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Computationally Efficient Active Inference in High-Dimensional State
Spaces

Dmitry Kopitkov† and Vadim Indelman*

Abstract— We develop a novel approach for decision making
under uncertainty in high-dimensional state spaces, considering
both active unfocused and focused inference, where in the latter
case reducing the uncertainty of only a subset of variables is
of interest. State of the art approaches typically first calculate
the posterior information (or covariance) matrix, followed by
determinant calculation of thereof, and do so separately for
each candidate action. In contrast, using the generalized matrix
determinant lemma, we avoid calculating these posteriors and
determinants of large matrices. Furthermore, as our key
contribution we introduce the concept of calculation re-use,
performing a one-time computation that depends on state
dimensionality and system sparsity, after which evaluating the
impact of each candidate action no longer depends on state
dimensionality. Such a concept is derived for both active focused
and unfocused inference, leading to general, non-myopic and
exact approaches that are faster by orders of magnitude
compared to the state of the art.

I. INTRODUCTION

Decision making under uncertainty is a fundamental prob-
lem in robotics and artificial intelligence, with applications
including autonomous driving, sensor deployment and active
SLAM. The problem, also sometimes referred to as active
inference, can be formulated as selecting optimal action
from a set of candidates, based on some cost function. In
information-based decision making the cost function typ-
ically contains terms that evaluate the expected posterior
uncertainty upon action execution, with commonly used
costs including entropy and mutual information. Thus, the
corresponding calculations typically involve calculating a de-
terminant of a posteriori covariance (information) matrices.

Decision making under uncertainty becomes an even more
challenging problem when considering high dimensional
state spaces. Such a setup is common in robotics, for example
in the context of active SLAM, sensor deployment and
graph sparsification. In particular, calculating a determinant
of information (covariance) matrix for an n-dimensional state
is in general O(n3), and is smaller for sparse matrices as in
SLAM problems [1]. Moreover, state of the art approaches
typically perform these calculations from scratch for each
candidate action (for example in active SLAM [3], [9] and
in sensor deployment [13], [14]).

In this paper we develop a computationally efficient and
exact approach for decision making in high-dimensional state
spaces that addresses the aforementioned challenges. The
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key idea is to use the general matrix determinant lemma
to calculate action impact with complexity independent of
state dimensionality n, while re-using calculations between
evaluating impact for different candidate actions. Our ap-
proach supports general observation and motion models, and
nonmyopic planning, and is thus applicable to a wide range
of applications such as those mentioned above, where fast
decision making in high-dimensional state spaces is required.

Moreover, we show the proposed concept is applicable
also to active focused inference. Unlike the unfocused case
discussed thus far, active focused inference approaches aim
to reduce the uncertainty over only a predefined set of the
variables. While the set of focused variables can be small,
exact state of the art approaches calculate the marginal
posterior covariance (information) matrix, for each action
[11], which involves a computationally expensive Schur
compliment operation.

In contrast, we provide a novel way to calculate posterior
entropy of focused variables, which is fast, simple and
general, yet, it does not require calculation of a posterior
covariance matrix. In combination with our re-use algorithm,
it provides focused decision making solver which is signifi-
cantly faster (and exact) compared to standard approaches.

Finally, there is also a relation to the recently introduced
concept of decision making in a conservative sparse infor-
mation space [5]. While our approach confirms the concept
from [5] considering the same assumptions, it addresses a
general non-myopic decision making problem, with arbitrary
observation and motion models.

To summarize, our contributions are: (a) we develop an ap-
proach for a nonmyopic decision making in high-dimensional
state spaces that uses the matrix determinant lemma to
avoid calculating determinants of large matrices, with per-
candidate complexity independent of state dimensionality;
(b) we show calculations can be re-used when evaluating
impact of different candidate actions; (c) we develop a
corresponding approach also for active focused inference.

