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Abstract— We develop a novel approach for decision making
under uncertainty in high-dimensional state spaces, considering
both active unfocused and focused inference, where in the latter
case reducing the uncertainty of only a subset of variables is of
interest. State of the art approaches typically first calculate the
posterior information (or covariance) matrix, followed by its de-
terminant calculation, and do so separately for each candidate
action. In contrast, using the generalized matrix determinant
lemma, we avoid calculating these posteriors and determinants
of large matrices. Furthermore, as our key contribution we
introduce the concept of calculation re-use, performing a one-
time computation that depends on state dimensionality and
system sparsity, after which evaluating the impact of each
candidate action no longer depends on state dimensionality.
Such a concept is derived for both active focused and unfocused
inference, leading to general, non-myopic and exact approaches
that are faster by orders of magnitude compared to the state
of the art. We verify our approach experimentally in two
scenarios, sensor deployment (focused and unfocused) and
measurement selection in visual SLAM, and show its superiority
over standard techniques.

I. INTRODUCTION

Decision making under uncertainty is a fundamental prob-

lem in robotics and artificial intelligence, with applications

including autonomous driving, surveillance, sensor deploy-

ment, object manipulation and active SLAM. The goal is to

autonomously determine best actions according to a specified

objective function, given the current belief about random

variables of interest that could represent, for example, robot

poses, tracked target or mapped environment, while account-

ing for different sources of uncertainty. Such a problem is an

instantiation of partially observable Markov decision process

(POMDP), while calculating an optimal solution of POMDP

was proven to be computationally intractable [17].

Decision making, also sometimes referred to as active

inference, can be formulated as selecting optimal action

from a set of candidates, based on some cost function. In

information-based decision making the cost function typ-

ically contains terms that evaluate the expected posterior

uncertainty upon action execution, with commonly used

costs including (conditional) entropy and mutual informa-

tion. Thus, the corresponding calculations typically involve

calculating a determinant of a posteriori covariance (infor-

mation) matrices, and moreover, these calculations are to be

performed for each candidate action.

D. Kopitkov is with the Technion Autonomous Systems Program
(TASP), Technion - Israel Institute of Technology, Haifa 32000, Israel,
dimkak@tx.technion.ac.il . V. Indelman is with the Department
of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa
32000, Israel, vadim.indelman@technion.ac.il. This work was
supported by the Israel Science Foundation.

Decision making under uncertainty becomes an even more

challenging problem when considering high dimensional

state spaces. Such a setup is common in robotics, for

example in the context of belief space planning in uncer-

tain environments, active SLAM, sensor deployment, graph

reduction and graph sparsification. In particular, calculating

a determinant of information (covariance) matrix for an n-

dimensional state is in general O(n3), and is smaller for

sparse matrices as in SLAM problems [1].

Moreover, state of the art approaches typically perform

these calculations from scratch for each candidate action. For

example, active SLAM and belief space planning approaches

first calculate the posterior belief within the planning hori-

zon, and then use that belief to evaluate the objective func-

tion, which typically includes an information-theoretic term

[11], [20], [29]. These approaches then determine the best

action by performing the mentioned calculations for each

action from a given set of candidate actions. Alternatively,

belief space planning approaches that consider continuous

(state, action and observation) spaces typically refine a

nominal action into a locally-optimal one using dynamic

programming or gradient descent, with both cases also

involving propagating belief and calculating an information-

theoretic term [16], [27], [28], [30].

Sensor deployment is another example of decision making

in high dimensional state spaces. The basic formulation of

the problem is to determine locations to deploy the sensors

in a field such that some metric can be measured most

accurately through the entire area (e.g. temperature). The

problem can also be viewed as selecting optimal action from

the set of candidate actions (available locations) and the

objective function usually contains a term of uncertainty, like

the entropy of a posterior system [21]. Also here, state of

the art approaches evaluate a determinant over large posterior

covariance (information) matrices for each candidate action,

and do so from scratch [32], [33].

A similar situation also arises in measurement selection

[3], [6] and graph pruning [2], [10], [24], [31] in the

context of long-term autonomy in SLAM. In the former

case, the main idea is to determine the most informative

measurements (e.g. image features) given measurements

provided by robot sensors, thereby discarding uninformative

and redundant information. Such a process typically involves

reasoning about mutual information, see e.g. [5], [6], for

each candidate selection. Similarly, graph pruning and spar-

sification can be considered as instances of decision making

in high dimensional state spaces [2], [10], with decision

corresponding to determining what nodes to marginalize out

[12], [22], and avoiding the resulting fill-in in information



matrix by resorting to sparse approximations of the latter

[2], [10], [24], [31]. Also here, existing approaches typically

involve calculation of determinant of large matrices for each

candidate action.

