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Computationally Efficient Belief Space Planning via
Augmented Matrix Determinant Lemma

and Reuse of Calculations
Dmitry Kopitkov and Vadim Indelman

Abstract—We develop a computationally efficient approach for
evaluating the information theoretic term within belief space plan-
ning (BSP) considering both unfocused and focused problem set-
tings, where uncertainty reduction of the entire system or only
of chosen variables is of interest, respectively. State-of-the-art
approaches typically calculate, for each candidate action, the pos-
terior information (or covariance) matrix and its determinant (re-
quired for entropy). In contrast, our approach reduces run-time
complexity by avoiding these calculations, requiring instead a one-
time calculation that depends on (the increasing with time) state di-
mensionality, and per-candidate calculations that are independent
of the latter. To that end, we develop an augmented version of the
matrix determinant lemma, and show computations can be reused
when evaluating impact of different candidate actions. These two
key ingredients result in a computationally efficient BSP approach
that accounts for different sources of uncertainty and can be used
with various sensing modalities. We examine the unfocused and
focused instances of our approach, and compare it to the state of
the art, in simulation and using real-world data, considering the
problem of autonomous navigation in unknown environments.

Index Terms—SLAM, AI reasoning methods, learning and
adaptive systems, optimization and optimal control.

I. INTRODUCTION

P LANNING under uncertainty is a fundamental problem in
robotics and is required in numerous applications such as

autonomous driving, surveillance, active perception and active
SLAM, where machines need to autonomously determine next
actions to reliably realize a certain objective or task in a best way.
Since the true state of interest is typically unknown and only par-
tially observable through acquired measurements, it can be only
represented through a probability distribution conditioned on
available data. Belief space planning (BSP) approaches reason
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how this distribution (the belief) evolves as a result of candidate
actions and future expected observations.

The BSP problem is an instantiation of a partially observ-
able Markov decision process (POMDP), with the latter being
computationally intractable [1] for all but the smallest problems
due to curse of history and curse of dimensionality. Recent re-
search has therefore focused on the development of sub-optimal
approaches that trade-off optimality and runtime complexity.
These approaches can be classified into those that discretize the
action, state and measurement spaces, and those that operate
over continuous spaces.

Approaches from the former class include point-based value
iteration methods [2], simulation based [3] and sampling based
approaches [4], [5]. On the other hand, approaches that avoid
discretization are often termed direct trajectory optimization
methods (e.g. [6]–[9]); these approaches typically calculate
from a given nominal solution a locally-optimal one.

The user-specified objective function includes different terms
that vary from one application to another. These terms, however,
typically include an information-theoretic term that quantifies
uncertainty reduction (or information gain). Evaluating this term
first involves belief propagation given the candidate action(s),
and then calculating entropy or information gain of that belief
[6], [10], [11].

For Gaussian distributions, these calculations involve com-
puting determinant of a posteriori information (or covari-
ance) matrices, which has O(n3) complexity, with n denoting
state dimension [12]–[14]. In applications that involve high-
dimensional state spaces, such as sensor deployment and SLAM,
these calculations can become computationally expensive, mak-
ing on-line decision making a challenge. Moreover, state of the
art approaches typically perform these calculations from scratch
for each candidate action.

Recently we developed a computationally efficient approach
for decision making under uncertainty by applying matrix deter-
minant lemma and reusing calculation between all candidates
[13]. The developed algorithm gave improved per-candidate
runtime performance which turned to be independent of state
dimensions, thus significantly reducing running time. Yet, that
approach considered state dimensionality to be fixed and thus
can be applied only to a limited type of problems (e.g. sensor
deployment).

In contrast, in this paper we focus on belief space planning
problems that involve state augmentation within future beliefs
due to the introduction of new variables (e.g. future robot
poses). Examples include autonomous navigation in unknown
environments and active SLAM. As we discuss in the sequel,
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our previous approach [13] is not directly applicable to this
type of problems.

In this paper we provide the essential extensions necessary
to apply similar in nature ideas to [13], to the realm of be-
lief space planning in high-dimensional state spaces. Like in
[13] the key idea is to use the (augmented) matrix determinant
lemma to calculate action impact with complexity independent
of state dimensionality n, while re-using calculations between
impact evaluation for different candidate actions. Unlike our
previous approach [13], the solution provided herein supports in-
troduction of new variables within future beliefs, as well as gen-
eral observation and motion models in a non-myopic problem
setting.

In particular, we consider both unfocusedBSP and fo-
cusedBSP problems. In the former case, one is interested in
reducing the uncertainty of the entire joint state, while fo-
cusedBSP approaches seek to reduce uncertainty of only pre-
determined subset of variables. Interestingly, the two cases (un-
focused and focusedBSP) can have significantly different
optimal actions, with an optimal solution for the unfocused
case potentially yielding bad performance for the focused
case, and vice versa [15].