II. NOTATIONS AND PROBLEM DEFINITION

Consider the joint probability distribution function (pdf)
p(Xk|Z0:k, u0:k−1) at time tk over a high-dimensional
problem-dependent state vector Xk ∈ Rn. For example, in a
SLAM problem Xk could represent robot poses and mapped
landmarks, while in a sensor deployment problem Xk would
represent an uncertainty field to be measured or monitored
by adequately deploying sensors. Here, Z0:k and u0:k−1
represent, respectively, all the observations and controls until
time tk. The joint pdf can be written as
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p(Xk|Z0:k, u0:k−1) = ηp(x0)

k∏
i=1

p(xi|xi−1, ui−1)p(Zi|Xo
i ),

(1)
where η is a normalization constant and p(x0) is a prior
on the first pose. The motion and observation models
p(xi|xi−1, ui−1) and p(Zi|Xo

i ) are defined by xi+1 =
f(xi, ui) + ωi and Zi = h(Xo

i ) + υi, respectively. Here,
ωi ∼ N(0,Σω,i) and υi,j ∼ N(0,Συ,i), with corresponding
covariance matrices Σω,i and Συ,i.

We use the notation Xo
i ⊆ Xi to indicate the involved

subset of states in the observation function h(·). In particular,
such a formulation can be used to describe a SLAM problem:
at any given time step ti, the robot may acquire multiple
landmark observations, denoted by Zi = {zi,1, ..., zi,ni},
where zi,j is a single observation of the jth landmark
and ni is the number of such observations. In such a
case, the measurement likelihood term in Eq. (1) becomes
p(Zi|Xo

i ) =
∏ni

j=1 p(zi,j |xi, lj).
Following standard maximum a posteriori (MAP) in-

ference, it is possible to efficiently infer, while exploit-
ing sparsity and re-using calculations, the mean X̂k and
covariance Σk of the multivariate Gaussian b[Xk]

.
=

p(Xk|Z0:k, u0:k−1) = N (X̂k,Σk), see e.g. [8].
In the context of decision making under uncertainty, one

can now reason how the pdf (1), or the belief b[Xk],
will evolve as a result of some candidate action. Con-
sidering a planning horizon of L look ahead steps and
a sequence of actions uk+1:k+L−1, the belief b[Xk+L]

.
=

p(Xk+L|Z0:k+L, u0:k+L−1) can be written as :

b[Xk+L] = ηb[Xk]

k+L∏
l=k+1

p(xl|xl−1, ul−1)p(Zl|Xo
l ) (2)

It is not difficult to show (see e.g. [6]) that the posterior
information matrix of the belief b[Xk+L] is given by:

Λk+L = Λk +ATA, (3)

where A ∈ Rm×n represents Jacobians combined in one
single matrix of all new factor terms in Eq. (2) (motion and
observation terms all together), linearized about the current
estimate of Xk.

For notational convenience, we define the set of candidate
actions by A = {a1, a2, .., ak} with appropriate Jacobian
matrices ΦA = {A1, A2, .., Ak}. While the planning horizon
is not explicitly shown, each a ∈ A can represent a sequence
of actions, e.g. a = uk:k+L−1 for L look ahead steps.

In this paper we focus on information-theoretic decision-
making and consider differential entropy H (further referred
to just as entropy) as the cost function. Thus, we re-define
the objective function as JH(a)

.
= H (b[Xk+L]), where the

belief b[Xk+L] is a function of the controls a = uk:k+L−1.
In particular, for Gaussian distributions, entropy is a

function of the determinant of a posterior information (co-
variance) matrix, i.e. H (b[Xk+L]) ≡ H (Λk+L):

H(b[Xk+L]) =
n

2
· (1 + ln(2π))− 1

2
ln
∣∣Λk+L∣∣ , (4)

where Λk+L = Λk + ATA, according to Eq. (3). Thus,
evaluating JH(a) requires determinant calculation of an
n × n matrix, which is in general O(n3), per candidate

action a ∈ A. The optimal action is then given by a∗ =
arg mina∈A JH(a).