In this paper we develop a computationally efficient and

exact approach for decision making in high-dimensional state

spaces that addresses the aforementioned challenges. The

key idea is to use the general matrix determinant lemma

to calculate action impact with complexity independent of

state dimensionality n, while re-using calculations between

evaluating impact for different candidate actions. Our ap-

proach supports general observation and motion models, and

nonmyopic planning, and is thus applicable to a wide range

of applications such as those mentioned above, where fast

decision making in high-dimensional state spaces is required.

Moreover, we show the proposed concept is applicable

also to active focused inference. Unlike the unfocused case

discussed thus far, active focused inference approaches aim

to reduce the uncertainty over only a predefined set of the

variables. The two problems can have significantly different

optimal actions, with an optimal solution for the unfocused
case potentially performing badly for the focused setup, and

vice versa (see e.g. [23]). While the set of focused variables

can be small, exact state of the art approaches calculate the

marginal posterior covariance (information) matrix, for each

action, which involves a computationally expensive Schur

complement operation. For example, Mu et al. [25] calculate

posterior covariance matrix per each measurement and then

use the selection matrix in order to get marginal of focused
set. Levine et al. [23] develop an approach that determines

mutual information between focused and unfocused variables

through message passing algorithms on Gaussian graphs but

their approach is limited to only graphs with unique paths

between the relevant variables.

In contrast, we provide a novel way to calculate posterior

entropy of focused variables, which is fast, simple and

general, yet, it does not require calculation of a posterior

covariance matrix. In combination with our re-use algorithm,

it provides focused decision making solver which is signifi-

cantly faster (and exact) compared to standard approaches.

Finally, there is also a relation to the recently introduced

concept of decision making in a conservative sparse in-

formation space [14], [15]. In particular, considering unary

observation models (involving only one variable) and greedy

decision making, it was shown that appropriately dropping

all correlation terms and remaining only with a diagonal

covariance (information) matrix does not sacrifice perfor-

mance while significantly reducing computational complex-

ity. While the approach presented herein confirms this con-

cept for the case of unary observation models, our approach

addresses a general non-myopic decision making problem,

with arbitrary observation and motion models.

To summarize, our main contributions in this paper are as

follows: (a) we develop an approach for a nonmyopic deci-

sion making in high-dimensional state spaces that uses the

matrix determinant lemma to avoid calculating determinants

of large matrices, with per-candidate complexity independent

(a) (b)

Fig. 1: (a) Graphical model describing motion and observa-

tion models (2). For simplicity, the figure shows observations

of only a single landmark lj , indicating it is observed at time

instances ti−1, ti and ti+1; (b) Simulated trajectory of robot.

of state dimensionality; (b) we show calculations can be re-

used when evaluating impact of different candidate actions;

(c) we develop a corresponding approach also for active

focused inference.

II. NOTATIONS AND PROBLEM DEFINITION

Consider the joint probability distribution function (pdf)

P(Xk|Z0:k, u0:k−1) at time tk over a high-dimensional

problem-dependent state vector Xk ∈ R
n. For example, in a

SLAM problem Xk could represent robot poses and mapped

landmarks, while in a sensor deployment problem Xk would

represent an uncertainty field to be measured or monitored

by adequately deploying sensors. Here, Z0:k and u0:k−1

represent, respectively, all the observations and controls until

time tk.

The joint pdf can be written as

P(Xk|Z0:k, u0:k−1)=ηP(x0)

k∏
i=1

P(xi|xi−1, ui−1)P(Zi|Xo
i ),

(1)
where η is a normalization constant and P(x0) is a prior

on the first pose. The motion and observation models

P(xi|xi−1, ui−1) and P(Zi|Xo
i ) are defined by

xi+1 = f(xi, ui) + ωi , Zi = h(Xo
i ) + υi. (2)

In this paper we consider the process and measurement noise

to be Gaussian and thus denote ωi ∼ N (0,Σω,i) and υi,j ∼
N (0,Συ,i) with corresponding covariance matrices Σω,i and

Συ,i. While the latter could vary with time, to avoid clutter

we will drop from here on the time notation.

We use the notation Xo
i ⊆ Xi to indicate the in-

volved subset of states in the observation function h(·).
In particular, such a formulation can be used to describe

a SLAM problem: at any given time step ti, the robot

may acquire multiple landmark observations, denoted by

Zi = {zi,1, ..., zi,ni
}, where zi,j is a single observation of

the jth landmark and ni is the number of such observations.

