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This document provides supplementary material to the paper [1]. Therefore,
it should not be considered a self-contained document, but instead regarded as
an appendix of [1], and cited as:

"D. Kopitkov and V. Indelman, Computationally E�cient Belief Space Plan-
ning via Augmented Matrix Determinant Lemma and Re-Use of Calculations,
(Supplementary Material, ANPL-2017-01), IEEE Robotics and Automation
Letters (RA-L), accepted."

Throughout this report, standard notations are used to refer to equations
from [1] (e.g. Eq. (5)), while equations introduced herein are represented by the
corresponding Appendix letter, e.g. Eqs. (A1) and (A2).

This document is organized as follows: Appendices A, B and C provide
proofs for Lemmas 1, 2 and 3 respectively.

Appendix A: Proof of Lemma 1

Problem de�nition: Given a positive de�nite and symmetric matrix Λ ∈ Rn×n
(e.g. a prior information matrix) and its inverse Σ (prior covariance matrix),
�rst Λ is augmented by k zero rows and columns and the result is stored in
ΛAug. Then we have matrix A ∈ Rm×(n+k) and calculate Λ+ = ΛAug + AT · A
(see Figure 1). We would like to express the determinant of Λ+ in terms of Λ
and Σ.
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We start by modeling the matrix ΛAug through Σ. By introducing k new
variables, before adding any new constraints involving these variables, we can
say that new variables are uncorrelated with old variables, and their uncertainty
is in�nite (nothing yet is known about them). Then the appropriate covariance
matrix after augmentation, ΣAug, can just be created by adding k zero rows
and columns to Σ, and setting new diagonal entries with parameter θ, noting
that θ →∞:

ΣAug=

[
Σ 0
0 θ · I

]
. (A1)

Next, note that inverse of ΣAug is given by the following expression:

(ΣAug)−1 =

[
Λ 0
0 ε · I

]
. (A2)

where ε
.
= 1

θ . Taking limit ε → 0 into account, we can see that the above
equation converges to ΛAug as it was de�ned above. Then in the limit we will
have that (ΛAug)−1 = ΣAug. Also note that ε→ 0, even that it never becomes
zero, ε 6= 0, thus if needed we can divide by ε without worry.

Taking into account the limit of ε, expressing ΛAug through Eq. (A2) will
not change the problem de�nition. But such a model allows to inverse ΛAug:

(ΛAug)−1 =ΣAug=

[
Σ 0
0 θ · I

]
, (A3)

and therefore to use the generalized matrix determinant lemma [2]:∣∣Λ+
∣∣ =

∣∣ΛAug∣∣ · ∣∣Im +A · ΣAug ·AT
∣∣ =∣∣Λ∣∣ · εk · ∣∣Im + C · Σ · CT + θ ·D ·DT

∣∣ (A4)

where matrices C ∈ Rm×n and D ∈ Rm×k are constructed from A by retrieving
columns of only old n variables and of only new k variables, respectively (see
Figure 2a).

Using the matrix determinant lemma once more, we get:∣∣Λ+
∣∣ =

∣∣Λ∣∣ · εk · ∣∣R∣∣ · ∣∣Ik + θ ·DT ·R−1 ·D
∣∣ (A5)

where R
.
= Im + C · Σ · CT .

Moving ε inside the last determinant term, we have:∣∣Λ+
∣∣ =

∣∣Λ∣∣ · ∣∣R∣∣ · ∣∣ε · Ik + ε · θ ·DT ·R−1 ·D
∣∣ (A6)

Recalling that ε→ 0 and ε · θ = 1, we will get to:∣∣Λ+
∣∣ =

∣∣Λ∣∣ · ∣∣R∣∣ · ∣∣DT ·R−1 ·D
∣∣ (A7)

And the augmented determinant ratio will be:∣∣Λ+
∣∣∣∣Λ∣∣ =

∣∣Im + C · Σ · CT
∣∣ · ∣∣DT · (Im + C · Σ · CT )−1 ·D

∣∣ =∣∣R∣∣ · ∣∣DT ·R−1 ·D
∣∣ (A8)
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Appendix B: Proof of Lemma 2

Consider the scenario of focused BSP where the focused set XF
k+L contains only

newly added variables as de�ned in Section III-C1, with appropriate illustration
shown in Figure 2b.