Previously, matrix determinant lemma and calculation re-use
were also applied to improve complexity of informative mea-
surement selection specifically in Pose-SLAM [16], yet it was
limited to unfocused setting with not-augmenting myopic
candidate actions.

Calculating the posterior information matrix in both cases
involves augmenting an appropriate prior information matrix
with zero rows and columns, i.e. zero padding, and then adding
new information due to candidate action (see Eq. (4)). Unfor-
tunately, the matrix determinant lemma is not applicable to the
mentioned augmented prior information matrix since the latter
is singular (even though the posterior information matrix is a full
rank matrix). We develop a new variant of the matrix determi-
nant lemma, called the augmented matrix determinant lemma
(AMDL), that addresses general augmentation of future state
vector. Based on AMDL, we then develop a belief space plan-
ning approach, considering both unfocused and focused
cases.

While the set of focused variables can be very small, exact
standard approaches compute the marginal posterior covariance
(information) matrix, for each action, which involves a compu-
tationally expensive Schur complement operation [17]. In con-
trast, we develop a new method to calculate posterior entropy
of focused variables in BSP setting which does not involve
computation of a posteriori covariance (information) matrices.
We consider two instantiations of the focusedBSP problem,
that differ in the identity of the focused variables (see Fig. 1). In
combination with our AMDL and re-use calculations concepts,
our approach for focusedBSP is significantly faster, while
being exact, compared to the state of the art.

To summarize, our main contributions in this paper are
as follows: (a) we develop an augmented version of matrix
determinant lemma (AMDL), where the subject matrix first
is augmented by zero rows/columns and only then new in-
formation is introduced (b) we develop an approach for a
nonmyopic focused and unfocused belief space plan-
ning in high-dimensional state spaces that uses the augmented
matrix determinant lemma to avoid calculating determinants

Fig. 1. Partitions of Jacobian A ∈ Rm ×N = [C ∈ Rm ×n , D ∈ Rm ×n ′
]

and state vector Xk+L . Note: the shown variable ordering is only for illus-
tration, while the developed approach supports any arbitrary variable ordering.
Also note that all white C¬I blocks (belonging to not involved variables) consist
of only zeros. (a) Unfocused scenario. (b) Focused (XF

k+L ⊆ X ) scenario.

(c) Focused (XF
k+L ⊆ Y ) scenario.

of large matrices, with per-candidate complexity independent
of state dimension; (c) we show how calculations can be
re-used when evaluating impacts of different candidate actions;
(d) we integrate calculations re-use concept and AMDL into
general and highly efficient BSP solver, naming this approach
rAMDL. Due to space limitation, this paper is accompanied with
supplementary material [18].

II. NOTATIONS AND PROBLEM DEFINITION

Consider a high-dimensional problem-specific state vector
Xk ∈ Rn at time tk and observations Z0:k , all observations
acquired up to tk . Each measurement in Z0:k can be repre-
sented through specific observation model and provides infor-
mation about real value of subset of Xk . Moreover, for better
intuition we will consider SLAM as main context example,
though the presented in this paper BSP solution can be ap-
plied to any general estimation problem (with only requirement
for measurements to be conditionally independent with Gaus-
sian noise). As such the Xk represents robot poses per each
time step and environment-related variables (f.e. mapped land-
marks). Further, we model robot motion dynamics and sensor
observations through:

xi+1 = f(xi, ui) + ωi , Zi = h(Xo
i ) + υi (1)

where ui is control at time ti , Xo
i ⊆ Xi indicates the involved

subset of states in the observation function h(·) (f.e. robot and
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landmark poses for projection measurement), and the motion
and measurement noises are Gaussian and thus denote ωi ∼
N (0,Σω,i) and υi ∼ N (0,Συ ,i) with corresponding covariance
matrices Σω,i and Συ ,i .

The joint pdf of state vector can be written then as

P (Xk |Z0:k , u0:k−1) = ηP (x0)
k∏

i=1

P (xi |xi−1 , ui−1)P (Zi |Xo
i )

(2)
where η is a normalization constant and p(x0) is a prior on the
first pose. The motion and observation models P (xi |xi−1 , ui−1)
and P (Zi |Xo

i ) are defined by Eq. (1).
Note that such formulation already implies that multiple

observations zi,j can be taken at each time ti , with Zi =
{zi,1 , ..., zi,ni

} and ni being the number of such observations.
Moreover, in context of SLAM we will have P (Zi |Xo

i ) =∏ni

j=1 P (zi,j |xi, lj ) where robot at position xi observes
landmark lj .

The maximum a posteriori (MAP) estimation of Xk can
be efficiently calculated by exploiting sparsity and re-use
of calculations (see e.g. [19]), providing estimation mean
X̂k and covariance Σk , and current state belief b[Xk ] .=
P (Xk |Z0:k , u0:k−1) = N (X̂k ,Σk ).