In such a case, the measurement likelihood term in Eq. (1)

becomes P(Zi|Xo
i ) =

∏ni

j=1 P(zi,j |xi, lj). Figure 1a depicts

the corresponding generative graphical model for this case,

considering for simplicity only a single landmark lj , while

Figure 1b shows a simulated aerial visual SLAM scenario.

Following standard maximum a posteriori (MAP) in-

ference, it is possible to efficiently infer, while exploit-

ing sparsity and re-using calculations, the mean X̂k and



covariance Σk of the multivariate Gaussian b[Xk]
.
=

P(Xk|Z0:k, u0:k−1) = N (X̂k,Σk), see e.g. [19].

In the context of decision making under uncertainty, one

can now reason how the pdf (1), or the belief b[Xk],
will evolve as a result of some candidate action. Con-

sidering a planning horizon of L look ahead steps and

a sequence of actions uk+1:k+L−1, the belief b[Xk+L]
.
=

P(Xk+L|Z0:k+L, u0:k+L−1) can be written as :

b[Xk+L] = ηb[Xk]

k+L∏
l=k+1

P(xl|xl−1, ul−1)P(Zl|Xo
l ) (3)

Note that one can go further and model, within the belief,

whether a future observation will be actually obtained (see

e.g. [16], [4]).

It is not difficult to show (see e.g. [16]) that the posterior

information matrix of the belief b[Xk+L] is given by:

Λk+L = Λk+

k+L∑
l=k+1

FT
l ·Σ−1

ω,l ·Fl+

k+L∑
l=k+1

HT
l ·Σ−1

υ,l ·Hl (4)

where Fl
.
= �xf and Hl

.
= �xh are the Jacobian matrices

of all the new factor terms in Eq. (3) (i.e. motion and

observation factors).

Combining all the Jacobian matrices in Eq. (4) into matrix

Ã, and all the noise covariances into matrix Φ, yields

Λk+L = Λk + ÃT · Φ−1 · Ã = Λk +AT ·A (5)

where A
.
= Φ− 1

2 · Ã is an m×n matrix that represents both

Jacobians and noise covariances of all new factor terms in

Eq. (3). The above equation can be considered as a single

iteration of Gauss-Newton optimization and, similar to prior

work [16], [20], [30], we assume it sufficiently captures

the impact of action uk:k+L−1. Under this assumption, the

posterior information matrix Λk+L is independent of the

(unknown) future observations Zk+1:k+L [16].

Each block row in A represents a single factor from the

new terms in Eq. (3) and thus has a sparse structure. Only

sub-blocks that correspond to the involved variables in the

relevant factor are actually non-zero.

For notational convenience, we define the set of candidate

actions by A = {a1, a2, .., ak} with appropriate Jacobian

matrices ΦA = {A1, A2, .., Ak}. While the planning horizon

is not explicitly shown, each a ∈ A can represent a sequence

of actions, e.g. a = uk:k+L−1 for L look ahead steps.

In this paper we focus on information-theoretic decision-

making and consider differential entropy H (further referred

to just as entropy) as the cost function. Thus, we re-define

the objective function as

JH(a)
.
= H (b[Xk+L]) , (6)

where the belief b[Xk+L] is a function of the controls a =
uk:k+L−1, see Eq. (3).

In particular, for Gaussian distributions, entropy is a

function of the determinant of a posterior information (co-

variance) matrix, i.e. H (b[Xk+L]) ≡ H (Λk+L) and can be

expressed as

H(b[Xk+L]) =
n

2
· (1 + ln(2π))− 1

2
ln
∣∣Λk+L

∣∣ , (7)

where Λk+L = Λk + ATA, according to Eq. (5). Thus,

evaluating JH(a) requires determinant calculation of an

n × n matrix, which is in general O(n3), per candidate

action a ∈ A. The optimal action is then given by a∗ =
argmina∈A JH(a).

Information gain (IG) is another common information-

theoretic cost (e.g. [12], [25]) that we will use in this paper:

JIG(a)
.
= H(b[Xk])−H(b[Xk+L]). (8)

The optimal action is defined for this cost as a∗ =
argmaxa∈A JIG(a). Note that both objective functions (6)

and (8) yield the same result, yet the latter will be compu-

tationally beneficial (see Section III).

Thus far, the exposition referred to active unfocused infer-

ence, where the action impact is calculated by considering

all the random variables in the system, i.e. the entire state

vector. However, as will be shown in the sequel, our approach

is applicable also to active focused inference.

