

=l
l  with (10) using inR  

and ,outR  representing, respectively, the covariances corre-
sponding to inlier and outlier distributions, with .in out%R R

However, when the initial relative pose Tr
rl between any 

two robots r  and rl is unknown, performing inference over 
(14) is doomed to fail [9]; since the transformation Tr

r
l is un-

known and can only be arbitrarily set, each candidate multi-
robot data association , , ,r r l l F r!l l^ h  with a corresponding 
constraint u ,

,
l l
r r
l
l typically results in a high discrepancy be-

tween≈u ,
,

l l
r r
l
l and the prediction ,h x xl

r
l
r
l
l^ h from (12), and there-

fore results in a high error err , , .u x x,
,

l l
r r

l
r

l
r

l
l

l
l^ h  These high errors 

are obtained both for inlier and outlier correspondences. 
Since ,in out%R R  the probability , ,p u x x j,

,
,
,

l l
r r

l
r

l
r

l l
r r

l
l

l
l

l
l^ h is higher 

for outlierj ,
,

l l
r r

=l
l  than ,inlierj ,

,
l l
r r

=l
l  regardless of whether the 

correspondence , , ,r r l l F r!l l^ h  is an inlier or outlier in prac-
tice. As a result, attempting to infer both multirobot data as-
sociation and robot trajectories leads to identifying all 
candidate correspondences in F r  as outliers.

It is for this reason that initial relative poses must be first 
estimated so that the error in (11) could be used to distin-
guish between inlier and outlier correspondences. The fol-
lowing sections describe an approach for concurrently 

estimating the transformations Tr
r
l  and multirobot data as-

sociation in an incremental distributed framework.

remark
It may seem that outliers can be directly identified and 
rejected by matching algorithms such as RANSAC [31] or 
iterative closest point (ICP) [41]. However, this statement is 
only partially true. Although these algorithms are capable of 
accurate relative-pose estimation given sensor observations 
of a common scene, identifying the fact that two given obser-
vations were acquired from different parts of the environment 
is a much more challenging task. In the single-robot case, a 
related aspect is establishing loop closures. Current loop-clo-
sure techniques cannot guarantee outlier-free data associa-
tions, and approaches for robust graph optimization are still 
actively investigated. Similarly, in the multirobot framework, 
multirobot data association cannot be assumed outlier free, 
especially in the presence of perceptual aliasing (for example, 
when observing two corridors that look alike). These chal-
lenging scenarios are handled in the EM formulation and 
model-selection-based framework.

DISTRIbuTED INfERENCE OvER  
INITIAL RELATIvE pOSE uSING EM
The remaining formulation is based on the following key 
observation: given local robot trajectories, each candidate 
multirobot correspondence , , , ,r r l l F r!l l^ h  regardless of 
whether it is an inlier or outlier, suggests a solution for the 
transformation .Tr

r
l  However, only the inlier correspon-

dences produce similar transformations, while those calcu-
lated from outlier correspondences typically disagree 
among each other, unless these outliers are caused by mea-
surement aliasing.

This concept is illustrated in a synthetic toy example in 
Figure 5. In the figure, ground-truth robot trajectories are 
given in (a), and candidate matches between two of the robots 
(red and blue) are shown in (b), with robot initial poses set to 
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figUre 5 a simulation experiment depicting (a) robot trajectories. initial positions are denoted by cross marks. (b) Correspondences 
between trajectories, and (c) distribution of relative pose transformations. The large cluster marked in red circle in (c) corresponds to the 
correct transformation. 
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arbitrary values. Many of these correspondences are outli-
ers—this simple example assumes there is no measurement 
aliasing. The distribution of the transformation ,Tr

rl  calculated 
for each correspondence, is shown in Figure 5(c). The cluster 
corresponding to the correct transformation is larger than the 
rest. Real-world scenarios, however, often exhibit some level 
of measurement aliasing, which often leads to multiple clus-
ters and further complicates the identification of the correct 
transformation .Tr

rl  Examples of such scenarios are given 
throughout this article and the approach developed to ad-
dress this challenge is discussed below.

Based on the above key observation, an EM optimiza-
tion [42] is formulated that allows each robot to recover 
the initial relative pose with respect to other robots (and 
therefore establish a common reference frame) in a dis-
tributed manner.

The MAP estimate of an initial relative pose between 
robots r  and rl can be written as

 , ,arg maxT p T X Zr
r

T
r
r r r

r
r

=l l

l

t t` j  (15)

where X
rt  and Zr  are defined in (7) and (9). This inference 

can be solved by each robot r  in a distributed fashion, 
based on the available observations .Zr

Similar to (13), latent variables Jr  are included in this 
inference problem

 , , .arg maxT p T J X Zr
r

T
r
r r r r

Jr
r r

=l l

l

t t` j/  (16)

However, since the above inference involves accounting for 
all the possible values for each of the latent binary variables 
in ,Jr  it is computationally intractable.

In contrast, the EM approach enables a drastic reduction 
in computational complexity while producing a locally opti-
mal solution. The tht  iteration of the EM framework is (see 
“Expectation Maximization Equations” for full details)

Expectation Maximization Equations

The following details the underlying expectation maximiza-

tion (EM) optimization equations for recovering a local max-

ima of the initial relative pose Tr
r
l  using (17). recall the Map 

estimate of Tr
r
l  in (16)

, , .arg maxT p T J X Zr
r

T
r
r r

r
r

Jr
r r

=l l

l

t t` j/

To simplify notation, the superscripts and subscripts r  and rl 

are removed, and this equation is rewritten as

 , , .arg maxT p T J X Z
T J

=t t` j/  (S9)

The tht  iteration of the EM optimization can be described by the 

following two steps [42].

•	E step: Calculate a lower bound on ,p T X Zt` j using
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(S10)

•	M step: Calculate the Map estimation by maximizing the 

above lower bound

.arg maxT Q T Ti

T

i1 =+t t^^ ^ hh h

Focusing on the E step, the joint pdf , ,p T J X Zt` j is

, , , , , .p T p T p TJ X Z Z X J J X?t t t` ` `j j j

assuming J  and T  are independent given robot poses 

, ,p T p T pJ X X J X=t t t` ^ `j h j  the above can be expressed in 

terms of individual candidate correspondences [see (14)]
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assuming the binary variables j J,
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!l
l  are statistically inde-

pendent conditioned on , ,T Xtt t^ h  and ,Z  (S10) can be written as
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where , , ,s r r l l F0 !l l^ h  and ,j j ,
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The term , ,p j x x Ts l
r

l
r t
l
lt t t^ ^ hh  in the above equation, and ,p j x x,

,
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l
lt t^ h 

in (S11), are modeled by the prior ,p js^ h  since both are not con-

ditioned on any observations. The measurement likelihood term 
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lt t t` ^ jh  in (S12), which is similar to (10), is
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where the function err .^ h is (11) and { , }.js inlier outlier!R R R

To conclude, note that the denominator in (S12) is not actu-

ally evaluated; instead, only the numerator is calculated for both 

inlier and outlier models, and then normalized so that
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where the notation T Tr
r t

0 l^ ĥ h  is used for brevity.
Solving (17) involves a nonlinear optimization that con-

verges to a local minima given an initial guess for a solu-
tion. The optimization problem in (17) is highly nonconvex, 
so an initial solution in the vicinity of the global minima is 
required to guarantee convergence to the correct transfor-
mation .Tr

r
l

Recalling the key observation from the beginning of 
this section (inlier correspondences produce similar trans-
formations, and outlier correspondences yield inconsistent 
transformations) and using the available robot local trajec-
tories ,X

rt  an initial relative pose is calculated for each cor-
respondence , , , ,r r l l F r!l l^ h  resulting in a set .T Fr

r r
l^ h  The 

distribution of this set is then analyzed to perform a naïve 
clustering for each element in Tr

r
l  separately. The k  most 

common values that are sufficiently far away from each 
other are chosen. Instead of considering all the possible 
combinations for each axis as an initial solution (kn  where 
n  is the dimensionality of Tr

rl), any entries that do not have 
a nearby initial relative pose in the set T Fr

r rl^ h are discard-
ed. The actual choice of the parameter k  depends on the 
available computational resources, since this parameter de-
termines the number of times the EM optimization is to be 
performed. In implementation, k 5=  is chosen, and two 
entries are considered to be sufficiently apart if the differ-
ence is above the corresponding standard deviation in inR  
is 0.5 m for position and 0.05 rad for rotation.