In the context of BSP, we typically reason about the evolu-
tion of future beliefs b[Xk+ l ] at different look-ahead steps l for
different candidate sequence of actions. More specifically, let
us focus on the belief b[Xk+L ] .= P (Xk+L |Z0:k+L , u0:k+L−1),
where L is the planning horizon, and uk+1:k+L−1 is the con-
sidered candidate action. Similar to Eq. (2), this belief can be
explicitly written as

b[Xk+L ] = ηb[Xk ]
k+L∏

l=k+1

P (xl |xl−1 , ul−1)P (Zl |Xo
l ) (3)

Similar expressions can be also written for any other look ahead
step l. Although the above belief is conditioned on future ob-
servations Zk+1:k+L , their actual values are unknown. How-
ever, as will be seen below, evaluating the information-theoretic
term only involves the Jacobians and not the actual values of
Zk+1:k+L . One can go further and account for the fact that
measurements are noisy [6], [7], and incorporate reasoning if
a future measurement will indeed be acquired [6], [8], [20];
however, this is outside the scope of this paper.

As seen in Eq. (3), the joint state Xk+L includes new variables
(with respect to the current state Xk ), i.e. future robot states.
Considering Xk ∈ Rn , first, new n′ variables are introduced into
future state vector Xk+L ∈ RN with N

.= n + n′, and then new
factors involving appropriate variables from Xk+L are added to
form a posterior belief b[Xk+L ], as shown in Eq. (3).

Consequently, the posterior information matrix of belief
b[Xk+L ], i.e. Λk+L , can be constructed by first augmenting the
current information matrix Λk with n′ zero rows and columns to
get ΛAug

k+L ∈ RN ×N , and thereafter adding to it new information
(see e.g. [6]):

Λk+L = ΛAug
k+L +

k+L∑

l=k+1

FT
l · Σ−1

ω,l · Fl +
k+L∑

l=k+1

HT
l · Σ−1

υ ,l · Hl

(4)

where Fl
.= �xf and Hl

.= �xh are augmented Jacobian ma-
trices of all new factors in Eq. (3) (motion and observation
terms all together), linearized about the current estimate of Xk

and about initial values of newly introduced variables.
After stacking all new Jacobians in Eq. (4) together into

one single matrix Ã, and combining all noise matrices into
block-diagonal Φ, we will get

Λk+L = ΛAug
k+L + ÃT · Φ−1 · Ã = ΛAug

k+L + AT · A (5)

where A
.= Φ− 1

2 · Ã is m × N matrix that represents both
Jacobians and noise covariances of all new factor terms in
Eq. (3). The above equation can be considered as a single iter-
ation of Gauss-Newton optimization and, similar to prior work
[6], [7], [10], we assume it sufficiently captures the impact of ac-
tion uk :k+L−1 . Under this assumption, the posterior information
matrix Λk+L is independent of (unknown) future observations
Zk+1:k+L [6].

Each block row of matrix A represents a single factor from
new terms in Eq. (3) and has sparse structure. Only a lim-
ited number of its sub-blocks is non-zero, i.e. sub-blocks that
correspond to the involved variables in the relevant factor.

For notational convenience, we define the set of candidate ac-
tions byA = {a1 , a2 , .., ak}with appropriate Jacobian matrices
ΦA = {A1 , A2 , .., Ak}. While the planning horizon is not ex-
plicitly shown, each a ∈ A can represent a sequence of controls,
e.g. a = uk :k+L−1 for L look ahead steps.

A general objective function in BSP can be written as [6]:

J(a) .= E
Zk + 1 :k + L

{L−1∑

l=0

cl(b[Xk+ l ], uk+ l)+cL (b[Xk+L ])
}

(6)

with L immediate cost functions cl , for each look-ahead step,
and one cost function for terminal future belief cL . The cL

usually contains number of different terms related to aspects
such as information measure of future belief, distance to goal
and energy spent on control. Arguably the information term
contains the heaviest calculations of J . Thus in this paper we
will focus only on information-theoretic term of terminal belief
and consider differential entropy H (further referred to just as
entropy) and information gain (IG) as the cost functions. Both
can measure amount of information of future belief b[Xk+L ],
and will lead to the same optimal action. Yet calculation of
one is sometimes more efficient than other, as will be shown in
Section III. Therefore, we consider objective functions JH(a) .=
H (b[Xk+L ]) and JIG (a) .=H(b[Xk ])−H(b[Xk+L ]), where the
belief b[Xk+L ] is a function of the controls a=uk :k+L−1 , see
Eq. (3). The optimal candidate a∗, which produces the most
certain future belief, is then given by a∗=arg mina∈A JH(a),
or by a∗=arg maxa∈A JIG(a) with both being mathematically
identical.