Active focused inference is another important problem,

where in contrast to the former case, only a subset of

variables is of interest (see, e.g., [21], [23], [25]). The

complexity of such problem is much higher and proposed

techniques succeeded to solve it in O(kn3) [21], [23] with

k being size candidate set, and in O(ñ4) [25] with ñ being

size of the involved clique. Considering posterior entropy

over the focused variables XF
k+L ⊆ Xk+L we can write:

JF
H(a)=H(XF

k+L) =
nF

2
· (1+ln(2π))+

1

2
ln
∣∣∣ΣM,F

k+L

∣∣∣ , (9)

where nF is the dimension of XF
k+L, and ΣM,F

k+L is the pos-

terior marginal covariance of XF
k+L (suffix M for marginal),

calculated by simply retrieving appropriate parts of posterior

covariance matrix Σk+L = Λ−1
k+L.

In the following section we develop a computationally

efficient approach that addresses both active unfocused and

focused inference. As will be seen, this approach naturally

supports non-myopic planning with arbitrary motion and

observation models, and it is in particular attractive for

decision making in high-dimensional state spaces.

III. APPROACH

Our approach utilizes the well-known matrix determinant

lemma [9] and re-use of calculations to significantly reduce

computational complexity of the active inference problem

as defined in Section II. In Section III-A we develop our

approach for active unfocused inference, and then discuss in

Section III-B how to re-use calculations when considering

different candidate actions. Section III-C then extends the

approach to active focused case.

A. Active Inference via Matrix Determinant Lemma

Information theoretic decision making involves evaluating

the cost (7) or (8), an operation that requires calculating the

determinant of a large n × n matrix (posterior information

matrix), with n being the dimensionality of the state X . State

of the art approaches typically perform these calculations

from scratch for each candidate action.

In contrast, our approach contains a one-time calculation

that will be reused afterwards to calculate impact of each

candidate action (see Section III-B). As will be seen below,



the latter depends only on the number of new factor terms

in the Jacobian matrix A ∈ R
m×n, which is a function of

the planning horizon L.

We first consider the IG as the utility function. It is not

difficult to show that Eq. (8) can be written as JIG(a) =

1
2 ln

∣∣∣Λk +ATA
∣∣∣∣∣∣Λk

∣∣∣ . Using the generalized matrix determinant

lemma [9], this equation can be written as

JIG(a) =
1

2
ln
∣∣Im +A · Σk ·AT

∣∣ , Σk ≡ Λ−1
k (10)

as previously suggested in [12], [25] in the context of

compact pose-SLAM and focused active inference.

Eq. (10) provides an exact and general solution for

information-based decision making, where each action can-

didate can produce any number of new factors (nonmyopic

planning) and where factors themselves can be of any motion

or measurement model (unary, pairwise, etc.).

In many problem domains, such as SLAM, inference is

typically performed in the information space and as such,

the joint covariance matrix Σk is not readily available and

needs to be calculated upon demand, which is expensive in

general. While in first sight, it might seem the entire joint

covariance matrix needs to be recovered, in practice this is

not the case due to sparsity of the Jacobian matrix A.

Indeed, recalling Eq. (4), it is evident that A is a sparse
m×n matrix, see Figure 2. More precisely, the only non-zero

blocks in each factor will be of variables that are involved in

this factor. For example, the Jacobian matrix that corresponds

to a motion model factor p(xk+l|xk+l−1, uk+l−1) will in-

volve only two non-zero block entries for the state variables

xk+l and xk+l−1. Factors for most of the measurement

models like projection and range model, will also have only

two non-zero blocks (see Figure 2).

Consequently, only specific entries from the covariance

matrix Σk are really required, and sparse matrix techniques

exist to calculate them efficiently [8], [18]. More formally,

denote by C the set of all variables that are involved in A,

i.e. these are the variables that are involved in at least one

factor among the new factors generated due to the currently

considered candidate action a ≡ uk:k+L−1, see Eq. (3).

Clearly, the columns of A that correspond to the rest of the

variables, X \ C, are entirely filled with zeros (see Figure

2). Thus, Eq. (10) can be re-written as

JIG(a) =
1

2
ln
∣∣Im +AC · ΣM,C

k ·AT
C

∣∣ (11)

where AC is constructed from A by removing all zero

columns, and ΣM,C
k is a prior joint marginal covariance of

variables in C, which should be calculated from the (square

root) information matrix Λk.

Intuitively, the posterior uncertainty that corresponds to

action a is only a function of the prior marginal covariance

over variables involved in A (i.e. ΣM,C
k ) and the new

information introduced by the Jacobian A, with latter also

involving the same variables C. Thus, uncertainty reduction

in the posterior will be significant for large entries in A and

high prior uncertainty over the variables C.

Fig. 2: Concept illustration of A’s structure. Each column

represents some variable from state vector. Each row rep-

resents some factor from Eq. (1). Factor f1 of motion

model that involves two poses xi and xi−1 will have non-

zero values only at columns of xi and xi−1. Factor f2 of

observation model that involves together variables xi and lj
will have non-zero values only at columns of xi and lj .