First let us overview the various partitions of Jacobian A which are relevant
to our current problem (Figure 2b). C, D, CI and C¬I were already introduced
in [1]. Further, we can partition D into DF - columns of new variables that
are focused Y F ≡ XF

k+L ∈ RnF , and DU - columns of new unfocused variables

Y U . Considering the �gure, the set of all unfocused variables in Xk+L will be
XR
k+L

.
= {X ∪ Y U} ∈ RnR , such that N = nF + nR, providing another A's

partition AR = [C,DU ].
Next, we partition the posterior information matrix Λk+L respectively to the

de�ned above sets XF
k+L and XR

k+L as

Λk+L=

[
ΛRk+L Λ

R/F
k+L

(Λ
R/F
k+L)T ΛFk+L

]
. (B9)

As was shown in previous paper [3], determinant of the marginal covariance of
XF
k+L can be calculated through:

∣∣ΣFk+L∣∣ =

∣∣ΛRk+L∣∣∣∣Λk+L∣∣ . (B10)

Now let us focus on ΛRk+L term from the right side. From Eq. (5) we can see

that partition of posterior information matrix ΛRk+L can be calculated as:

ΛRk+L = ΛAug,Rk +ATRAR (B11)

where ΛAug,Rk can be constructed by augmenting Λk with zero rows and columns
in number of Y U 's dimension (see Figure 2b). The above equation has aug-
mented determinant form as de�ned in Section III-A, and so the augmented
determinant lemma can be applied on it. Using Eq. (10) we have:∣∣ΛRk+L∣∣∣∣Λk∣∣ =

∣∣P ∣∣ · ∣∣(DU )T · P−1 ·DU
∣∣ (B12)

where P is de�ned in Eq. (13).
Next, dividing Eq. (B12) by Eq. (11), we get

∣∣ΣFk+L∣∣ =

∣∣ΛRk+L∣∣∣∣Λk+L∣∣ =

∣∣(DU )T · P−1 ·DU
∣∣∣∣DT · P−1 ·D

∣∣ , (B13)

and posterior entropy of XF
k+L is given by

JFH(a) =
nF
2
· (1 + ln(2π)) +

1

2
ln
∣∣(DU )T · P−1 ·DU

∣∣− 1

2
ln
∣∣DT · P−1 ·D

∣∣ .
(B14)



�
Note that the variables inside information matrices do not have to be ordered

in any particular way, and that the provided above proof is correct for any
ordering whatsoever.

Appendix C: Proof of Lemma 3

Consider the scenario of focused BSP where the focused set XF
k+L contains only

old variables, with appropriate illustration shown in Figure 2c and with various
partitions of Jacobian A de�ned in Section III-C2.

First, let us look again over relevant partitions of Jacobian A (Figure 2c).
The C, D, CI and C¬I were already introduced inside the paper [1]. From
the �gure we can see that C¬I can further be separated into C¬I,U - columns
of old variables that are both not involved and unfocused (X¬I,U ), and C¬I,F

- columns of old variables that are both not involved and focused (X¬I,F ).
Additionally, CI can be partitioned into CI,U - columns of old variables that
are both involved and unfocused (XI,U ), and CI,F - columns of old variables
that are both involved and focused (XI,F ) (see Table I). The set of focused
variables is then XF

k+L = {X¬I,F ∪XI,F } ∈ RnF , containing both involved and

not involved variables. We will denote XF
k+L

.
= XF

k to remind us that focused
set of variables is part of both Xk+L and Xk.

Likewise, the set of all remained, unfocused variables is XR
k+L

.
= {X¬I,U ∪

XI,U ∪Y } ∈ RnR , containing all new variables and some of old ones (which can
be involved or not involved), and providing A's partition AR = [C¬I,U , CI,U , D].
Moreover, for purpose of simpli�cation of coming equations we'll denote set of
old variables inside XR

k+L by XR, having that XR .
= {X¬I,U ∪ XI,U}, with

appropriate Jacobian partition CR
.
=
[
C¬I,U , CI,U

]
.