In particular, for Gaussian distributions, entropy is a function
of the determinant of a posterior information (covariance) ma-
trix, i.e. H (b[Xk+L ]) ≡ H (Λk+L ) and the objective functions
can be expressed as

JH(a) =
N · γ

2
− 1

2
ln

∣∣Λk+L

∣∣ (7)

JIG (a) =
n′ · γ

2
+

1
2

ln

∣∣Λk+L

∣∣
∣∣Λk

∣∣ (8)
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where γ
.= 1 + ln(2π), and Λk+L can be calculated according

to Eq. (5). Thus, evaluating J requires determinant calculation
of an N × N matrix, which is in general O(N 3), per candidate
action a ∈ A.

So far, the exposition referred to unfocused BSP, where
the action impact is calculated by considering all the random
variables in the system, i.e. the entire state vector. However, as
will be shown in the sequel, our approach is applicable also to
focused BSP.
Focused BSP is another important problem, where in con-

trast to the former case, only a subset of variables is of interest
(see, e.g., [15], [17], [21]). For example one can look for action
that reduces uncertainty of robot’s final pose. The complexity
of such problem is much higher and proposed techniques suc-
ceeded to solve it in O(kn3) [15], [21] with k being size of
candidate set, and in O(ñ4) [17] with ñ being size of involved
clique.

Considering posterior entropy over the focused variables
XF

k+L ⊆ Xk+L we can write:

JF
H (a) = H(XF

k+L ) =
nF · γ

2
+

1
2

ln
∣∣ΣF

k+L

∣∣ (9)

where nF is the dimension of XF
k+L , and ΣF

k+L is the posterior
marginal covariance of XF

k+L , calculated by simply retrieving
appropriate parts of posterior covariance matrix Σk+L = Λ−1

k+L .
Solving the above problem in a straightforward manner in-

volves O(N 3) operations for each candidate action. In the fol-
lowing section we develop a computationally more efficient
approach that addresses both unfocused and focused BSP
problems. As will be seen, this approach naturally supports non-
myopic planning with arbitrary motion and observation mod-
els, and it is in particular attractive to belief space planning in
high-dimensional state spaces.

III. APPROACH

Our approach, rAMDL, is based on several key ingredients
to significantly reduce computational complexity of the BSP
problem as defined in Section II. In Section III-A we extend the
well-known matrix determinant lemma for the matrix augmen-
tation case. We then discuss in Sections III-B and III-C how this
extension can be used within unfocused and focusedBSP.
In Section III-D we discuss another key component of rAMDL
- the re-use of calculations, which exploits the fact that many
calculations can be shared among different candidate actions.

A. Augmented Matrix Determinant Lemma (AMDL)

In order to simplify calculation of IG within BSP (Eq. (8))
one could resort to matrix determinant lemma and calculation
re-use, similar to our previous work [13]. However, due to
zero-padding, the information matrix ΛAug

k+L is singular and thus
the matrix determinant lemma, and calculation re-use, cannot
be directly applied. In this section we develop a variant of the
matrix determinant lemma for the considered augmented case
(further referred to as AMDL).

Specifically, we want to solve the following problem: Re-
calling Λ + = ΛAug + AT · A (see also Eq. (5)), and dropping
the time indices to avoid clutter, our objective is to express the
determinant of Λ + in terms of Λ and Σ = Λ−1 .

TABLE I
DIFFERENT PARTITIONS OF STATE VARIABLES

Notation Description

Xk state vector at time k

Xk + L state vector at time k + L

X F
k + L subset of Xk + L with focused variables

X subset of Xk + L with old variables, i.e. Xk

Y subset of Xk + L with new variables
X I subset of X with variables involved

in new terms in Eq. (3)
X ¬I subset of X with variables not involved

in new terms in Eq. (3)

Focused BSP (X F
k + L ⊆ Y ), Section III-C1

Y F subset of Y with focused variables
Y U subset of Y with unfocused variables

Focused BSP (X F
k + L ⊆ X ), Section III-C2

X I , F subset of X I with focused variables
X I , U subset of X I with unfocused variables
X ¬I , F subset of X ¬I with focused variables
X ¬I , U subset of X ¬I with unfocused variables

Main Notations: We Use F and U for focused and unfo-
cused Variables, Respectively; I and ¬I for involved and not
involved Variables Respectively; X (Without Subscript) for Old
Variables and Y for New Variables.

Lemma 1: The ratio of determinants of Λ + and Λ can be
calculated through:

∣∣Λ +
∣∣

∣∣Λ
∣∣ =

∣∣Δ
∣∣ · ∣∣DT · Δ−1 · D ∣∣ (10)

with Δ .= Im + C · Σ · CT , where the matrices C ∈ Rm×n and
D ∈ Rm×n ′

are constructed from A by retrieving columns of
only old n variables (denoted as X) and only new n′ variables
(denoted as Y ), respectively (see Fig. 1(a)).