In particular, in case of myopic decision making with

unary observation models (that involve only a single state

variable), calculation of IG(a) for different candidate actions

only requires recovering the diagonal entries of Σk, regard-

less of the actual correlations between the states, as recently

shown in [14], [15]. However, while in the mentioned papers

the per-action calculation takes O(n), the IG(a) calculation

is O(1) as will be shown in Section III-B.

In problems where inference is performed in the covari-

ance form (e.g., in sensor deployment problems [21]), the

covariance Σk is given. Thus, the calculation in Eq. (11) is

bounded by calculating determinant of an m × m matrix

which is in general O(m3), where m is the number of

constraints due to new factors (for a given candidate action

a). This calculation should be performed for each candidate

action in the set A. Furthermore, in many problems it is

logical to assume that m << n, as m depends mostly on the

planning horizon L, which is typically defined and constant,

while n (state dimensionality) can be huge and grow with

time in real systems (e.g. SLAM). Consequently, given the

prior covariance our complexity for selecting best action is

O(|A|), i.e. independent of state dimensionality n.

To conclude this section, we showed that calculation of

impact for single candidate action does not depend on n.

While this result is interesting by itself in the context of

active inference, in the next section we go a step further and

present an approach to calculate covariance entries, required

by all candidates, with one-time calculation which can be

re-used afterwards.

B. Re-use of Calculations

Calculating IG for different actions in A involves evaluat-

ing Eq. (11) for the corresponding Jacobian matrices from the

set ΦA. As mentioned in Section III-A, these calculations are

computationally cheap given the covariance matrix as they

do not depend on state dimensionality. However, retrieving

covariance separately for each action is expensive and will

most probably not suit real-time applications.

In this section we make the key observation that covariance

calculation for all candidate actions can be united into one

computational block, calculated at the beginning of decision

making phase and then later be re-used upon calculating IG

for each candidate action.



In more detail, recalling that only the joint covariance of

involved variables is needed in order to calculate IG (11),

we define the mutual set CAll as the state variables that

are involved in at least one candidate action in A. Before

evaluating Eq. (11) for each candidate, we perform a one-
time calculation to retrieve the joint covariance for variables

CAll, i.e. ΣM,CAll

k . Then Eq. (11) can be evaluated for each

candidate action a ∈ A by simply retrieving appropriate

blocks from ΣM,CAll

k in order to get ΣM,C
k for action a.

Intuitively, in most cases the candidates will have many

mutual variables as they all are related to the current robot’s

location, in one way or another, making it even more

reasonable to compute CAll in one calculation.

The complexity of this one-time calculation is different

in different applications. When we use information filter,

the system is represented by information matrix Λk, and

in general the inverse of Schur complement of CAll vari-

ables should be calculated. Yet, there are techniques that

use sparse matrix nature of SLAM in order to efficiently

recover marginal covariances [18] or to keep and update them

through the whole SLAM process [13].

In particular, in iSAM [19] the (linearized) system is

represented by a squared root information matrix Rk, which

is encoded, while exploiting sparsity, by the Bayes tree

data structure. Decision making then can be performed by

calculating, for each candidate action, the posterior matrix

Rk+L (e.g. via Givens rotations [19] or another incremen-

tal factorization update method), and then calculating the

determinant |Λk+L| =
n∏

i=1

r2ii, with rii being the ith entry

on the diagonal of Rk+L. Yet, calculating Rk+L for each

action can be expensive, particularly in loop closures, and

requires copy/clone of the original matrix Rk. In contrast,

per candidate calculation in Eq. (11) is constant in general.

C. Extension to Active Focused Inference

In this section we present a novel approach to calculate

entropy of a focused set of variables, and then combine it

with the ideas from the previous sections (generalized matrix

determinant lemma, IG cost function and calculation re-use)

to develop a computationally efficient algorithm for focused
information-based decision making.

First we recall definitions from Section II and introduce

additional notations: XF
k ∈ R

nF denotes the set of focused
variables, XR

k
.
= Xk/X

F
k ∈ R

nR is a set of the remaining

variables, with n = nF + nR. The nF × nF marginal

covariance and information matrices of XF
k are denoted,

respectively, by ΣM,F
k (suffix M for marginal) and ΛM,F

k ≡
(ΣM,F

k )−1. Furthermore, we partition the joint information

matrix Λk as

Σk=

[
ΣM,R

k ΣM,RF
k

(ΣM,RF
k )T ΣM,F

k

]
, Λk=

[
ΛR
k ΛR,F

k

(ΛR,F
k )T ΛF

k

]
.