This procedure generates several initial solutions for ;Tr
r
l  

running the EM optimization in (17) on each one of these 
solutions produces locally optimal initial relative poses .Tr

r
lt  

Different hypotheses that converge to the same value Tr
r
lt  

are merged. Each of these estimates is optimal given the 
corresponding partitioning of the multirobot data associa-
tion Jrt  into inliers I  and outliers ,O  calculated in the E 
step in EM; see (17).

The hypothesis ,h I O0 " , can now be used in conjunc-
tion with I O Jr, =  to represent each such partition and 
collect all these hypotheses into the set .H  Note that each 
hypothesis h H!  leads to an estimate of Tr

r
l  according to

 , , .arg maxT h p T h X Zr
r

T
r
r r r

r
r

=l l

l

t t^ `h j  (18)

Figure 3(b) illustrates the distribution of relative-pose 
constraints for each correspondence , , , .r r l l F r!l l^ h  (The 
planar case is considered; the x  and y  axes correspond to 
position and the blue arrow direction represents orienta-
tion.) The transformations T hr

r
lt ^ h for each hypothesis 

h H!  are denoted by red circles.

Often there is more than one hypothesis in ,H  and a 
decision must be made about which hypothesis .h H!)  
The chosen hypothesis will determine the initial relative 
pose, ,T T hr

r
r
r= )

l lt t ^ h  which is used later to perform inference 
over robot trajectories. Therefore, identifying the correct 
hypothesis in H  is crucial, especially in the presence  
of perceptual aliasing. The next section develops a proba-
bilistic method for choosing the most probable hypothe-
sis, focusing in particular on the complexities arising 
from the incremental framework that is essential for real-
time operation.

hYpOThESIS MODEL-bASED SELECTION
This section develops a probabilistic approach for choosing 
the most likely hypothesis, given the current information 
from the set .H  An incremental setting, in which informa-
tion, such as robot trajectories, local sensor observations, 
and multirobot correspondences, is obtained gradually, 
adds several challenges. A criterion is needed to determine 
whether a sufficient amount of information has been accu-
mulated to reliably estimate the initial relative poses. For 
example, robot trajectories and observed environments 
may initially not overlap (or not overlap at all), in which 
case all multirobot correspondences are outliers.

Measurement aliasing, meaning observations of similar 
environments, complicate the problem even further. Con-
sider the robots start operating in two nearby somewhat 
similar environments (for example, corridors). Each robot r  
shares informative sensor observations, matches observa-
tions transmitted from other robots against its own infor-
mative observations, and adds the matches as candidate 
correspondences into the set .F r  Since the two environ-
ments are similar but different, these matches are not only 
outliers but are also consistent with each other, which sug-
gests that the two environments are actually the same. This 
consistency translates directly into a hypothesis ,h I O= " , 
with many inliers, all of which are actually (consistent) out-
liers. Note that even after the robots observe some areas in 
common, the correct hypothesis (corresponding to true in-
liers) must compete with the consistent-outlier hypothesis. 
Making a wrong decision and choosing an incorrect hy-
pothesis can lead to catastrophic results because outliers 
are included in the inference in (3).

Figure 3 shows such a case in a real-world scenario. The 
robots travel in three different corridors, as shown in Fig-
ure 3(a). However, because these corridors are similar in ap-
pearance, many consistent matches between scans from the 
three corridors are generated, leading to the clusters 1–4 
emphasized by red ellipses in Figure 3(b). Making a wrong 
decision and choosing clusters 2–4 results in incorrect 
alignment of robot trajectories and all the true inlier corre-
spondences are identified as outliers.

This challenging problem is approached within a mod-
el-selection framework, which aims to calculate the proba-
bility of each hypothesis h  in the set : , .p hH X Z

r rt` j  These 
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probabilities can be obtained by integrating over all possi-
ble values of the continuous random variable Tr

r
l

 , , , .p h p T hX Z X Z
r r

T
r
r r r

r
r

= l
l

t t` `j j#  (19)

Applying Bayes’ rule,

 , , , , ,p h c p T h p T hX Z Z X X
r r

T

r
r
r r

r
r r

r
r
$= l l

l

t t t` ` `j j j#  (20)

with a hypothesis-independent constant /c p1 Z Xr r
0 t` j 

that need not be calculated. Factoring the last term as

 , , ,p T h p T h p hX X Xr
r r

r
r r r

=l l
t t t` ` ^j j h  (21)

(20) turns into

 , , ,p h c p h p hZ X X Z Xr r r r r
$=t t t` ^ `j h j  (22)

with

 , , , , .p h p T h p T hZ X X Z Xr r

T
r
r r r

r
r r

r
r

= l l
l

t t t` ` `j j j#  (23)

To calculate hypothesis probability in (20), each of the terms 
in (22) and (23) needs to be evaluated: the hypothesis prior

,p h X
rt^ h  relative-pose transformation prior , ,p T h Xr

r r
l
t` j  

and the measurement likelihood term , , .p T hZ Xr
r
r r
l
t` j

Before presenting the equations for each of these terms, 
it is beneficial to first discuss the importance of the hypoth-
esis prior term in deciding which hypothesis to choose 
from the set .H  As will be seen below, the measurement 
likelihood , ,p T hZ Xr

r
r r
l
t` j essentially prioritizes hypothe-

ses with more inliers. However, it does not address the 
question of whether a sufficient amount of information has 
been accumulated to make a decision. In other words, giv-
en a set ,H  there is always a hypothesis with the highest 
measurement likelihood. A criterion is needed for whether 
the hypothesis is unambiguous and should be chosen.

This aspect is particularly crucial in the incremental set-
ting in the context of measurement aliasing, which can lead 
to a dominant hypothesis of consistent outliers. Note that 
each correspondence, regardless of whether it is considered 
to be an inlier or an outlier by a hypothesis, is the result  
of a high-quality match between two sensor observations 
(for example, an ICP match between two laser scans). 

Therefore, the main reason for a correspondence to be an 
outlier in practice (in other words, a highly confident match 
between two scans from different areas) is perceptual alias-
ing. Relying only on the measurement likelihood term, it is 
easy to mistakenly choose this incorrect hypothesis.

This critical issue is addressed by arguing that the hy-
pothesis prior p h X

rt^ h can provide insight as to how like-
ly the hypothesis ,h I O= " ,  is in the first place. An 
underlying basic assumption in the approach is that the 
robots must observe common places eventually, not nec-
essarily at the same time. This assumption makes sense 
for indoor navigation, for example, since the robots are 
operating in closed and finite environments. However, 
the assumption is often also reasonable for collaborative 
navigation in outdoor environments, as demonstrated ex-
perimentally below. 

Having gained a conceptual understanding for the im-
portance of the hypothesis prior term, the following sec-
tions proceed with the equation derivations for each of the 
mentioned probability terms in (22) and (23).

Measurement Likelihood p T h, ,Z Xr
r
r r
l
t` j

The measurement likelihood is discussed first. Recalling 
the hypothesis definition, , ,h I O= " ,  and writing individu-
al inlier and outlier measurement terms gives
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(24)

where ui  and uo  are used to represent the appropriate rela-
tive-pose constraints ,u ,

,
l l
r r
l
l  and .err^ h is defined in (11). The 

hypothesis-dependent coefficient k h^ h is

 .k h
2

1
2

1
in outi I o O

0
r rR R! !

^ h % %  (25)

Considering ,p T h Xr
r r
l
t` j can be expressed as the Gaussian

 , , ,p T h N TXr
r r

00 R=l
t` ^j h  (26)

with known parameters T0  and 0R  (as discussed in initial 
relative-pose prior section), the integrand q Tr

r
l^ h in (23),

 , , , ,q T p T h p Z T hX Xr
r

r
r r

r
r r

0l l l
t t^ ` `h j j  (27)

This article develops a distributed and incremental multirobot approach  

that allows a group of robots to concurrently establish a common  

reference frame and resolve multirobot data association on the fly.
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can be expressed using (24)–(26). Since the involved distri-
butions are all Gaussians, this expression can be represent-
ed by a single Gaussian

 , ,q T N T MAPr
r

r
r R=l lt^ ^h h  (28)

where the MAP estimate is obtained by arg maxTr
r

Tr
r=l l

t  
q Tr

r
l^ h and can be then used as a linearization point to cal-

culate the covariance .MAPR
Recall that

 ,expa x x a 2 MAP
x

2
MAP; ; rR- =Rt^ h#  (29)

where the notations xt  and MAPR  represent, respectively, the 
MAP estimate and covariance of some random variable .x  
Substituting (27) and (28) into (22) and using (29) gives an 
expression for the hypothesis probability

 , ,p h c p h k h 2Z X X MAP
r r r

$ rR= lt t` ^ ^j h h  (30)

where .k h k h 1 2 0$0 rRl^ ^h h  The priors p h X
rt^ h and 

,p T h Xr
r r
l
t` j are discussed next.

