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This document provides supplementary material to the paper [1]. Therefore,
it should not be considered a self-contained document, but instead regarded as
an appendix of [1], and cited as:

"D. Kopitkov and V. Indelman, Computationally Efficient Belief Space Plan-
ning via Augmented Matriz Determinant Lemma and Re-Use of Calculations,
(Supplementary Material, ANPL-2017-01), IEEE Robotics and Automation
Letters (RA-L), accepted."

Throughout this report, standard notations are used to refer to equations
from [1] (e.g. Eq. (5)), while equations introduced herein are represented by the
corresponding Appendix letter, e.g. Egs. (A1) and (A2).

This document is organized as follows: Appendices A, B and C provide
proofs for Lemmas 1, 2 and 3 respectively.

Appendix A: Proof of Lemma 1

Problem definition: Given a positive definite and symmetric matrix A € R"*"
(e.g. a prior information matrix) and its inverse ¥ (prior covariance matrix),
first A is augmented by k zero rows and columns and the result is stored in
A4"9. Then we have matrix A € R™*("+F) and calculate At = A449 + AT . A
(see Figure 1). We would like to express the determinant of AT in terms of A
and X.
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We start by modeling the matrix A4%9 through ¥. By introducing & new
variables, before adding any new constraints involving these variables, we can
say that new variables are uncorrelated with old variables, and their uncertainty
is infinite (nothing yet is known about them). Then the appropriate covariance
matrix after augmentation, 34%9, can just be created by adding k zero rows
and columns to ¥, and setting new diagonal entries with parameter 6, noting
that 6 — oo:
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Next, note that inverse of 4% is given by the following expression:
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where € = %. Taking limit ¢ — 0 into account, we can see that the above

equation converges to A4% as it was defined above. Then in the limit we will
have that (A4%9)~! = $449. Also note that ¢ — 0, even that it never becomes
zero, € # 0, thus if needed we can divide by e without worry.

Taking into account the limit of e, expressing A4"9 through Eq. (A2) will
not change the problem definition. But such a model allows to inverse A4%9:
X0 } 7 (A3)
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and therefore to use the generalized matrix determinant lemma [2]:
A = A% |1 + A AT =
Al |I,+C-S-CT+6-D-DT| (A4)
where matrices C' € R™*" and D € R™*¥ are constructed from A by retrieving
columns of only old n variables and of only new k variables, respectively (see

Figure 2a).
Using the matrix determinant lemma once more, we get:

At =|A|- " |R| - |Iy+6-D" - R~'. D (A5)

where R=1,,+C-%-CT.
Moving e inside the last determinant term, we have:

[A*| =[A]-|R|-|e-Iu +€-0-DT - R~ D (A6)
Recalling that € — 0 and €- 0 = 1, we will get to:
[A*[ =[A]-|R]-|DT- R D (A7)
And the augmented determinant ratio will be:

AT
||A||:\Im+C-E-CT|-]DT-(Im—FC-E-CT)1-D\=
|R|-|DT-R™'-D| (A8)



Appendix B: Proof of Lemma 2

Consider the scenario of focused BSP where the focused set X, ; contains only
newly added variables as defined in Section ITI-C1, with appropriate illustration
shown in Figure 2b.

First let us overview the various partitions of Jacobian A which are relevant
to our current problem (Figure 2b). C, D, CT and O™ were already introduced
in [1]. Further, we can partition D into D - columns of new variables that
are focused Y = X} | € R"*, and DY - columns of new unfocused variables
YY. Considering the figure, the set of all unfocused variables in X}, 7 will be
X, = {XUYY} € R"%, such that N = np + ng, providing another A’s
partition Ar = [C, DY].