(12)

where ΛF
k ∈ R

nF×nF is constructed by retrieving from Λk

only the rows and the columns related to F (it is actually

conditional information matrix of XF
k , conditioned on rest

of variables XR
k ), ΛR

k ∈ R
nR×nR is defined similarly for

XR
k , and ΛR,F

k ∈ R
nR×nF contains remaining blocks of Λk

as shown in Eq. (12).
The marginal information matrix of XF

k , i.e. ΛM,F
k , can

be calculated via Schur complement ΛM,F
k = ΛF

k −(ΛRF
k )T ·

(ΛR
k )

−1 · ΛRF
k . However, one of Schur complement’s prop-

erties [26] is
∣∣Λk

∣∣ =
∣∣ΛM,F

k

∣∣ · ∣∣ΛR
k

∣∣, from which we can

conclude that ∣∣ΛM,F
k

∣∣ = 1∣∣ΣM,F
k

∣∣ =
∣∣Λk

∣∣∣∣ΛR
k

∣∣ . (13)

Therefore, the posterior entropy of XF
k+L (see Eq. (9)) is a

function of the posterior Λk+L and its partition ΛR
k+L:

JF
H(a) = H(XF

k+L)=
nF

2
·(1+ln(2π))−1

2
ln

∣∣Λk+L

∣∣∣∣ΛR
k+L

∣∣ . (14)

From Eq. (5) one can observe that ΛR
k+L = ΛR

k + AT
RAR,

where AR ∈ R
m×nR is constructed from Jacobian A by

taking only the columns that are related to variables in XR
k .

The next step is to use IG instead of entropy, with

the same motivation and benefits as in the unfocused
case (Sections III-A and III-B). The optimal action a∗ =
argmaxa∈A JF

IG(a) will maximize JF
IG(a) = H(XF

k ) −
H(XF

k+L), and using the generalized matrix determinant

lemma we can write:

JF
IG(a) =

1

2
ln

∣∣Im +A · Σk ·AT
∣∣∣∣∣Im +AR · ΣR|F

k ·AT
R

∣∣∣ , (15)

where Σ
R|F
k ∈ R

nR×nR is a prior covariance matrix of XR
k

conditioned on XF
k , and it is actually the inverse of ΛR

k .
We can see that the focused and unfocused information

gains have actually simple relation between them JF
IG(a) =

JIG(a) − 1
2 ln

∣∣∣Im +AR · ΣR|F
k ·AT

R

∣∣∣. The second term is

negative and reduces the action’s impact on posterior entropy

of XF
k+L.

As we saw in Eq. (11), sparsity of A provides easier

calculations through A · Σk · AT = AC · ΣM,C
k · AT

C , where

C is set of involved variables. The same idea exactly can

be applied for the term AR · ΣR|F
k · AT

R. Also here we will

end up with the necessity of calculating only those entries of

Σ
R|F
k that correspond to the involved variables from subset

XR
k , which can lead to additional time complexity reduction.
The idea of calculation re-use is also applicable in focused

case in exactly the same way. The one-time calculation here

will contain calculation of ΣM,CAll

k from unfocused case and

calculation of entries from Σ
R|F
k that are related to variables

in subset union XR
k ∪CAll. Then the per-action calculation of

focused IG (15) will contain calculation of two determinants

of m×m matrices, which is almost constant as was explained

in unfocused case.
To conclude, the presented technique solves focused de-

cision making in exact way, and by applying calculation re-

use, the evaluation of each candidate action does not depend

anymore on dimensionality of the state but only on the

planning horizon L.

D. Application to different problem domains
In this section we briefly discuss various problem domains

of decision making and show how our approach can be

applied for each case.



Sensor Deployment: We formulate the problem as fol-

lows. Let X ∈ R
n denote some metric at n locations (e.g.

temperature), and assume its prior distribution is a known

multivariate Gaussian, X ∼ N(μ,Σ) = N−1(η,Λ). In

its most basic form, the objective is to find the optimal

locations set S ⊆ X for deploying k sensors, i.e. S� =
argminS⊆X H(U |S), s.t. |S| = k, where U

.
= X for

unfocused case, and U ⊂ X in the focused case.