Hypothesis Prior p h X
rt^ h

As previously mentioned, the hypothesis prior is an impor-
tant component in deciding which hypothesis ,h I O= " , to 
choose from the set H  while enhancing robustness to per-
ceptual aliasing. Given the robot local trajectories, the set 
F r  can be partitioned into inlier and outlier sets I  and ,O  
respectively, even without the actual measurements of the 
corresponding constraints. Further, an additional hypoth-
esis ,h I O0 0 0= " , is added to the set :H  this hypothesis (re-
ferred to as the null hypothesis) corresponds to perceptual 
aliasing. The null hypothesis represents the possibility that 
all of the correspondences are actually outliers .I0 / z^ h

The prior probabilities of all hypotheses in ,H  including 
the null hypothesis ,h0  can now be calculated. As further 
detailed below, the most likely hypothesis ,h  according to 
the posterior ,p h X Z

r rt` j from (30) is then chosen only if its 
prior probability p h X

rt^ h is significantly dominant com-
pared to all other hypotheses in .H  In this way, the algo-
rithm waits until sufficient information is accumulated to 
disambiguate which hypothesis is the correct one.

A previously mentioned, the underlying basic assump-
tion is that the robots must eventually observe common 
places (but not necessarily concurrently). Each given candi-
date correspondence can therefore represent the same 
place, observed by two different robots or two different 
places. However, the number of unique places is unknown 
ahead of time. The CRP (and closely related Dirichlet pro-
cess), which has previously been used for topological map-
ping [43], models this problem probabilistically [12], [13].

The model in (S8) is now used to develop an approach for 
quantifying the hypothesis prior for each .h H!  The ap-

proach is based on the following interpretation of inlier and 
outlier correspondences determined by a given hypothesis 

, .h I O H!= " ,  An inlier i I!  relating two different poses 
of robots r  and rl indicates the two poses are close to each 
other (generating overlapping observations). Accordingly, 
the involved two poses in an outlier correspondence o O!  
are considered to be two different (unique) places.

More formally, let min  and mout  represent, respectively, 
the number of inliers and outliers in a given hypothesis 

,h I O H!= " ,  and denote by m  the overall number of can-
didate correspondences. Note that m  is the same for all hy-
potheses in ,H  and also .m m min out= +

Given some hypothesis , ,h I O H!= " ,  the number of 
unique places due to inlier correspondences is approxi-
mately captured in .min  In other words, each inlier corre-
spondence is modeled to contribute a single unique place: 
as mentioned before, a new informative sensor observation 
is shared by each robot r  only if it has moved certain dis-
tance (0.5 m when operating indoors) since it shared the 
previous informative observation. Therefore, any two inli-
er correspondences , ,i i I1 2 !  contain some unique informa-
tion about the environment. Moreover, only a small portion 
of the observation pairs (originating from different robots) 
are correctly matched and added as candidate correspon-
dences. Consequently, the number of unique observed 
places due to inlier correspondences is modeled as .min  

Similarly, any two pairs of outlier correspondences 
,o o O1 2 !  are considered to represent four different places, 

thus approximately capturing the number of unique ob-
served places due to outliers as .m2 out  The unique places con-
tributed by inliers and outliers are assumed to not overlap. 

Using the above, the number of unique places for each 
given hypothesis is modeled as

 ,n h m h m h2 out in= +^ ^ ^h h h  (31)

where the parameters mout  and min  are hypothesis specific. 
Observe that while the overall number of candidate corre-
spondences m  is the same for all hypotheses in ,H  the num-
ber of unique places n  changes from one hypothesis to 
another in the range , .n m m2! 6 @  In particular, n  always 
assumes the highest value for the null hypothesis 

,m m m 0out in= =^ h and, on the other extreme, the lowest 
value for the all-inliers hypothesis , ,m m m0out in= =^ h  if 
such a hypothesis exists in .H

The prior probability p h X
rt^ h of each hypothesis h H!  

can now be calculated from (S8) using the hypothesis-spe-
cific value for n that is calculated according to (31). The prior 
probabilities of all hypotheses in H  are normalized by

 f n h
h H

0h
!

^ ^ hh/  (32)

to obtain a valid probability distribution

 .p h
f n h

X
r

h
=t^ ^ ^h hh

 (33)
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Equation (33) provides a mechanism to decide if sufficient 
information has been accumulated to indicate that a certain 
hypothesis is dominant with respect to competing hypoth-
eses while explicitly accounting for potential measurement 
aliasing by introducing the null hypothesis.

In particular, for a given m  and ,a  hypotheses with 
many inliers span different parts of robot trajectories. These 
hypotheses receive higher probabilities since the number of 
unique places n is smaller for such hypotheses. The two ex-
treme cases are hypotheses with only inlier or only outlier 
correspondences, corresponding, respectively, to n m=  
and .n m2=  In general, the parameter n for some hypothe-
sis is ,mc  with .1 2# #c  It can be verified from (S8) that 
f mc^ h decreases with c  [see also Figure S2(b)]. The intuition 

here is that, at each given time (fixed m), a hypothesis whose 
inliers involve larger portions of robot trajectories (smaller 
n) is less prone to measurement aliasing over a hypothesis 
whose inliers only involve a small area (larger n).

A decision must eventually be made regarding whether 
sufficient information has been accumulated to choose a 
hypothesis. To address this decision, the CRP model in (S8) 
can be recalled to formulate the following lemma.

lemma 1
The ratio between hypotheses prior probabilities increases 
as more information is accumulated (or, as more unique 
places are observed).

proof
The number of unique places in any two hypotheses 

,h h Hi j !  can be denoted by ni  and ,nj  with , , .n n m m2i j ! 6 @  
Without loss of generality, assuming n n<i j  implies 

.p h p h>X Xi
r

j
rt t^ `h j  Since both probabilities are calculated 

using the same normalization constant h  in (32),  
.f n f n>i j^ ^h h

The parameter ,1 2!b 6 @ may always be found such that 
,n nj ib=  so the ratio / /f n f n f n f ni j i i/ b^ ^ ^ ^h h h h can be ex-

pressed with (S8) as
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(34)

Since ,1 2!b 6 @ and ,1>a  (34) monotonically increases 
with ,ni  as shown in Figure 6. However, increasing ni  cor-
responds to accumulating more information and adding 
new candidate correspondences to the set .F  Therefore, 
with time, the prior for any two given hypotheses becomes 
more distinguishable. Y

The implication of Lemma 1 is that, as more information 
is accumulated, it becomes possible to disambiguate be-
tween the different hypotheses. The parameter a  deter-
mines how fast this process is, and therefore this parameter 
can be considered a tuning parameter to be set according to 
prior knowledge regarding the expected environment size, 
if such knowledge exists. In particular, also if a  is too 
small, the null hypothesis is prematurely down weighted, 
which thereby increases sensitivity to measurement alias-
ing. On the other hand, larger values of a  require an accu-
mulation of more information before the prior of the 
appropriate hypothesis becomes sufficiently dominant to 
facilitate reliable decision. Figure 7 provides further insight 
regarding the influence of the parameter a  on the ratio be-
tween hypotheses prior probabilities in (34), for .2b =  Not-
ing the logarithmic scale of y-axis of the plot, it can be seen 
that the probability ratio significantly varies for different 
values of .a  The gap between two competing hypotheses 
therefore increases as more information is accumulated, at 
different rates for different values of .a  The development of 
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specific approaches to determine a  from available statisti-
cal information is outside the scope of this article and is left 
to future research.

This concept is illustrated by a toy example in Figure 8 
that considers three different hypotheses that are de-
tailed in Table 2: the null hypothesis ( h0 ), the hypothesis 
with half of the correspondences inliers ( h1 ), and the hy-
pothesis with only inliers (h2 ). Figure 8 shows the evolu-
tion of the hypotheses priors as a function of .m  The prior 

table 2 a toy example with three hypotheses to illustrate 
the prior hypothesis. 

h Description min mout n

h0 Null hypothesis 0 m m2

h1 Half inliers, half outliers . m0 5 . m0 5 . m1 5

h2 all inliers m 0 m
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figUre 8 The prior probabilities of three different hypotheses ,,h h0 1  and h2  (see Table 2) as a function of .m  a larger m  corresponds 
to the accumulation of additional information. parameter a  is set to 50 in all cases. (a) .m 5=  (b) .m 10=  (c) .m 20=
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probability of the null hypothesis decreases as m  increas-
es, and the prior for h2  (all inliers) gradually increases. 
The gap between the latter and the other two hypotheses 
( h0  and h1 ) drastically increases as well, corresponding 
to higher confidence level in choosing h2  as a valid hy-
pothesis candidate.