Information gain (IG) is another common information-
theoretic cost (e.g. [4], [11]) that we will use in this paper:

JIG(a)
.
= H(b[Xk])−H(b[Xk+L]). (5)

The optimal action is defined for this cost as a∗ =
arg maxa∈A JIG(a). Note that both objective functions
JH(a) and JIG(a) yield the same result, yet the latter will
be computationally beneficial (see Section III).

Thus far, the exposition referred to active unfocused infer-
ence. However, as will be shown in the sequel, our approach
is applicable also to active focused inference.

Active focused inference is another important problem,
where in contrast to the former case, only a subset of
variables is of interest (see, e.g., [10], [11]). Considering
posterior entropy over the focused variables XF

k+L ⊆ Xk+L

we can write:

JFH(a)=H(XF
k+L) =

nF
2
· (1+ln(2π))+

1

2
ln
∣∣∣ΣM,F
k+L

∣∣∣ , (6)

where nF is the dimension of XF
k+L, and ΣM,F

k+L is the pos-
terior marginal covariance of XF

k+L (suffix M for marginal),
calculated by simply retrieving appropriate parts of posterior
covariance matrix Σk+L = Λ−1k+L.

In the following section we develop a computationally
efficient approach that addresses both active unfocused and
focused inference. As will be seen, this approach naturally
supports non-myopic planning with arbitrary motion and
observation models, and it is in particular attractive for
decision making in high-dimensional state spaces.

III. APPROACH

A. Unfocused Active Inference

Information theoretic decision making involves evaluating
the cost (4) or (5), an operation that requires calculating the
determinant of a large n × n matrix (posterior information
matrix), with n being the dimensionality of the state X . State
of the art approaches typically perform these calculations
from scratch for each candidate action.

In contrast, our approach contains a one-time calculation
that will be reused afterwards to calculate impact of each
candidate action. As will be seen below, the latter depends
only on the number of new factor terms in the Jacobian
matrix A ∈ Rm×n, which is a function of L.

We first consider the IG as the utility function. It is not
difficult to show that Eq. (5) can be written as JIG(a) =

1
2 ln

∣∣∣Λk +ATA
∣∣∣∣∣∣Λk∣∣∣ . Using the generalized matrix determinant

lemma [2], this equation can be written as JIG(a) =
1
2 ln

∣∣Im +A · Σk ·AT
∣∣ where Σk ≡ Λ−1k , as previously

suggested in [4], [11] in the context of compact pose-SLAM
and focused active inference.

The expression for JIG(a) provides an exact and general
solution for information-based decision making, where each
action candidate can produce any number of new factors
(nonmyopic planning) and where factors themselves can be
of any measurement model (unary, pairwise, etc.).
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Fig. 1: Concept illustration of A’s structure. Each column represents some variable
from state vector. Each row represents some factor from Eq. (1). Factor f1 of motion
model that involves two poses xi and xi−1 will have non-zero values only at columns
of xi and xi−1. Factor f2 of observation model that involves together variables xi

and lj will have non-zero values only at columns of xi and lj .

It is important to note that A is a sparse m × n matrix,
see Figure 1. Denote by C the set of all variables that are
involved in A, i.e. these are the variables that are involved in
at least one factor among the new factors generated due to
the currently considered candidate action a ≡ uk:k+L−1, see
Eq. (2). Clearly, the only non-zero columns in A will be of
variables in C. Consequently, the only required entries from
the covariance matrix Σk are also those related to variables
in C, and JIG(a) can be re-written as

JIG(a) =
1

2
ln
∣∣Im +AC · ΣM,C

k ·ATC
∣∣ (7)

where AC is constructed from A by removing all zero
columns, and ΣM,C

k is a prior joint marginal covariance of
variables in C, which should be calculated from the (square
root) information matrix Λk.

In particular, in case of myopic decision making with
unary observation models (that involve only a single state
variable), calculation of IG(a) for different candidate actions
only requires recovering the diagonal entries of Σk, regard-
less of the actual correlations between the states, as recently
shown in [5]. However, while in the mentioned papers the
per-action calculation takes O(n), the IG(a) calculation is
O(1) as will be shown below.