Such a problem cannot be efficiently handled due to

exponential number of candidates, and usually the greedy

approach is applied, where sequence of sub-decisions is

made instead, selecting at each the optimal subset S′, s.t.

|S| = k′ with k′ being small enough to be solvable. Given

an observation model of sensor at each location xi as zi =
h(xi) + νi with Gaussian white noise, one can see that

after deploying sensors at S′ = {x1, .., xk′} locations, the

posterior information matrix is Λ+ = Λ+AT
S′ ·AS′ , where

AS′ is a Jacobian matrix of measurements at S′. Applying

our approach and in particular, re-using calculations, each

decision turns to have an already familiar form:

S′∗= argmax
S′⊆X,|S′|=k′

JIG(S
′)=

1

2
ln
∣∣Im +AS′ · Σ ·AT

S′
∣∣ (16)

where Σ is calculated only once for all candidates by

inverting matrix Λ.

Measurement Selection: Due to desired sparsity of the

system only the informative factors should be added (or

on the opposite, uninformative factors should be removed).

To reasonably decide which factor to add/remove the in-

formativeness and change in sparsity of each one of them

need to be computed. The former can be computed through

Eq. (11), where C will be the set of variables involved in the

measurement model, and AC will contain only the relevant

Jacobians of C (see Section III-A), while the latter can be

computed, e.g., by counting the number of non-zero entries

introduced into Λ by including the measurement.

Graph Reduction: Additionally, sometimes it is vital

to reduce number of system variables (e.g. for long-term

SLAM). In such cases, having set of candidate nodes X =
{x1, .., xn}, it would be logical to remove the most uninfor-

mative nodes - the ones that marginalizing them out would

leave the system with the smallest entropy H(X/xi). Using

Eq. (14) and assuming that all nodes have same dimension,

it is possible to show that H(X/xi) will be proportional to

ln
∣∣Λxi

∣∣, where Λxi is a partition of the information matrix Λ
related to variable xi. Calculating log-determinant of every

Λxi is relatively light calculation, linear in n, and will allow

to intelligently decide which node to expel.

IV. RESULTS

In this section we present simulation results of applying

our approach to sensor deployment (both unfocused and

focused cases), and to measurement selection problems. In

the former case, each candidate action represents possible lo-

cations for sensor deployment, with each candidate location

corresponding to a unary factor. We consider a nonmyopic

setting and let each candidate action represent 2 sensor

locations. In the measurement selection problem, we consider

greedy decision making in the context of visual SLAM with

pairwise factors. The code is implemented in Matlab; for

measurement selection we use the GTSAM library [7], [19].

All scenarios were executed on a Linux machine with i7 2.40

GHz processor and 32 Gb of memory.

A. Sensor Deployment (unfocused and focused)

In this section we apply our approach to the sensor de-

ployment problem, considering both focused and unfocused
instantiations of this problem (see Section III-D). The prior

of sensor field is represented by information matrix Λ and it

is dense as usual in problem of sensor deployment.

We compare our re-use approach against the Standard

incremental technique where first posterior squared-root ma-

trix R+ is calculated through Givens rotations, and then the

posterior entropy is computed from its diagonal values (see

Section III-B).

While decision making involves evaluating action impact

for all candidate actions A, we first analyze action impact

calculation (JIG(a)) for a single candidate a ∈ A, comparing

our approach to the Standard approach for the unfocused
case. Figure 3 shows these timing results as a function of

state dimension n (Figure 3a) and as function of Jacobian

A’s height m (Figure 3b). As expected, n effects running

time of both the Standard technique and calculation of Σk

(inverse of Λk which is dense in case of sensor deployment),

while m only effects calculation of IG (red line).

One might think, based on Figures 3a-3b, that the pro-

posed approach is slower than Standard alternatives because

of the time needed for inverse calculation to get Σk. Yet, it is

exactly here that our calculation re-use paradigm comes into

play (see Section III-B): this calculation is performed only

once for all candidate actions A, while, given Σk, calculating

IG for each action is no longer a function of n.

The substantial reduction in running time of our approach,

compared to the Standard approach, can be clearly seen

in Figure 3c, which considers the entire decision making

problem, i.e. evaluation of all candidate actions A. The figure

shows running time for sequential decision making, where at

each time instant we choose the best locations of 2 sensors,

with around |A| = 105 candidate actions. The number of

all sensor locations is n = 625 in this example. Overall, 15
sequential decisions were made. As seen, decision making

using our approach requires only about 3 seconds, while the

the Standard approach requires about 400 seconds.

We now consider the focused version of the sensor de-

ployment problem (Eq. 9). In other words, the goal is to

find sensor locations that maximally reduce uncertainty about

chosen focused variables XF . We have 54 such variables,

which are shown in Figure 4c, while the rest of the problem

setup remains identical to the unfocused case.