Initial Relative-Pose Prior p T h,Xr
r r
l
t` j

Given the inlier and outlier correspondences in F r  but with-
out the actual measurements, the prior on the initial relative 
pose between the two robots ,p T h Xr

r r
l
t` j is uninformative.

Although, in principle, values of Tr
r
l  could be analyzed 

more carefully to deem which are unreasonable, a basic ap-
proach is employed in this work. Because of the way con-
straints are generated, it is assumed that, on average, the 
relative-pose measurements u ,

,
l l
r r
l
l  are zero biased and there-

fore each measurement likelihood term can be considered 
to be distributed according to ,N 0 highR^ h where highR  is a 
high uncertainty covariance (for example, 10 m in position 
and 90° in rotation). ,p T h Xr

r r
l
t` j is therefore modeled as the 

Gaussian

 , , , .p T h N N T0X high

, , ,
r
r r

r r l l F

0 0
r

0R R=
!

l

l l

t` ^ ^
^

j h h
h
%  (35)

Choosing the Most Probable Hypothesis
The decision on the most probable hypothesis is made as 
follows. The probabilities in (30) of only the most promising 
hypotheses are calculated, identified by their support 
(number of inliers). The highest probability hypothesis h  is 
then chosen only if it satisfies two conditions: a) its poste-
rior probability is sufficiently higher compared to all other 
hypotheses and b) its prior probability is significantly dom-
inant with respect to other hypotheses.

Specifically, in the current implementation, a hypothesis 
is chosen only if the following two criteria that correspond 
to the above conditions are satisfied: a) the probability ratio 
between two most likely hypotheses [according to (30)] is 
above 2.0 (in other words, the most likely hypothesis 
h H!)  is twice as probable than any other hypothesis) and 
b) the prior probability p h X

r
) t^ h of the most likely hypoth-

esis h)  is above 0.8. For numerical reasons, computation of 
,p h Z Xr rt` j is performed in the log space.
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figUre 10 Data set D2: (a)–(c) the final estimated trajectories of all three robots from individual robot perspectives, without con-
sidering odometric uncertainty; (d)–(f) the estimated trajectories after accounting for odometric uncertainty. (a) By the red robot, 
(b) by the green robot, (c) by the blue robot, (d) by the red robot, (e) by the green robot, and (f) by the blue robot.
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An interesting question is how much trajectory overlap, 
or mutually observed areas by different robots, is required 
for determining the initial relative pose. Unfortunately, there 
is no closed-form solution to this question since the answer 
depends both on the scenario and the tuning parameter a  in 
the hypothesis prior. In particular, without perceptual alias-
ing, which is the case when there is low appearance similar-
ity between different areas, there will be only a single cluster. 
On the other hand, in the presence of perceptual aliasing (for 
example, two corridors that look alike) there will be multiple 

clusters. In both cases, the CRP determines how much infor-
mation must be accumulated before a decision is to be made 
regarding which cluster to use. The CRP is also used in the 
case when there is only a single cluster, since the cluster may 
represent consistent incorrect matches due to perceptual 
aliasing while the robots have not yet mutually observed 
any scene. In practice, robots typically have to travel through 
at least the same two corridors until a decision is made [see, 
for example, Figure 9(d)]. However, the actual trajectory 
overlap is scenario and tuning dependent (parameter a ).

Incorporating Uncertainty Within Expectation Maximization

The EM formulation is extended here to incorporate uncer-

tainties over robot poses. The derivation begins with the 

Map inference in (37), which is now also conditioned on the 

covariance rR

 , , , ,arg maxT p T J X Zr
r

T
r
r r

r
r r

Jr
r r

R=l l

l

t t` j/  (S14)

and the corresponding EM formulation in (38)

 , , , .arg max logT p TE J X Z, , ,
t

T
T

r
r

r r
J X Zr t

r
r r1 R= R-t tt t `^ ^ jh h 8 B  (S15)

The covariance rR  represents the second moment of the pdf 

( )p X Zr r  and can be evaluated as part of the Map estimation 

in (3).

For brevity, the superscripts and subscripts r  and rl are 

omitted from now on. Thus, the lower bound (S10) becomes

 ,, , , , , ,logQ T T p T p TJ X Z J X Zt

J

t R R=t t t t^ ` `^ ^h j jh h/  (S16)

and the explicit expressions of this bound, derived in “Expecta-

tion Maximization Equations,” also become conditioned on .R  

in particular, the measurement likelihood changes from (S13) to

 , , , , err( , , ) ,expp u x x j T u x x
2
1

,
,

,
,

l l
r r

l
r

l
r

s
t

l l
r r

l
r

l
r 2
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?R - Rl

l
l
l

l
l

l
lt tt t t` c^ j mh  (S17)

which now includes a modified measurement covariance vsR  in-

stead of the covariance { , }js inlier outlier!R R R  that appears in (S13).

The derivation proceeds by considering an inlier covariance 

.inlierR  The same procedure can be also applied for modifying 

the outlier covariance; however, since the latter is typically very 

large, it is typically not required in practice.

it is now necessary to develop an expression for the modi-

fied inlier covariance, .vsR  The predicted measurement ,upred
s  

given the estimates , ,T x xt
l
r

l
r
l
lt t t^ h  can be written as 

 ( , , ),u x T x h T x xpred
s l

r t
l
r t

l
r

l
r6 5= =l

l
l
lt t t t t t^ ^ ^hh h  (S18)

resulting in the measurement model

 ( , , ) ,u h T x x vs l
r

l
r

s= +l
lt t  (S19)

with , .v N 0 vs+ R^ h

Furthermore, according to (S14), T Tr
r/ l  is the random vari-

able in the considered inference problem, while the estimates 

xl
rt  and xl

r
l
lt  are given and fixed, and therefore not part of the 

inference.

at the same time, however, the inlier covariance inlierR  rep-

resents only the measurement noise vs  and not the errors in 

these estimates. in other words, this covariance models cor-

rectly the error ( , , )u h T x xs r
r

l
r

l
r- l
l
l  only for true values xl

rr  and xl
r
l
lr

 ( , , ) ,u h T x x v inliers l
r

l
r= +l
lr r  (S20)

with , .v N 0inlier inlier+ R^ h
Therefore, the idea is to modify the covariance inlierR  (and 

similarly outlierR ) to account for the estimation errors in xl
r  and 

.xl
r
l
l  This modified covariance is vsR  in (S17); see a similar treat-

ment in [23].

The terms xl
rD  and xl

rD l
l  may be introduced to account for 

errors in the estimates xl
rt  and xl

r
l
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l
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linearizing ( , , )h T x xr
r

l
r

l
rl
l
lr r  from (S20) about xl

rt  and xl
r
l
lt  yields

 , , .u h T x x
x
h x

x
h x v inliers l

r
l
r

l
r l

r

l
r l

r

2

2

2

2. D D+ + +l
l

l
l l

lt t^ h  (S22)

The uncertainty of the last three terms in (S22) is quantified by 

vsR  from (S17), which is therefore equal to
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where ,x xl
r

l
rR l
l  is the joint marginal covariance of xl

r  and .x '
l
r
l  This 

covariance can be extracted from the joint covariance .r/R R  

Calculating this joint covariance can be done efficiently while 

exploiting sparsity [S3].
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INfERENCE OvER RObOT TRAjECTORIES
After common reference frames between robot r  and other 
robots rl are estimated using the approach described 
above, it becomes possible for robot r  to infer its own and 
other robot poses with (3),

 ,arg max pX X Z
r r r

Xr
=t ^ h  (36)

using multirobot constraints. Of course, at each point, this 
inference problem can be solved considering only those ro-
bots rl with whom robot r  has established a common refer-
ence frame and excluding the rest. For clarity in this 
discussion, recall the original multirobot inference formu-
lation from (8). The inferred common reference frames be-
tween robot r  and other robots rl are used in the likelihood 
term of (8) [see (10)]. This inference problem can be solved 
with standard nonlinear optimization methods while us-
ing only the inlier multirobot data associations in ,F r  as 
identified by the EM approach. Alternatively, all the candi-
date constraints represented by the set F r  can be consid-
ered with the aim of solving the inference problem in (14). 
To that end, a similar EM approach can be developed; see 
[9]. In practice, the two approaches yield similar results.

Once a common reference frame is established between 
two robots, information sharing becomes easier. It becomes 
possible to match zk

rl  against only a subset of sensor obser-
vations in ,zi

r" ,  skipping all observations zl
r  that were ac-

quired too far away from .xk
r

However, in both cases, due to drift in the robot pose 
estimates, identifying true multirobot inlier correspon-
dences as inliers becomes very challenging over time, in 
particular when operating in large-scale environments. 
The next section presents a possible approach to overcome 
this challenge.