Given covariance matrix, the calculation in Eq. (7) is
bounded by calculating determinant of an m × m matrix
which is in general O(m3), where m is the number of
constraints due to new factors (for a given candidate action
a). This calculation should be performed for each candidate
action in the set A. Furthermore, in many problems it is
logical to assume that m << n, as m depends mostly on the
planning horizon L, which is typically defined and constant,
while n (state dimensionality) can be huge and grow with
time in real systems (e.g. SLAM). Consequently, given the
prior covariance our complexity for selecting best action is
O(|A|), i.e. independent of state dimensionality n.

Next, we make a key observation that covariance cal-
culation for all candidate actions can be united into one
computational block, calculated at the beginning of decision
making phase and then later be re-used upon calculating IG
for each candidate action.

In more detail, because only the joint covariance of
involved variables is needed in order to calculate IG (7),
we define the mutual set CAll as the state variables that
are involved in at least one candidate action in A. Before
evaluating Eq. (7) for each candidate, we perform a one-
time calculation to retrieve the joint covariance for variables
CAll, i.e. ΣM,CAll

k . Then Eq. (7) can be evaluated for each

candidate action a ∈ A by simply retrieving appropriate
blocks from ΣM,CAll

k in order to get ΣM,C
k for action a.

Intuitively, in most cases the candidates will have many
mutual variables as they all are related to the current robot’s
location, in one way or another, making it even more
reasonable to compute CAll in one calculation.

The complexity of this one-time calculation is different
in different applications. When we use information filter,
the system is represented by information matrix Λk, and in
general the inverse of Schur compliment of CAll variables
should be calculated. Yet, there are techniques that use
sparse matrix nature of SLAM in order to efficiently recover
marginal covariances [7].

In particular, in iSAM [8] the (linearized) system is
represented by a squared root information matrix Rk, which
is encoded, while exploiting sparsity, by the Bayes tree
data structure. Decision making then can be performed by
calculating, for each candidate action, the posterior matrix
Rk+L (e.g. via Givens rotations [8] or another incremen-
tal factorization update method), and then calculating the

determinant |Λk+L| =
n∏
i=1

r2ii, with rii being the ith entry

on the diagonal of Rk+L. Yet, calculating Rk+L for each
action can be expensive, particularly in loop closures, and
requires copy/clone of the original matrix Rk. In contrast,
per candidate calculation in Eq. (7) is constant in general.

The combination of calculation re-use and IG, Eq. (7), was
evaluated in scenario of unfocused sensor deployment, where
subset of locations should be selected which reduces the
most the whole field uncertainty. The substantial reduction
in running time of our approach, compared to the Standard
approach, can be clearly seen in Figure 2a, which considers
the entire decision making problem, i.e. evaluation of all
candidate actions A. The figure shows running time for
sequential decision making, where at each time instant we
choose the best locations of 2 sensors, with around |A| = 105

candidate actions. The number of all sensor locations is n =
625 in this example. Overall, 15 sequential decisions were
made. As seen, decision making using our approach requires
only about 3 seconds, while the the Standard approach
requires about 400 seconds.

B. Extension to Active Focused Inference

In this section we present a novel approach to calculate
entropy of a focused set of variables, and then combine it
with the ideas from the previous section (generalized matrix
determinant lemma, IG cost function and calculation re-use)
to develop a computationally efficient algorithm for focused
information-based decision making.

First we recall definitions from Section II and introduce
additional notations: XF

k ∈ RnF denotes the set of focused
variables, XR

k
.
= Xk/X

F
k ∈ RnR is a set of the remaining

variables, with n = nF + nR. The nF × nF marginal
covariance and information matrices of XF

k are denoted,
respectively, by ΣM,F

k (suffix M for marginal) and ΛM,F
k ≡

(ΣM,F
k )−1. Furthermore, we partition the joint information

matrix Λk as
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Fig. 2: Unfocused sensor deployment scenario: (a) running time for decision making,
i.e. evaluating impact of all candidate actions, each representing candidate locations
of 2 sensors, (b) prior and final uncertainty, with red dots marking selected locations.
Focused sensor deployment scenario: (c) running time for decision making, (d) focused
set of variables (green circles) and locations selected by algorithm (red dots).