In Figure 4 we show the corresponding results of our

approach, compared to the Standard approach. The latter first

calculates, for each candidate action, the posterior Λ+ =
Λ + ATA, followed by calculation of Schur complement

ΛM,F of the focused set XF , and its determinant
∣∣ΛM,F

∣∣
in order to get JF

H(a) (Eq. 9). We also compare to an
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Fig. 3: Unfocused sensor deployment scenario. Running time for calculating impact of a single action as a function of state

dimension n (a) and as a function of Jacobian A’s height m (b). In (a), m = 2, while in (b) n = 625. (c) Running time

for sequential decision making, i.e. evaluating impact of all candidate actions, each representing candidate locations of 2
sensors. (d) prior and final uncertainty of the field, with red dots marking selected locations.
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Fig. 4: Focused sensor deployment scenario, (a) overall time it took to make decision with different approaches, (b) final

uncertainty of the field, with red dots marking selected locations, (c) focused set of variables (green circles) and locations

selected by algorithm (red dots), (d) overall system entropy (above) and entropy of focused set (bottom) after each decision,

with blue line representing unfocused algorithm, and red line - focused algorithm.
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Fig. 5: Measurement selection scenario, (a) state’s dimen-

sion n per decision, (b) overall time it took to evaluate im-

pacts of pose’s all measurements, with different approaches.

additional approach, termed ”Partitions”, which uses Givens

rotations to compute R+ and instead of performing Schur

complement, calculates the posterior entropy of the focused
set via Eq. (14). This equation is one of our main con-

tributions, being an essential step in the derivation of our

approach, and we show here that comparing to Standard

technique, the Partitions approach is considerably faster. Our

focused approach applies the matrix determinant lemma,

transforming Eq. (14) to Eq. (15), which, together with

the re-use concept (Section III-B), makes it possible to

drastically reduce running time as shown in Figure 4a (9
seconds versus about 1000 in Partitions and 1400 in Standard

approach).

B. Measurement Selection in SLAM

In this section we consider a measurement selection

problem (see Section III-D) within a visual aerial SLAM

framework, where one has to choose the most informative

image feature observations from the numerous image fea-

tures typically calculated for each incoming new image. We

demonstrate application of our approach in this problem,

which in contrast to sensor selection problem, involves

pairwise factors of the type p(zi,j |xi, lj), relating between

an image observation zi,j , camera pose xi and landmark lj .

A top view of the considered aerial scenario is shown in

Figure 1b: an aerial vehicle performs visual SLAM, mapping

the environment and at the same time localizing itself. The

figure shows the landmarks and the estimated trajectory,

along with the uncertainty covariance for each time instant.

One can clearly see the impact of loop closure observations

on the latter. In the considered scenario there are about 25000
landmarks and roughly 500 image features in each view.

The number of image features that correspond to pre-

viously seen landmarks is relatively small (30-50), which

corresponds to a much smaller set of actions A compared

to the sensor deployment problem (Section IV-A) where the

cardinality of A was huge (105). Such a dataset was chosen

on purpose in order to show the behavior of the proposed

algorithm in domains with small number of candidates.

Also, in this scenario the actions are myopic since the

measurements are greedily selected.

Additionally, as opposed to sensor deployment problem,

in the current problem, state dimensionality n grows with

time as more poses and landmarks are added into inference

(see Figure 5a) and the information matrix is sparse.



Figure 5b shows the timing results for choosing 10 most

informative image observations comparing the proposed ap-

proach to the Standard approach (computing posterior square

root information matrix using iSAM, and then calculat-

ing determinant, see Section III-B). This decision making

problem is solved sequentially, each time a new image is

acquired. As seen, our approach is substantially faster than

the Standard approach, while providing identical results (the

same decisions). In particular, running time of the Standard

approach for the last time index with n = 10000 state di-

mensionality, is around 7 seconds. In contrast, our approach

takes about 0.05 seconds: calculation time of action impacts

via calculation re-use is negligible (red line), while the one-

time calculation of marginal covariance ΣM,C
k (yellow line)

is efficiently performed, in the current implementation, via

sparse factorization techniques using GTSAM [7], [19].

V. CONCLUSIONS

We developed a novel non-myopic and exact approach for

information theoretic decision making in high dimensional

state spaces, considering both unfocused and focused active

inference problems. The key idea is to use the generalized

matrix determinant lemma and re-use of calculations to

efficiently evaluate the impact of each candidate action on

posterior entropy. Our approach drastically reduces running

time compared to the state of the art, especially when set of

candidate actions is large, with running time being indepen-

dent of state dimensionality. The approach was examined in

two problems, sensor deployment and measurement selection

in visual SLAM, exhibiting in each superior performance

compared to the state of the art, and reducing running time

by several orders of magnitude (e.g. 3 versus 400 seconds in

sensor deployment). Possible directions for future research

include experiments with real data and extension to belief

space planning.
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