Multirobot Loop Closures in Large-Scale Environments
The problematic aspect in both the exact and EM formula-
tion in (16) and (17) is that both are conditioned only on ro-
bot estimated poses, without accounting for the uncertainties 
in these estimations. This assumption is reasonable if esti-
mation errors of each robot are small, such as when operat-
ing in small areas, or in scenarios where robots reduce 
estimation errors by performing loop-closure measure-
ments. However, when operating in larger environments, 
robot pose estimations develop significant drift over time 
and cannot be considered negligible. In these scenarios, the 
presented EM formulation may not identify multirobot in-
lier correspondences even if those do exist.

An example is shown in Figure 10(a), where the blue and 
green robots start from same location, move toward the top 
left, diverge, and finally move into the same corridor where 
multirobot constraints can be formed. However, due to tra-
jectory drift, the predicted relative pose is far from the 
measured relative pose (determined by true inlier multiro-
bot correspondences). As a result, all of these inlier corre-
spondences are identified as outliers, leading to suboptimal 
map merging and estimation accuracy.

One way to address this issue is to incorporate the 
uncertainty in robot poses within the EM formulation and 
accounting for this information when inferring if a candi-
date multirobot correspondence from the set F r  is an 
inlier or outlier. In other words, this provides a probabilis-
tically sound mechanism to adapt the inlier and outlier 

figUre 11 an autocovariance of laser scans collected along a 
robot’s trajectory through a hallway environment. Magenta corre-
sponds to laser scans with high autocovariance and therefore high 
saliency. Cyan corresponds to less salient laser scans.

table 3 Worst-case time complexities for core algorithm 
components.

Component Complexity Phase

Correspondence generation ( ) ( )O n O 1 1, 2

Hypothesis generation O F r^ h 1

Hypothesis selection ( )O 1 1

EM optimization O F r^ h 1, 2

pose-graph optimization ( )O n< 1, 2

figUre 12 One of the aerial robots used for the experiments. The 
quadrotor platform is equipped with an onboard computer, inertial 
measurement unit, laser scanner, and beam deflector mirrors. 
Stereo cameras were not used in the described experiments. 
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covariances ,inlier outlierR R  according to the associated uncer-
tainty in appropriate robot poses involved in each candi-
date correspondence in .F r

Specifically, the MAP estimation in (16) is now also con-
ditioned on the joint covariance rR  available to robot r

 , , , ,arg maxT p T J X Zr
r

T
r
r r r r r

Jr
r r

R=l l

l

t t` j/  (37)

and the EM formulation in (17) changes accordingly

 , , , ,arg max logT p TE J X Z, , ,
t

T
T

r r r r
J X Zr t

r
r r1 R= R-t tt t `^ ^ jh h 8 B  (38)

where, like earlier, t  denotes iteration number. The covari-
ance rR  represents the second moment of the probability 
density function p X Zr r^ h and can be obtained as part of 
the MAP inference in (3). The full derivation of incorporat-
ing uncertainty in robot poses within the EM framework is 
given in “Incorporating Uncertainty Within Expectation 
Maximization.” Such an approach allows us to overcome 
the above described challenges and correctly identify mul-
tirobot inlier correspondences even when the estimated 
robot poses develop significant drift.

COMpuTATIONAL CONSIDERATIONS
This section describes an information-based method for 
downsampling the number of sensor observations shared 
among robots, as well as a computational complexity anal-
ysis of the formulation.

Observation Subsampling and Saliency
To estimate the initial relative poses of all robots, the data-
association strategy requires that each robot compares sensor 
observations shared by other robots with its own local histo-
ry of observations. Although the comparison itself can be 

performed efficiently through ICP scan matching, feature-
based matching, or other robust correspondence techniques, 
the number of comparisons that must be performed for each 
update grows linearly in the number of locally stored sensor 
observations. Unfortunately, it is not possible to employ strat-
egies such as comparing against only the previous laser scan 
captured by each robot since robots may observe the same 
location in the environment at different times.

Although the linearly increasing number of range obser-
vations comparisons is necessary to correctly infer the rela-
tive transform between robots, each robot does not need to 
share all of its collected sensor observations with other ro-
bots. Instead, observations can be subsampled to reduce 
both the computational and network cost. While a naïve sub-
sampling approach might uniformly select laser scans to 
share with other robots, a more efficient approach would 
only share a subset of collected laser scans that are most sa-
lient and, therefore, most descriptive of the environment 
from which they were captured. The autocovariance of a la-
ser scan is calculated [44] to determine saliency. Autocovari-
ance is calculated per laser scan, prior to sharing with other 
robots. To calculate laser scan autocovariance, each new la-
ser scan is randomly perturbed with Gaussian noise and 
matched with itself several times to produce a transforma-
tion estimate ix  with covariance .iR  After N  such iterations, 
saliency is computed as (tr ( )) 1R -  according to

 ( ) ( ) , .
N N
1 1

i i i
T

i

N

i
i

N

1 1
x n x n n xR R= + - - =

= =

^ h/ /  (39)

For additional details, the reader is referred to a similar ar-
ticle using autocovariance for observation saliency [44]. 
Figure 11 illustrates laser scan autocovariance, calculated 
using the above approach, for several locations in a self-
similar hallway environment.

Timing Complexity of the Approach
The multirobot data association and distributed-inference 
strategy includes two main phases of operation with differ-
ing algorithmic complexities. Although all components of 
the algorithm are roughly linear in the number of stored 
laser scans or poses in each robot’s trajectory, the two 

table 4 the format of messages sent between robots. if 
the laser scan is not selected to be broadcast, only the 
first three items will be sent. n  indicates the number of 
correspondences found for this laser scan.

Content size (bytes)

robot iD 1

pose index 4

Odometry 48

laser scan 5800

Matched robot’s iD n 1#

Matched pose’s index n 4#

Matched relative pose n 48#

Total n5853 53#+

table 5 Data sets used to evaluate the approach.

Data set type robots size

D1 indoor 3 15 m # 10 m

D2 indoor 3 30 m # 20 m

D3 indoor 3 30 m # 30 m

D4 indoor 3 70 m # 50 m

D5 indoor + outdoor 2 60 m # 50 m

D6 Outdoor 3 30 m # 30 m
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phases involve different components (Table 3). During the 
first phase, transformations between robot coordinate 
frames are established by determining correspondences 
between each robot’s history of observations and incoming 
observations shared by other robots. This phase consists of 
four components: correspondence generation, hypothesis 
generation and selection, EM, and pose-graph optimiza-
tion. During the second phase, transformations have al-
ready been established, and each robot’s pose graph is 
optimized using new measurements and correspondences. 
The second phase still requires correspondence generation, 
EM, and pose-graph optimization but no longer requires 
hypothesis generation and selection.

Correspondence generation involves comparing incom-
ing laser scans that are shared by other robots with a local 
history of stored sensor observations. Before the common 
reference frame is built between two robots, if a robot lo-
cally stores one laser scan per pose estimate, then this step 
has ( )O n  complexity, where n  is the number of poses in the 
robot’s trajectory. After the common reference frame is 
built, since the robot already knows roughly the position of 
another robot, it only needs to match nearby scans from the 
other robot(s), and thus the complexity is reduced to ( ).O 1

Hypotheses are being generated until the prior of at 
least one hypothesis is large enough to make a decision re-
garding the transformation between the two robots. This 
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figUre 13 Data set D1: (a) The candidate correspondences between the red and blue robots. initial poses of these robots are set to 
arbitrary values. (b) The distribution of the set T Fr

r rl^ h for red and blue robots. The correct hypothesis is marked by a red circle, and the 
three incorrect hypotheses are marked in magenta circles. (c) Hypothesis probability (in log-space) and prior. The hypothesis ,h1  cor-
responding to the dominant cluster (marked by a red circle) in (b), is chosen. h0  represents the null hypothesis so it does not have a 
corresponding cluster in (b). (d) The actual and inferred inliers and outliers.
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step involves an EM optimization, which has a complexity 
of ,O F r^ h  as detailed below. Generally, the set of hypoth-
eses is small, containing between one and ten elements. 
Selecting the best hypothesis then involves iterating over 
the small set once, performing the ( )O 1  computation, and 
finding the maximum.

EM is performed after new correspondences are generat-
ed between robots. Since EM involves evaluating all corre-
spondences in the multirobot pose graph, the complexity of 
each EM update is .O F r^ h  While this step has a linear com-
plexity, the number of correspondences in each robot’s pose 
graph is guaranteed to be lower than the number of poses in 
the graph .n > F r^ h  In addition, EM is only performed once 
a new correspondence has been generated, making it infre-
quent in comparison to correspondence generation.