The proof of Lemma 1 is given in Appendix A in [18].
We note the above equations are general standalone solutions

for any augmented positive definite symmetric matrix.

B. Unfocused BSP Through IG and Calculation Re-Use

Here we show how the augmented matrix determinant lemma
from Section III-A can be used to efficiently calculate the
unfocused IG as defined in Eq. (8).

First we introduce different partitions of the joint state Xk+L ,
and the corresponding sub-matrices in the Jacobian matrix A
from Eq. (5) (see Table I and Fig. 1). Recall definitions of Y and
X (see Section III-A) and let XI and X¬I denote, respectively,
the involved and the uninvolved state variables in the new terms
in Eq. (3). We represent by CI and C¬I the columns of matrix A
that correspond to the state variables XI and X¬I , respectively
(see Fig. 1(a)). Note, C¬I ≡ 0.

Next, using AMDL, the determinant ratio between posterior
and prior information matrices is:

∣∣Λk+L

∣∣
∣∣Λk

∣∣ =
∣∣P

∣∣ · ∣∣DT · P−1 · D ∣∣ (11)

where P
.= Im + C · Σk · CT .
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Consequently, the IG objective (8) can be re-written as

JIG (a)=
n′ · γ

2
+

1
2

ln
∣∣P

∣∣ +
1
2

ln
∣∣DT · P−1 · D ∣∣. (12)

Moreover, considering the above partitioning of C, we
conclude C · Σk · CT = CI · ΣX I

k · (CI )T where ΣX I

k is the
marginal prior covariance of XI . Thus, matrix P can be
rewritten as

P = Im + CI · ΣX I

k · (CI )T . (13)

Observe that, given ΣX I

k , all terms in Eq. (13) have relatively
small dimensions and P can be computed efficiently for each
candidate action, with time complexity O(m3) not depending
anymore on state dimension n, similarly to our previous work
[13]. Calculation of the inverse P−1 ∈ Rm×m , which is required
in Eq. (12), is also O(m3) and will also not depend on n. The
run-time of overall calculation in Eq. (12) will have complexity
O(m3 + n′3) and will depend only on number of new factors
m and number of new variables n′. Both are functions of the
planning horizon L and can be considered as being considerably
smaller than state dimension n. Moreover, higher ratios n/m
lead to a bigger advantage of our approach vs the alternatives
(see Section V).

It is worthwhile to mention a specific case, where m = n′,
which happens for example, when candidate action a introduces
only motion (or odometry) factors between the new variables. In
such case it is not difficult to show that Eq. (12) will be reduced
to JIG (a) = n ′ ·γ

2 + ln
∣∣D

∣∣. In other words, the information gain
in such case depends only on the partition D of A (see Fig. 1(a)),
while the prior Λk is not involved in the calculations at all.

Remark 1: It is possible that posterior state dimension will
be different for different candidate actions (e.g. see Section V).
In such case, the entropy (or IG), being function of posterior
eigenvalues’ product, will be of different scale for each candi-
date and can not be directly compared. Thus, dimension normal-
ization of Eq. (12) may be required. Even though the term n ′ ·γ

2
may already play a role of such a normalization, the detailed
investigation of this aspect is outside the scope of this paper.

C. Focused BSP

The focused scenario can be separated to different cases.
One such case is when the set of focused variables XF

k+L con-
tains only new variables added during BSP, as illustrated in
Fig. 1(b), i.e. XF

k+L ⊆ Y . Such a case happens, for example,
when we are interested in reducing entropy of robot’s last pose
within the planning horizon. Another case is when the focused
variables XF

k+L contain only old variables, as shown in Fig. 1(c),
i.e. XF

k+L ⊆ X ≡ Xk . This, for example, could correspond to a
scenario where reducing entropy of already-mapped landmarks
is of interest (e.g. improve 3D reconstruction quality). The third
option is for both new and old variables to be inside XF

k+L .
Below we develop a solution for the first two cases; the third
case can be handled in a similar manner.

Remark 2: In most cases the actual variable ordering will
be more sporadic than the one depicted in Fig. 1. For exam-
ple, iSAM [19] determines variable ordering using COLAMD
[22] to enhance sparsity of the square root information matrix.

We note our approach applies to any arbitrary variable ordering,
with the equations derived herein remaining unchanged.

1) Focused BSP (XF
k+L ⊆ Y ) : First we define ad-

ditional partitions of Jacobian A (see Fig. 1(b)). The sub-
matrices C, D, CI and C¬I were already introduced in the
sections above. We now further partition D into DF and DU ,
that correspond, respectively, to columns of new variables that
are focused and unfocused. Denote the former set of variables as
Y F and the latter as Y U (see also Table I). Note, Y F ≡ XF

k+L .
Lemma 2: The posterior entropy of Y F (Eq. (9)) is given by

JF
H (a) = nF ·γ

2 + 1
2 ln

∣∣ (DU )T · P−1 · DU
∣∣ −

1
2 ln

∣∣DT · P−1 · D ∣∣ (14)

where P is defined in Eq. (13).
The proof of Lemma 2 is given in Appendix B in [18].
We got an exact solution for JF

H (a) that, given ΣX I

k , can be
calculated efficiently with complexity O(m3 + n′3), similarly
to unfocused BSP in Section III-B. In Section III-D we will
explain how the prior marginal covariance term (ΣX I

k ) can be
efficiently retrieved, providing a fast solution for focused
BSP.