Σk=

[
ΣM,R
k ΣM,RF

k

(ΣM,RF
k )T ΣM,F

k

]
,Λk=

[
ΛRk ΛR,Fk

(ΛR,Fk )T ΛFk

]
. (8)

where ΛFk ∈ RnF×nF is constructed by retrieving from Λk
only the rows and the columns related to F , ΛRk ∈ RnR×nR

is the same thing but related to XR
k , and ΛR,Fk ∈ RnR×nF

contains remaining blocks of Λk as shown in Eq. (8).
The marginal information matrix of XF

k , i.e. ΛM,F
k , can

be calculated via Schur complement ΛM,F
k = ΛFk −(ΛRFk )T ·

(ΛRk )−1 ·ΛRFk . However, it can be shown [12] that
∣∣ΛM,F
k

∣∣ =

1∣∣∣ΣM,F
k

∣∣∣ =

∣∣∣Λk∣∣∣∣∣∣ΛRk ∣∣∣ . Therefore, the posterior entropy of XF
k+L

is a function of the posterior Λk+L and its partition ΛRk+L:

JFH(a) = H(XF
k+L)=

nF
2
·(1+ln(2π))− 1

2
ln

∣∣Λk+L∣∣∣∣ΛRk+L∣∣ . (9)

From Eq. (3) one can observe that ΛRk+L = ΛRk + ATRAR,
where AR ∈ Rm×nR is constructed from Jacobian A by
taking only the columns that are related to variables in XR

k .
The next step is to use IG instead of entropy, with the same

motivation and benefits as in the unfocused case (Section
III-A). The optimal action a∗ = arg maxa∈A J

F
IG(a) will

maximize JFIG(a) = H(XF
k ) − H(XF

k+L), and using the
generalized matrix determinant lemma we can write:

JFIG(a) =
1

2
ln

∣∣Im +A · Σk ·AT
∣∣∣∣∣Im +AR · ΣR|Fk ·ATR
∣∣∣ , (10)

where Σ
R|F
k ∈ RnR×nR is a prior covariance matrix of XR

k

conditioned on XF
k , and it is actually the inverse of ΛRk .

The same concepts of calculation re-use are valid also
here. The only required entries of Σ

R|F
k are those related

to variables involved in one of candidate actions. Thus their
retrieval can be combined into one computational block.

We now consider the focused version of the sensor de-
ployment problem (Eq. 6). In other words, the goal is to
find sensor locations that maximally reduce uncertainty about
chosen focused variables XF . We have 54 such variables,
which are shown in Figure 2d, while the rest of the problem
setup remains identical to the unfocused case. In Figure 2c

we show the corresponding results of our approach, com-
pared to the Standard approach. The latter first calculates,
for each candidate action, the posterior Λ+ = Λ + ATA,
followed by calculation of Schur complement ΛM,F of the
focused set XF , and its determinant

∣∣ΛM,F
∣∣ in order to get

JFH(a) (Eq. 6). Our focused approach makes it possible to
drastically reduce running time as shown in Figure 2c (9
seconds versus about 1400 in Standard approach).

IV. CONCLUSIONS

We developed a novel non-myopic and exact approach for
information theoretic decision making in high dimensional
state spaces, considering both unfocused and focused active
inference problems. The key idea is to use the generalized
matrix determinant lemma and re-use of calculations to
efficiently evaluate the impact of each candidate action on
posterior entropy. Our approach drastically reduces running
time compared to the state of the art, especially when
set of candidate actions is large, with running time being
independent of state dimensionality. The approach was ex-
amined in problem of sensor deployment, exhibiting superior
performance compared to the state of the art, and reducing
running time by several orders of magnitude.
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