Finally, pose-graph optimization involves iterating over 
any poses affected by new multirobot correspondences. A 
worst-case scenario, in which a dense pose graph contains 
many multirobot correspondences, has a ( )O n  computa-
tional cost. However, in general, pose-graph optimization 
only involves incremental updates to several nodes [45] and 
is therefore be more efficient than ( ).O n

pERfORMANCE STuDY
The formulation described above was implemented within 
the GTSAM library [46] to analyze accuracy and efficiency. 
The implementation was evaluated in real-time multirobot 
real-world experiments in both indoor and outdoor envi-
ronments. This section describes implementation details, 
discusses the experimental setup, and analyzes results of 
the multirobot experiments.

Experimental Setup
Quadrotor aerial vehicles were used as robotic platforms 
for real-time experimentation (Figure 12). The quadrotor 
platforms were equipped with onboard computers (1.86-
GHz Intel Core 2 Duo processors); Hokuyo URG-30LX 30-m 
range laser scanners; inertial measurement units; and 
downward-facing, laser-beam-deflector mirrors. Ground 
truth poses and maps were estimated using a three-dimen-

sional SLAM framework [47], which leverages ICP for laser-
based odometry, a histogram filter for localization, and an 
unscented Kalman filter for state estimation.

The approach was implemented in a distributed incre-
mental framework. During real-time operations, each robot 
captured laser scans. All robots ran individual instances of 
the implementation to generate pose estimates in their local 
reference frames. Laser scans were User Datagram Protocol 
broadcast to all other robots on the wireless network in 
data packets containing the laser scan observation, a cor-
responding local pose estimate, and the broadcasting ro-
bot’s identity.

Each robot r  executed the same algorithm: each robot 
shared highly informative laser scans, received scans from 
other robots, and calculated relative pose constraints be-
tween these scans and its own informative scans using ICP. 

table 6 the initial relative-pose estimation errors in 
the three real-world data sets D1, D2, and D3. estimation 
errors are reported in terms of norm of translation error 
t^ h in meters and absolute value of orientation error i  

in degrees.

estimation error: t i t i t i

Data 
set

size ,r r l red green blue

D1 15 # 15 red — — 0.5 6.0 0.4 4.7

Green 0.4 6.5 — — 0.4 10.9

Blue 0.4 4.9 0.3 10.4 — —

D2 20 # 30 red — — 0.1 1.4 0.3 1.8

Green 0.1 1.2 — — 0.4 3.2

Blue 0.35 2.3 0.4 3.5 — —

D3 30 # 30 red — — 0.6 0.6 2.1 3.3

Green 0.5 0.3 — — 1.3 8.2

Blue 2.7 3.4 2.9 8.6 — —
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figUre 14 Ground truth for the data sets (a) D1, (b) D2, and (c) D3. The robot’s initial positions are denoted by cross marks.
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The saliency of a scan was calculated according to its auto-
covariance. Incoming observations from other robots were 
matched against locally stored measurements, which were 
captured nearby to generate correspondences .F r  Odome-
try was obtained by updating robot poses using incremen-
tal ICP transformations between local consecutive laser 
scans. Correspondences and odometry information was 
stored in the robot’s local pose graph and optimized using 
GTSAM. The optimization ran at 20 Hz on each robot. Lo-
cal odometry and robot pose estimates were broadcast over 
the network at 20 Hz and laser scans at up to 5 Hz. Table 4 
gives the format of messages shared between robot. The 
size of each message is roughly 53 B with no laser scan and 
6 kB if a laser scan is included.

In all cases, since the initial relative poses between the ro-
bots were unknown, the initial pose of each robot was set to an 

arbitrary value [see Figure 13(a)]. Furthermore, in all cases the 
parameter a  was set to 500. Unless otherwise specified, robot 
local measurements do not include loop-closure constraints.

Data Sets
The approach was first evaluated using three real-world 
indoor data sets, D1, D2, and D3, captured by three quadro-
tors equipped with laser scanners. Reference trajectories, 
color coded according to robot number (red, green, blue), are 
shown in Figure 14 along with the laser scans of the first robot 
(red). In two of the data sets, D1 and D2, the robots start oper-
ating from the same location. In the third data set, D3, the 
robots start operating from different locations. Additionally, 
the implementation was examined using three larger-scale 
data sets D4, D5, and D6, which include an indoor environ-
ment, an environment with a transition between indoors 
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figUre 15 Data set D1: The effect of measurement aliasing when not using the hypothesis prior. (a)–(b) Candidate correspondences F r  
and the distribution of set T Fr

r rl^ h for green and red robots , .r r2 1= =l^ h   a cluster of consistent outliers is emphasized. (c) The expecta-
tion maximization optimization result using an incorrect hypothesis. robot trajectories are erroneously aligned. (d) inliers of the chosen 
hypothesis (all outliers in practice) drawn on top of robot trajectories with arbitrary initial pose and (e) on top of ground-truth trajectories.

A decision must eventually be made regarding whether sufficient  

information has been accumulated to choose a hypothesis.
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and outdoors, and an exclusively outdoor environment. Table 
5 summarizes the characteristics of the different data sets 
that were used in the evaluation.

Evaluation Metrics
This evaluation uses the following metrics: 

 » Estimation accuracy of the initial relative poses Tr
r
l  

between any two robots r  and .rl  
 » Statistics of inferred multirobot data association. The 
percentage of correctly identified inliers and outliers, 
as well as false negatives (inliers that were identified 
as outliers) and false positives (outliers that were 
identified as inliers). Ground-truth inliers were 
determined by evaluating the error in each multiro-
bot correspondence using ground-truth data and 
identifying errors smaller than a threshold. 

 » Robustness to measurement aliasing. Incorporating the 
CRP within the hypothesis prior allows the algorithm to 
reliably choose the correct hypothesis in an incremental 
framework, even in presence of measurement aliasing. 

 » Exhibit the ability of each robot to infer its own and 
other robots’ trajectories, once appropriate initial 
relative poses Tr

r
l  are established.

Results
A detailed performance analysis is provided for the first data 
set D1 and results from the other data sets are also discussed.

Data Set D1
In this data set, the robots begin moving from the same po-
sition, with the red and blue robots moving counterclock-
wise, and the green robot moving in the clockwise direction 
[see the ground-truth trajectories in Figure 14(a)]. In con-
trast to the other data sets, this data set contained manually 
identified loop closures for each of the three robots.

Figure 13 details the algorithm steps considering estab-
lishing initial relative-pose transformations Tr

r
l  between the 

red and blue robots ( redr =  and bluer =l ). Figure 13(a) 
shows the candidate correspondences between the two ro-
bots (the set F r ) that are available to the red robot just before 
the transformation Tr

r
l  is estimated.

Recall that the set T Fr
r r
l^ h represents the initial relative 

poses that are calculated for each of the candidate corre-
spondences in .F r  Figure 13(b) shows the distribution of this 
set ,T Fr

r r
l^ h  with each arrow representing a single planar 

transformation T T Fr
r

r
r r!l l^ h in terms of ( , )x y  coordinates, 

where orientation i  is described by the arrow’s angle.
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figUre 16 Data set D1: Establishing a common reference frame between green and red robots , .r r2 1= =l^ h  (a) Candidate correspon-
dences F r  between green and red robots at three different time instances: indices 4778, 5690, and 6081. (b) Hypotheses posterior (top 
row) and prior (bottom row) probabilities for the three time indices. The posterior probability is shown in log space. The first hypothesis 
represents the null hypothesis. at time index 6081, the second hypothesis is selected because it has the highest posterior probability 
and its prior probability crosses the threshold (0.8).
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The probabilities of the identified hypotheses that cor-
respond to the most dominant clusters in Figure 13(b) are 
shown in Figure 13(c). The probability of the null hypothe-
sis h0  is shown as well. Figure 13 shows both the posterior 
probability ,p h X Z

r rt` j (upper part) and the prior probabil-
ity p h X

rt^ h (bottom part); see (30) and (33). The posterior 
probability is given in log-space and without the constant 

.c  The threshold on the hypothesis prior for selecting the 
most probable hypothesis (0.8) is shown with a red dashed 
line. In this case, there are five hypotheses in the set .H  
Since the posterior for h1  is higher that the other hypothe-
ses in H  and its prior is above the threshold, this hypoth-
esis is selected; .h h10)

Once a hypothesis is chosen, it becomes possible for robot 
r  (the red robot) to perform the multirobot optimization in 
(36) based on all the multirobot constraints in F r  that 
involve robot rl (the blue robot) and possibly other robots 
with an established common frame. The thrl  robot’s poses in 
X

rt  in (7) can now be expressed in the reference frame of 
robot r  using .T hr

r )lt ^ h  A correspondence , ,r k l F r!l^ h  is 
identified as inlier if ,p j X Z,

,
k l
r r r rl t` j approaches 1.0. Figure 

13(d) depicts a case in which the described approach cor-
rectly identified all inliers; in general, the method tends to 
infer a majority of the inliers. Furthermore, the method did 

not produce any false positive decisions (identified inliers 
that are outliers in practice).