2) Focused BSP (XF
k+L ⊆ X) : Similarly to the

previous section, we first introduce additional partitions of Ja-
cobian A for the considered case (see Fig. 1(c)). From the
figure we can see that C¬I can further be partitioned into
C¬I ,U and C¬I ,F . In particular, C−I represents columns of
old variables that are both not involved and unfocused, and
C¬I represents columns of old variables that are both not in-
volved and focused. We denote the former group of variables by
X¬I ,U and the latter by X¬I ,F (see Table I). Likewise, CI can
be partitioned into CI,U and CI,F , representing old involved
variables that are, respectively, unfocused (XI,U ) or focused
(XI,F ). Note that in this case, the set of focused variables is
XF

k+L = XF
k = {X¬I ,F old ∪ XI,F }.

Lemma 3: The focused IG of CF
k is given by

JF
IG (a) = 1

2 (ln
∣∣P

∣∣ + ln
∣∣DT · P−1 · D ∣∣ −

ln
∣∣S

∣∣ − ln
∣∣DT · S−1 · D ∣∣), (15)

where P is defined in Eq. (13), and

S
.= Im + CI,U · ΣX I , U |F

k · (CI,U )T (16)

and where ΣX I , U |F
k is the prior covariance of XI,U conditioned

on XF
k .

The proof of Lemma 3 is given in Appendix C in [18].
Similarly to the cases discussed above (Sections III-B and

III-C1), given ΣX I

k and ΣX I , U |F
k , calculation of JF

IG (a) per
each action a can be performed efficiently with complexity
O(m3 + n′3), independently of state dimension n. The next
section presents our approach to calculate the appropriate en-
tries in the prior covariance only once and re-use the result
whenever required.

D. Re-Use Technique

As we have seen above, unfocusedBSP (Section III-B)
and focusedBSP (XF

k+L ⊆ Y ) (Section III-C1) problems
require prior marginal covariance of the involved variables,
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Fig. 2. Focused BSP scenario with focused robot’s last pose. (a) Dimensions of the BSP problem (state dimension, average number of new terms, average
number of new variables, average number of old involved variables) at each time; (b) Running time of planning, i.e. evaluating impact of all candidate actions,
each representing possible trajectory, normalized by number of candidates; Results are shown both for focused and unfocused cases. The lowest line, labeled
Marginal Cov, represents time it took to calculate prior marginal covariance ΣX A l l

k
in rAMDL approach (see Section III-D). (c) Final robot trajectory. Blue dots

are mapped landmarks, red line with small ellipses is estimated trajectory with pose covariances, blue line is the real trajectory, red pluses with numbers beside
them are robot’s goals. Green mark is robot’s start position; (d) Number of action candidates at each time.

Fig. 3. (a)-(b) FocusedBSP scenario with focused landmarks: (a) Running time of planning, i.e. evaluating impact of all candidate actions, each representing
possible trajectory; (b) Running time from (a) normalized by number of candidates. (c)-(d) FocusedBSP scenario using Victoria Park dataset: (c) Running time
of planning; (d) Final robot trajectory. The lowest line in (a)-(c), labeled Marginal Cov, represents time it took to calculate prior marginal covariance ΣX A l l

k
in

rAMDL approach (see Section III-D).

i.e. XI , in order to use the developed expressions given by
Eqs. (12) and (14). Although each candidate action may induce
a different set of involved variables, in practice these sets will
often have many variables in common as they are all related to
the belief at the current time (e.g. about robot pose), in one way
or another. With this in mind, and conceptually similar to our
previous work [13], we perform a one-time calculation of prior
marginal covariance for all involved variables (due to at least
one candidate action) and re-use it for efficiently calculating IG
and entropy of different candidate actions.

More specifically, denote by XAll ⊆ Xk the subset of vari-
ables that were involved in new terms in (3) for at least one
candidate action. We can now perform a one-time calculation
of the prior marginal covariance for this set, i.e. ΣXA l l

k . The
complexity of such calculation may be different for different
applications. For example, when using an information filter, the
system is represented by information matrix Λk , and in general
the inverse of Schur compliment of XAll variables should be
calculated. However, there are techniques that exploit sparsity
of the underlying matrices in SLAM problems, in order to ef-
ficiently recover marginal covariances [23], and more recently,
to keep and update them incrementally [24]. In Section V we
show that calculation time of ΣXA l l

k while exploiting sparsity

[23], [25] is relatively small comparing to total decision making
time. Still, the more detailed discussion about complexity of
covariance retrieval can be found in publications [23], [24].