Next, we partition the posterior information matrix Ay respectively to the
defined above sets X[, and X[ | as

AR, A
Apr= R/F : (B9)
(Ak—&/-L)T AkF+L

As was shown in previous paper [3], determinant of the marginal covariance of
X, , can be calculated through:

‘AkR-l-L

|Apsr|
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Now let us focus on Af, ; term from the right side. From Eq. (5) we can see
that partition of posterior information matrix A,?Jr ;, can be calculated as:

AR = AR AT Ap (B11)

where A,’?“g B can be constructed by augmenting Ay, with zero rows and columns
in number of YY’s dimension (see Figure 2b). The above equation has aug-
mented determinant form as defined in Section III-A, and so the augmented

determinant lemma can be applied on it. Using Eq. (10) we have:
‘AkR+L
| Al

=|P|-|(DV)T-P~*. DY (B12)
where P is defined in Eq. (13).
Next, dividing Eq. (B12) by Eq. (11), we get

_ M| 09T P DY
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D (B13)
and posterior entropy of X}, ; is given by

1 1
T (a) = T%F (14 In(2m)) + 5 [(DY)T - P~1- DY = S [DT- P71 D).
(B14)
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Note that the variables inside information matrices do not have to be ordered

in any particular way, and that the provided above proof is correct for any
ordering whatsoever.

Appendix C: Proof of Lemma 3

Consider the scenario of focused BSP where the focused set X}, ; contains only
old variables, with appropriate illustration shown in Figure 2c and with various
partitions of Jacobian A defined in Section ITI-C2.

First, let us look again over relevant partitions of Jacobian A (Figure 2c).
The C, D, C! and O™ were already introduced inside the paper [1]. From
the figure we can see that C™! can further be separated into C™"U - columns
of old variables that are both not involved and unfocused (X~'V), and C™/F
- columns of old variables that are both not involved and focused (X 1F).
Additionally, C! can be partitioned into C"U - columns of old variables that
are both involved and unfocused (X’V), and C*F' - columns of old variables
that are both involved and focused (X7¥) (see Table I). The set of focused
variables is then X/, = {X"1¥UX.F} € R"F, containing both involved and
not involved variables. We will denote X/ ; = X/ to remind us that focused
set of variables is part of both X, , ; and X,.

Likewise, the set of all remained, unfocused variables is X, | = {X™V U
XU UY} € R™®, containing all new variables and some of old ones (which can
be involved or not involved), and providing A’s partition A = [C~1:V, C1V D).
Moreover, for purpose of simplification of coming equations we’ll denote set of
old variables inside X[, by X%, having that X% = {X~/:V U XU}, with
appropriate Jacobian partition Cf = LCHI’U, CI’U].

Next, noticing that X, = {X,f U X"} we can partition the prior information
matrix Ay respectively
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Similarly, due to X7, , = {X®fUY}and X, = {X{ UXFUY}={X]U
X[ |} the posterior information matrix Ay can be respectively partitioned
in next two forms:
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We can see from above partitions (C15)-(C17) that posterior information
" xf L . L .
partition AkjEL of X ,ﬁ 1, is simply the augmentation of prior information par-

tition AkX " of X® variables and can be calculated as:

xf._ [AXT 0 CRT.cR (CR)T.D wg X7
Aot _[ 16 0 + ((D))T~CR ((D))TD :A? o X + AR AR (C18)
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where Ar = [CF, D], A?"g’x can be constructed by first taking partition of

prior information matrix Ay related to X®, denoted by AX", and augmenting
it with n’ zero rows and columus (see Figure 2c¢), where n’ is just number of
newly introduced variables.

The above equation has augmented determinant form as defined in Section
ITI-A, and so the augmented determinant lemma can be applied also here. Using
Eq. (10) we have:

R
7’Ak+ﬂ€| =S| |pT-S7' D] (C19)
"
S=1I,+Ct-(AX) 1 ()T (C20)

Then by combining the Eq. (B10), Eq. (11) and the above equations, we can
see that:
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where P is defined in Eq. (13).
And apparently the IG of X} 1, can be calculated as:
1 1
Jig(a) = H(X) —H(X 1) = 510 =il - 510 Pzl =
%(ln|P‘+ln‘DT-P‘1-D‘—1n}S|—ln‘DT-S‘1-D), (C22)
Next, S term can be further reduced. It is clear that (Ai(R)*1 = Ei(R‘F,

or namely the prior conditional covariance matrix of X% conditioned on X ,f .
Moreover, due to sparsity of CF (its sub-block C™1'V contains only zeros) we

R
will actually need only entries of matrix ZkX ¥ that belong to variables involved
in new terms of Eq. (3) (see Figure 2c¢) and can conclude that:

S=1In+CR. X" (oByT Z g, 4otV X ol (o3
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Note that the variables inside information matrices do not have to be ordered

in any particular way, and that the provided above proof is correct for any
ordering whatsoever.
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