The result of the multirobot pose-graph optimization in 
(36) is shown in Figure 9(a), with identified inliers indicated 
in black and outliers in gray. Robot trajectories are properly 
aligned with each other, compared to the reference trajecto-
ries in Figure 14(a). Estimation errors in the common refer-
ence frame between the two robots are given in Table 6.

After computing a common reference frame, new multi-
robot correspondences were directly added to the pose 
graph and optimized using (8). Results of this optimization 
for several time instances are shown in Figure 9(a) and(c) 
(only the identified inliers are shown in the last two fig-
ures). Similar results are obtained by the blue robot r 3=^ h 
for ,r 1=l  as shown in Figure 9(d) and (f).

Establishing an initial relative pose and multirobot data 
association for the green robot is more challenging. It travels 
in the opposite direction (clockwise) with respect to the oth-
er two robots and therefore does not observe the same areas 
with these robots until the very end [the top right area in 
Figure 14(a)]. Moreover, since the robots operate in similar 
environments (for example, two corridors), measurement 
aliasing causes laser scans from these different environ-
ments to be correctly matched, suggesting the robots are 
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figUre 17 Data set D1: Details of prior probability calculation at time index 6081. (a) Outlier correspondences of the null hypothesis h0  
(no inliers by definition). (b) and (c) inlier and outlier correspondences of the chosen hypothesis .h1^ h  (d) and (e) inlier and outlier cor-
respondences of another hypothesis .h2^ h  (f) Expectation maximization optimization result using the correctly chosen hypothesis [the 
ground truth is given in Figure 14(a)]. inliers are denoted by the black color. 
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actually observing the same environment. As a result, a 
cluster of consistent outliers is obtained, and only after the 
robots actually observe the same environments is the clus-
ter corresponding to the correct transformation formed.

Without using a hypothesis prior ,p h X
rt^ h  there is noth-

ing to prevent choosing the consistent-outlier hypothesis, 
which can lead to catastrophic results, as shown in Figure 15. 
Figure 15(a) and (b) shows, respectively, the candidate cor-
respondences F r  between the green and red robots and the 
equivalent distribution of the initial relative poses (the set 

.T Fr
r rl^ hh  The cluster corresponding to consistent outliers is 

indicated by a red ellipse. The inliers I  of this consistent-
outlier hypothesis ,h I O= " , are shown in Figure 15(d) on 
top of the robot trajectories expressed with arbitrary initial 
relative pose (since it is unknown); the same inliers are 
shown in Figure 15(e) on top of the ground-truth trajectories. 
All of these correspondences are erroneously considered as 
inliers since they relate between different areas. Using the 
chosen (incorrect) hypothesis and optimizing with (36) pro-
duces the result given in Figure 15(c), where the trajectories 
of the green and red robots are incorrectly aligned.

In contrast, incorporating the hypothesis prior p h X
rt^ h 

prevents making this incorrect decision. By introducing 
the null hypothesis and modeling the probability of 

observed unique places for each hypothesis, the priors for 
different hypotheses (including consistent-outlier and null 
hypotheses) compete with each other, and only after accu-
mulating more observations by covering additional areas, 
the prior corresponding to a hypothesis with the highest 
number of inliers exceeds the threshold and therefore is se-
lected. However, by that time the robots have already ob-
served common areas, and the chosen hypothesis is indeed 
the correct one.
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figUre 18 Data set D2. (a)–(c) robot trajectories with an initial pose set to arbitrary values and multirobot candidate correspon-
dences. (d)–(f) identified inlier correspondences and robot trajectories expressed in the same reference frame once the latter is 
established. (a) Blue and green robots, (b) blue and red robots, (c) red and green robots, (d) the red robot (a zoom in on inliers is 
shown), (e) the green robot, and (f) the blue robot.

table 7 Data set D1: the number of involved unique 
places for the hypotheses shown in figure 17, and the 
corresponding unnormalized prior ( )f n  from (s8). the 
normalized prior probabilities are shown in the last column 
as well as in figure 16.

h m min mout n ( )f n Prior

h0 58 0 58 116 4e-6 0.007

h1 58 26 32 90 5e-5 0.89

h2 58 11 47 105 3e-5 0.06

h3 58 9 49 107 2e-5 0.04
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Deciding when to consider if sufficient information has 
been accumulated is determined by a hypothesis prior ex-
ceeding a threshold. This decision depends on the value of 
the parameter ,a  since it determines, given the competing 
hypotheses in ,H  how fast the prior of a hypothesis be-
comes dominant. a  must be set according to some prob-
lem-specific knowledge, such as expected size of the 
environment to be traveled. In practice, it is better to use 
conservative (large) values of a  to reduce chances of mak-
ing the incorrect decision.

The time evolution of the hypothesis priors of the green 
and red robots is illustrated in Figures 15 and 16 ( 500a =  
in all cases). Three different time instances, represented by 
indices 4778, 5690, and 6081, are considered. Figure 16(a) 
shows the candidate correspondences in these time in-
stances on top of the evolving robot trajectories, and (b) de-
tails posterior (in log space) and prior probabilities of the 
identified hypotheses. The hypothesis h1  has the highest 
posterior probability starting from time index 5690, but its 
prior reaches the threshold only at time index 6081. There-
fore, only at that time this hypothesis is chosen.

Figure 17 provides further details for the underlying pro-
cess at time index 6081. The inlier and outlier correspondences 
for the null hypothesis ,h0  the chosen hypothesis ,h1  and  

another hypothesis h2  are shown in Figure 16(a)–(e). Note that 
only outliers are shown for the null hypothesis, since by defini-
tion it does not contain any inliers. Table 7 further details the 
different parameters that are used for calculating the prior 
probability: number of inliers min  and outliers ,mout  total 
number of correspondences ,m m min out= +  and the number 
of unique places .n  Finally, the result of the EM optimization 
using the correctly chosen hypothesis is shown in Figure 17(f).

Data Set D2
Figures 18 and 10 describe the results for data set .D2  Fig-
ure 18(a) shows the candidate correspondences (the sets 

)F r  between different pairs of robots. In this particular 
case, there was only one hypothesis (excluding the null hy-
pothesis) that indicated that all of these correspondences 
were inliers. The prior of this hypothesis and the null hy-
pothesis competed with each other, and after a sufficient 
number of observations the prior of the former reached the 
predefined threshold (0.8) and therefore this hypothesis 
was chosen. Similar to the basic example from Figure 8, for 
a given m  (number of correspondences) at each time step, 
the number of unique places for the chosen and null-space 
hypotheses are, respectively, m  and .m2

Figure 18(b) shows the result of the EM optimization in 
(36), for each of the three robots, right after choosing the hy-
pothesis as described above. The algorithm correctly deter-
mined that the robots begin from the same location. 
Estimation errors of initial relative poses between the robots 
are provided in Table 6.

The estimates from all three robots are shown in Figure 10. 
Since no loop-closure constraints were used in this experi-
ment, drift is expected in the trajectories of individual robots. 
Figure 10(a) shows the results from three robots without con-
sidering pose uncertainty. Compared to ground truth in Fig-
ure 11(b), the output trajectories and map are affected by 
odometry drift. Even though multirobot correspondences are 
explored between blue and green robots, they are treated as 
outliers and not considered in the inference. In Figure 19(a) the 
correspondences on the top (gray) are identified as outliers. In 
Figure 19(b) the inference includes robot pose uncertainties, 
and the same correspondences are instead identified as inliers. 
The effects of introducing robot pose uncertainty into the joint 
inference are shown for all three robots in Figure 10(b).

Data Set D3
Algorithm performance in the third data set D3  is sum-
marized in Figures 20 and 21 and in Table 6. In contrast to 
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figUre 19 The green and blue robot trajectories (a) before and 
(b) after compensating for odometry measurements uncertain-
ties in the expectation maximization optimization. The black 
lines signify inlier correspondences, while gray lines signify 
outliers. Before considering odometric uncertainty, correspon-
dences are incorrectly classified as outliers due to significant 
odometric drift. after considering odometric uncertainty, inlier 
correspondences are correctly classified. (a) Without a noise-
model update and (b) with a noise-model update.