For focused BSP (XF
k+L ⊆ X) case (Section III-C2),

we also need the term ΣX I , U |F
k (see Eq. (16)). This term can

be computed by first calculating the prior marginal covariance

Σ{X I , U ,F }
k for the set of variables {XI,U ,XF

k }, and then writing

the Schur complement over the relevant partitions in Σ{X I , U ,F }
k

ΣX I , U |F
k = ΣX I , U

k − ΣX I , U /F
k · (ΣF

k )−1 · ΣF /X I , U

k . (17)

Consequently, we can use a one-time calculation also for the
focused BSP (XF

k+L ⊆ X) case as follows. Let us extend

the set XAll to contain also all focused variables. Once ΣXA l l
k

is calculated, Σ{X I , U ,F }
k will be just its partition and can be

easily retrieved from it. As a result, the calculation of ΣX I , U |F
k

per candidate action becomes computationally cheap (through
Eq. (17)). Furthermore, term (ΣF

k )−1 can be calculated only
once for all candidates.

Remark 3: It is worth mentioning that in practice some of
the rows of CI and CI,U will be zero. Taking this fact into
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account allows to further reduce calculations. The correspond-
ing expressions are omitted here due to page limit.

Remark 4: In full SLAM formulation, where Xk contains
both robot poses and landmarks, and where only landmarks
mapped by time tk are the focused variables (e.g. to improve map
accuracy), it is possible to reduce expressions of focused BSP
(XF

k+L ⊆ X) even further. It can be shown that XI,U ≡ xk

where xk denotes the robot’s current pose; as a result, ΣX I , U |F
k

becomes the same for all candidate actions and can be calculated
only once and further reused by each candidate action.

To summarize this section, the presented technique performs
time-consuming calculations in one computational effort; the
results are then used for efficiently evaluating the impact of
each candidate action. This concept thus preserves expensive
CPU resources of any given autonomous system.

IV. ALTERNATIVE APPROACHES

We compare the presented rAMDL approach with two
alternatives, namely From-Scratch and iSAM techniques.

In From-Scratch, the posterior information matrix Λk+L is
computed by adding new information AT · A, followed by cal-
culation of its determinant. In focused scenario the marginal
information matrix of XF

k+L is retrieved through Schur Com-
plement performed on Λk+L , and its determinant is then com-
puted. The complexity of both focused and unfocused scenarios
is governed by the term O(N 3), with N being posterior state
dimension.

The second alternative, uses the iSAM algorithm [19] to
incrementally update the posterior. Here the (linearized) sys-
tem is represented by a squared root information matrix Rk ,
which is encoded, while exploiting sparsity, by the Bayes
tree data structure. The posterior matrix Rk+L is acquired
(e.g. via Givens rotations [19] or another incremental factor-
ization update method), and then the determinant is calculated

|Λk+L | =
N∏

i=1
r2
ii , with rii being the ith entry on the diagonal

of Rk+L . For focused case, the marginal covariance matrix of
XF

k+L is computed by recursive covariance per-entry equations
[23] that exploit sparsity of matrix Rk+L . The time complexity
of this approach grows with state dimension and is discussed in
more detail in [19], [23].

While this technique outperforms batch From-Scratch, it still
requires calculating Rk+L for each action, which can be ex-
pensive, particularly in loop closures, and requires copy/clone
of the original matrix Rk . In contrast, in rAMDL, the per can-
didate action calculation in Eq. (12) has constant complexity
in general, given the prior marginal covariance terms that are
calculated only once.

V. RESULTS

In this section we present simulation results of applying our
approach to autonomous navigation (both unfocused and
focused cases) on synthetic and real-world datasets. Robot
must visit set of goals in unknown environment while mini-
mizing objective of uncertainty. The code is implemented in
Matlab; we use the GTSAM library [19], [26]. All scenarios
were executed on a Linux machine with i7 2.40 GHz processor
and 32 Gb of memory.