Next, noticing that Xk = {XF
k ∪XR} we can partition the prior information

matrix Λk respectively

Λk=

[
ΛFk Λ

F/XR

k

(Λ
F/XR

k )T ΛX
R

k

]
. (C15)

Similarly, due to XR
k+L

.
= {XR ∪Y } and Xk+L = {XF

k ∪XR ∪Y } = {XF
k ∪

XR
k+L} the posterior information matrix Λk+L can be respectively partitioned

in next two forms:

Λk+L=

 ΛFk+L Λ
F/XR

k+L Λ
F/Y
k+L

(Λ
F/XR

k+L )T ΛX
R

k+L Λ
XR/Y
k+L

(Λ
F/Y
k+L )T (Λ

XR/Y
k+L )T ΛYk+L

=

[
ΛFk+L Λ

F/XR
k+L

k+L

(Λ
F/XR

k+L

k+L )T Λ
XR

k+L

k+L

]
(C16)

with

Λ
XR

k+L

k+L =

[
ΛX

R

k+L Λ
XR/Y
k+L

(Λ
XR/Y
k+L )T ΛYk+L

]
. (C17)



We can see from above partitions (C15)-(C17) that posterior information

partition Λ
XR

k+L

k+L of XR
k+L is simply the augmentation of prior information par-

tition ΛX
R

k of XR variables and can be calculated as:

Λ
XR

k+L

k+L =

[
ΛX

R

k 0
0 0

]
+

[
(CR)T · CR (CR)T ·D
(D)T · CR (D)T ·D

]
= ΛAug,X

R

k +ATRAR (C18)

where AR = [CR, D], ΛAug,X
R

k can be constructed by �rst taking partition of

prior information matrix Λk related to XR, denoted by ΛX
R

k , and augmenting
it with n′ zero rows and columns (see Figure 2c), where n′ is just number of
newly introduced variables.

The above equation has augmented determinant form as de�ned in Section
III-A, and so the augmented determinant lemma can be applied also here. Using
Eq. (10) we have: ∣∣ΛRk+L∣∣∣∣∣ΛXR

k

∣∣∣ =
∣∣S∣∣ · ∣∣DT · S−1 ·D

∣∣ (C19)

S = Im + CR · (ΛX
R

k )−1 · (CR)T (C20)

Then by combining the Eq. (B10), Eq. (11) and the above equations, we can
see that: ∣∣ΣFk+L∣∣∣∣ΣFk ∣∣ =

∣∣ΛRk+L∣∣∣∣Λk+L∣∣ ·
∣∣Λk∣∣∣∣∣ΛXR

k

∣∣∣ =

∣∣S∣∣ · ∣∣DT · S−1 ·D
∣∣∣∣P ∣∣ · ∣∣DT · P−1 ·D
∣∣ (C21)

where P is de�ned in Eq. (13).
And apparently the IG of XF

k+L can be calculated as:

JFIG(a) = H(XF
k )−H(XF

k+L) =
1

2
ln
∣∣ΣFk∣∣− 1

2
ln
∣∣ΣFk+L∣∣ =

1

2
(ln
∣∣P ∣∣+ ln

∣∣DT · P−1 ·D
∣∣− ln

∣∣S∣∣− ln
∣∣DT · S−1 ·D

∣∣), (C22)

Next, S term can be further reduced. It is clear that (ΛX
R

k )−1 = Σ
XR|F
k ,

or namely the prior conditional covariance matrix of XR conditioned on XF
k .

Moreover, due to sparsity of CR (its sub-block C¬I,U contains only zeros) we

will actually need only entries of matrix Σ
XR|F
k that belong to variables involved

in new terms of Eq. (3) (see Figure 2c) and can conclude that:

S = Im + CR · ΣX
R|F

k · (CR)T = Im + CI,U · ΣX
I,U |F

k · (CI,U )T (C23)

�
Note that the variables inside information matrices do not have to be ordered

in any particular way, and that the provided above proof is correct for any
ordering whatsoever.
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