Topological Aspects in Information-Theoretic Belief Space Planning

Andrej Kitanov and Vadim Indelman

Department of Aerospace Engineering Technion - Israel Institute of Technology

May 24, 2019

Classical Belief Space Planning

 determine optimal non-myopic control action U^{*}_{k:k+L-1} = arg min_U J_k(U) given objective

$$J_{k}(\mathcal{U}) = \mathbb{E}_{\mathcal{Z}} \left\{ \sum_{l=0}^{L-1} c_{l} \left[b(X_{k+l}), \mathcal{U}_{k+l} \right] + c_{L} \left[b(X_{k+L}) \right] \right\}$$
$$X_{k+l} \text{ - state of the system at time } t_{k+l}$$
$$b(X_{k+l}) \text{ - future posterior belief at time } t_{k+l}$$
$$\text{based on observations } \mathcal{Z}_{k+l} \subseteq \mathcal{Z}$$
$$\mathcal{U}_{k+l} \text{ - control applied at time } t_{k+l}$$

- instantiation of a Partially-Observable Markov Decision Process (POMDP)
- finding optimal solution to POMDP in the most general form is computationally intractable

Topological BSP

Classical Belief Space Planning

 determine optimal non-myopic control action U^{*}_{k:k+L-1} = arg min_U J_k(U) given objective

Shannon joint entropy of the Gaussian belief

$$J(\mathcal{U}) = \frac{N}{2} \ln(2\pi e) + \frac{1}{2} \ln|\Sigma(X_{k+L})|$$

$$\Sigma(X_{k+L}) - \text{marginal posterior covariance}$$

$$N - \text{dimension of the state } X_{k+L}$$

- instantiation of a Partially-Observable Markov Decision Process (POMDP)
- finding optimal solution to POMDP in the most general form is computationally intractable
- in information-theoretic BSP, J_k is a function of state uncertainty

Ñ

Ñ

Topological Belief Space Planning

Decision making via t-bsp

() topological representation of a belief \mathcal{T} , e.g. a graph associated to its factor graph

2 topological metric $s : T \to \mathbb{R}$ highly correlated with J_k , e.g. graph entropy, a number of spanning trees of a graph

 $\hat{\mathcal{U}} = \underset{\mathcal{U}}{\operatorname{arg\,max}} s(\mathcal{U})$

3 providing bounds on the error $|J_k(\hat{\mathcal{U}}) - J_k(\mathcal{U}^*)|$

Figure: Different topological metrics *s* and their influence on decision making ANPL Autonomous Navigation

2 / 3

Ĩ

Results

(a) candidate actions (left) and be

(b) trajectory uncertainty and topology of the worst (left) and best (right) action

(d) actions consistency