In our synthetic scenario (Fig. 2(c)), the robot’s task is to
sequentially visit a predefined set of goals G = {G1 , .., G14} in
unknown environment while reducing an uncertainty objective
metric. More specifically, at each timestep robot selects best
non-myopic action a = uk :k+L−1 , executes its first control uk

and observes landmarks in radius of 900 meters that can be old
(seen before) and new (met first time). Further, the state estima-
tion is updated, with Xk containing all robot poses and mapped
landmarks till time tk . Candidate actions contain one action that
navigates robot to current goal Gi from a predefined set G (see
Fig. 2(c)) and a set of “loop-closure” actions that are generated
as following. First, landmarks seen till current time in radius of
1000 meters from robot’s current position are clustered, simi-
lar to [10]. Each cluster’s center gcl represents “loop-closure”
target and contributes a candidate action acl = uk :k+L−1 that
takes robot to gcl . The acl is constructed by first descretizing
map into grid and thereafter searching for optimal trajectory
from current position to gcl through A∗ search algorithm, simi-
larly to [6], [10]. The objective has two terms - distance to the
current goal Gi and uncertainty of the last pose (Eq. (14)) in
planning segment J(a) = d(xk+L ,Gi) + JF

H (a). However, the
presented running time refers only to the uncertainty term, as
it is the focus of this paper and because calculation complexity
of first term (euclidean distance) is relatively insignificant. As
can be seen from above, we consider a nonmyopic setting and
let each candidate action represent trajectory of various length.
The state augmentation is done by introducing new robot poses
representing the trajectory. Limiting the clustering process to
a specific radius is done in order to bound the horizon lag of
candidate actions.

In parallel, unfocused uncertainty objective JIG (a) is calcu-
lated (Eq. (12)), only for the purpose of performance comparison
between focused and unfocused cases. The robot’s motion
is controlled only by focused objective.

Three techniques were applied to solve the planning problem -
more common techniques From-Scratch and iSAM (Section IV)
and the proposed rAMDL technique (Sections III-B and III-C1).
The calculated values of objective were numerically compared
to validate that all three approaches are calculating exactly the
same metric.

In Fig. 2(b) it can be clearly seen that while iSAM is faster
than From-Scratch, time of both techniques is growing with
state dimension, as was mentioned before. On the other hand,
time of the rAMDL approach is shown to be bounded, due
to horizon lag of all candidates being limited (see Fig. 2(a)).
Number of candidates in our scenario is around 20 (Fig. 2(d)).
Even with such relatively small candidate set our approach is
faster by order than its alternatives. This trend appears to be
correct for both focused and unfocused objective func-
tions, though for the later the iSAM comes very close to rAMDL
technique.

While comparing time that it took both From-Scratch and
iSAM to calculate focused vs unfocused objective func-
tions, it is easy to see that unfocused one is done much faster.
The reason for this is that focused calculations contain com-
putation of marginal covariance of focused variable (last pose
xk+L ) for each candidate action which requires marginalization
over posterior information matrix Λk+L . Whereas this can be
performed efficiently by exploiting the sparsity of matrix Λk+L

[23], the time complexity is significantly affected by variable
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elimination ordering of iSAM algorithm [19]. While in our sim-
ulation we did not modified the default ordering of iSAM (CO-
LAMD heuristic), different strategies of ordering can be point
for future investigation.

For rAMDL approach both focused and unfocused ob-
jective functions (Eq. (12) and (14)) have similar complexity
which is supported by plotted times.

Next, we repeated our navigation scenario but this time, XF
k+L

contained only landmarks seen by time k (see Fig. 3(a) and (b)).
Such focused set causes both From-Scratch and iSAM tech-
niques to be much slower comparing to their performance on the
first scenario where XF

k+L contained only xk+L . The reason for
this is that XF

k+L ’s dimension is much higher here, representing
dimension of all landmarks, and computation of its marginal co-
variance is much more expensive. In the contrast, performance
of rAMDL has been barely changed due to beneficial re-use of
calculations.

We also performed a hybrid simulation where part of real-
world Victoria Park dataset was used for offline planning
(see Fig. 3(c) and (d)). At each timestep we collected candi-
date actions by clustering landmarks seen till that time, just as it
was done in our first simulation. Further, we calculated focused
objective function for each candidate with XF

k+L containing
only xk+L . After evaluating all candidates, robot was moved to
the next pose according to the dataset. Reminding that our main
contribution is too reduce time complexity, even though the can-
didate metrics were not really used in hybrid scenario, it allowed
us to compare time performance of all presented techniques. As
can be seen, also here the rAMDL outperforms both of its alter-
natives, keeping the same trends that were observed in previous
simulations.

VI. CONCLUSIONS

We developed a computationally efficient and exact approach
for non-myopic focused and unfocused belief space plan-
ning (BSP) in high dimensional state spaces. As a key contri-
bution we developed an augmented version of the well-known
matrix determinant lemma and use it to efficiently evaluate the
impact of each candidate action on posterior entropy, without
explicitly calculating the posterior information (or covariance)
matrices. The second ingredient of our approach is the re-use
of calculations, that exploits the fact that many calculations are
shared among different candidate actions. Our approach drasti-
cally reduces running time compared to the state of the art, es-
pecially when the set of candidate actions is large, with running
time being independent of state dimensionality that increases
over time in a BSP setting. The approach was examined in sim-
ulation and in a real-world dataset considering the problem of
autonomous navigation in unknown environments, exhibiting
superior performance compared to the state of the art.
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