The problem of choosing the most probable solution is  

particularly important in the incremental setting in the presence  

of measurement aliasing. 
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the first two data sets, the robots in D3  begin operating 
from different positions [see Figure 14(c)]. The environ-
ment contains structural symmetries, such as several long 
corridors and similar corners. This problem is challenging, 
since perceptual aliasing gives rise to consistent outliers, 
as previously shown in Figure 3. Nevertheless, the de-
scribed approach is capable of identifying the correct ini-
tial relative transformation between the robots. Figure 
20(a) shows the set of candidate correspondences F r  and 
the equivalent distribution of the initial relative poses (the 
set T Fr

r rl^ hh between the green and the blue robots. The 
latter exhibits several clusters, and the most dominant four 
clusters were identified. The probabilities of the corre-
sponding hypotheses including the null hypothesis are 
shown in Figure 20(b), and the hypothesis h1  is chosen. 

The result of the EM multirobot optimization is shown in 
the right side of Figure 20(b) (the trajectory of the red robot 
is also shown since, by that time, a common reference 
frame between the green and the red robot has been estab-
lished). The robot trajectories expressed in the green ro-
bot’s reference frame are aligned well with the ground-truth 
trajectories [Figure 14(c)].

Similar to data set ,D2  since no loop closures were used, 
the trajectories drift over time if pose uncertainties are not 
considered [Figure 21(a)]. The drift is corrected for after 
considering pose uncertainties [Figure 21(b)].

large-Scale Data Sets
To further evaluate the robustness of the multirobot inference 
approach, three more experiments in larger environments 
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figUre 21 Data set D3: (a)–(c) The final estimated trajectories of all three robots, output by each robots, without considering odomet-
ric uncertainty; (d)–(f) estimated trajectories with considering odometric uncertainty. (a) By the red robot, (b) by the green robot, (c) 
by the blue robot, (d) by the red robot, (e) by the green robot, and (f) by the blue robot.
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figUre 22 Data sets (a) D5 and (b) D6 with trajectories aligned in a common reference frame on top of satellite imagery.
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were performed. D4  involved three robots navigating from 
different starting points around a large indoor loop. In ,D5  
two robots began in different buildings and then switched 
buildings (involving indoor-outdoor transitions) without 
directly observing one another. D6 was performed with three 
robots that also never directly observed one another in an out-
door hedge maze. Table 5 contains information on the three 
large-scale data sets.

Figure 1(b) displays the trajectories of robots from data 
set D4  after a common reference frame is computed. Indi-
vidual robot trajectories in areas of the map that were not 
jointly explored by multiple robots contain drift, whereas 
portions of the trajectories near the central loop do not con-
tain as much drift due to loop closures from multirobot cor-
respondences.

Figure 22 shows the trajectories taken by robots from data 
sets D5  and .D6  Figure 22(a) is captured from the reference 
frame of the red robot in .D5  Robot starting points are 
marked by crosses in the figure, and the points when robots 
settle on a transformation hypothesis are marked by circles. 
Since the two robots never directly observed one another, 
transformations were established after each robot found cor-
respondences between its own sensor observations and past 
sensor observations from other robots. Figure 22(b) shows 
results from the outdoor data set ,D6  from the perspective of 
the blue robot. In contrast to other environments, this envi-
ronment did not contain regular line and corner structures.

Timing Results
Figure 23 shows a breakdown of processing time by algo-
rithmic component on one robot from a three-robot data set 

(D2). Pose-graph optimization [45], ICP matching, and EM 
optimization (“Pose-graph optimization,” “Correspondence 
generation,” and “EM” in Table 3, respectively) require a ma-
jority of the processing load. Hypothesis selection is efficient 
and only requires computation leading up to establishment 
of a common reference frame. Once the common reference 
frames are built, pose-graph optimization consumes the ma-
jority of the processing time. Since the cumulative time cost 
of the approach remains below 40 ms at all times, the imple-
mentation could be run at up to 25 Hz; 20 Hz is chosen so 
that the system can run in real time.

LIMITATIONS AND fuTuRE WORk
While the described approach is capable of correctly infer-
ring common reference frames and multirobot data associa-
tion in various challenging scenarios, correctly identifying 
multirobot inlier correspondences becomes increasingly 
challenging as the robot poses develop significant drift over 
time. Incorporating robot pose uncertainty within the EM 
framework allows for identification of inlier multirobot cor-
respondences, even in these challenging cases. However, 
the downside of this approach is that modifying the inlier 
covariance inlierR  could, theoretically, also result in identify-
ing outlier correspondences as inliers, if the error in (11) in 
these correspondences is described well by the modified 
inlier covariance. This phenomenon has not been observed 
in any of the experiments performed. Nevertheless, this as-
pect deserves further investigation and is therefore a subject 
of future research.

Although the described approach is aimed at solving 
the  multirobot SLAM problem in the presence of severe 
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measurement aliasing, a higher-quality correspondence 
detection technique would enable more robust operation in 
challenging environments. The results were obtained using 
scan-by-scan ICP matching to generate correspondences. 
ICP frequently provides poor transformation estimates 
between laser scans due to local minima in the ICP optimi-
zation as well as sensor noise. Because of these failures, 
many correspondences generated by ICP are outliers. High 
outlier counts make it difficult to distinguish inliers and 
select hypotheses as the map size grows large. Although 
this article primarily focuses on the optimization (“back 
end”) portion of the SLAM problem, any improvement to 
the correspondence generation strategy can improve the 
accuracy of the calculated relative transformations.

To handle the inaccuracies of ICP correspondences, a 
feature-based, correspondence-generation strategy that 
uses RANSAC [31] to match laser scan FLIRT feature de-
scriptors [48] generated from the local and remote scans 
was described. A comparison between the two correspon-
dence generation strategies is shown in Figure 24. More 
details of this feature-based approach is described in previ-
ous work [16]. The ICP strategy generates a high ratio of 

outliers while the feature-based approach generates few. 
The preliminary results of this feature-based method show 
that the approach could be in extended to larger and more 
complex environments.

The underlying assumption in the presented approach is 
that robots operate in closed and finite environments and 
will eventually mutually observe a scene (not necessarily at 
the same time). If the robots do not cross paths and in pres-
ence of perceptual aliasing, there will be (at least) one cluster 
that corresponds to consistent outliers that will compete 
with the null hypothesis, similar to the situation in Figure 15, 
although later on the robots do observe mutual scenes. If the 
robots never cross paths, the algorithm could break (an in-
correct hypothesis will be chosen); however, typically, such 
cases violate the mentioned underlying assumption.

Finally, there remains significant flexibility in the choice 
of sensors and localization strategy run by each robot. 
Cameras and depth sensors are likely to provide richer cor-
respondence estimates. In addition, a more robust localiza-
tion strategy would diminish the drift caused by ICP 
odometry. Modifying sensors and localization strategies 
could extend the applications of the formulation.

The underlying assumption in the presented approach is that robots  

operate in closed and finite environments and will eventually  

mutually observe a scene.

-10 -5 0

(a)

-6

-4

-2

0

2

4

6

8

x (m)

y 
(m

)

(b)

-10 -5 0
-6

-4

-2

0

2

4

6

8

x (m)

y 
(m

)

figUre 24 Correspondences generated using (a) an iterative closest point (iCp) and (b) the feature-based approach. The gray lines 
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CONCLuSIONS
This article presented an approach for distributed and in-
cremental localization and mapping by a group of collabo-
rating robots that are initially unaware of each other’s 
poses without assuming multirobot data association to be 
given. Under the assumption that the robots share infor-
mative observations with one another, an EM approach 
was developed to concurrently infer initial relative poses 
and multirobot data association. This approach is carried 
out by each robot in the group, starting from promising 
initial guesses and converging to several locally optimal 
solutions (referred to as hypotheses). Choosing the correct 
hypothesis is challenging in the incremental setting be-
cause of measurement aliasing and because there may be 
insufficient data to make this decision reliably. These chal-
lenges were addressed by developing a model-based selec-
tion approach that provides a probabilistically sound 
mechanism for choosing the most probable hypothesis, 
while modeling hypotheses prior using the CRP. Once a 
common reference frame between the robots is estab-
lished, it becomes possible for each robot to perform a joint 
inference over its own and other robots’ poses. Operation 
in the presence of significant drift in robot pose estimates, 
which is typical when operating in large-scale environ-
ments, was also considered. A modification of the ap-
proach was suggested to enable the identification of 
multirobot inlier correspondences even in these challeng-
ing cases. The method was evaluated in multirobot real-
world indoor and outdoor experiments, which exhibited 
accurate estimation of common reference frames and cor-
rectly determined multirobot data association.
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