Efficient Belief Space Planning in Highdimensional State Spaces by Exploiting Sparsity and Calculation Re-use

Dmitry Kopitkov

Under the supervision of Assistant Prof. Vadim Indelman

Graduate Seminar, March 2017

Introduction

- Belief Space Planning fundamental problem in autonomous systems and artificial intelligence, where states are beliefs
- Examples
 - Active simultaneous localization and mapping (SLAM)
 - Informative planning, active sensing
 - Sensor selection, sensor deployment
 - Multi-agent informative planning and active SLAM
 - Graph sparsification for long-term autonomy
 - Autonomous navigation

Introduction

Information-theoretic belief space planning

- Objective: find action that minimizes an information-theoretic metric (e.g. entropy, information gain, mutual information)
- Decision making over <u>high-dimensional</u> state spaces is expensive!

 $X \in \mathbb{R}^n \qquad \Lambda \equiv \Sigma^{-1} \in \mathbb{R}^{n \times n}$

- Evaluating action impact typically involves determinant calculation: $O(n^3)$
- Existing approaches typically calculate posterior information (covariance) matrix for each candidate action, and then its determinant

BSP Problem Types

- By objective's goal:
 - Unfocused reduce uncertainty of all variables
 - Focused reduce uncertainty of only specific variable subset
- By state dimensionality:
 - Not-Augmented state vector is unchanged by action
 - Augmented new state variables are introduced by action (e.g. new robot poses)

BSP cases	Non-Augmented	Augmented
Unfocused	\checkmark	\checkmark
Focused	\checkmark	\checkmark

Motivating Example I – Belief Space Planning

Joint state vector

$$X_k \doteq \{x_0, \dots, x_k, L_k\}$$

Past & current Mapped robot states environment

• Joint probability distribution function $p(X_k | \mathcal{Z}_k, \mathcal{U}_{k-1})$

$$p\left(X_{k}|\mathcal{Z}_{k},\mathcal{U}_{k-1}\right) = priors \cdot \prod_{i=1}^{k} p\left(x_{i}|x_{i-1},u_{i-1}\right) p\left(z_{i}|X_{i}^{o}\right)$$

$$\overline{\mathbf{General}}$$

General observation model $X_i^o \subseteq X_i$

Computationally-efficient maximum a posteriori inference e.g. [Kaess et al. 2012]

$$p(X_k|\mathcal{Z}_k,\mathcal{U}_{k-1}) \sim N(X_k^*,\Sigma_k)$$

Motivating Example I – Belief Space Planning

- How to autonomously determine future action(s)?
- Involves reasoning, for different candidate actions, about belief evolution
- Problem is to find trajectory with minimal posterior uncertainty:
 - Augmented BSP
 - Objective can be <u>Unfocused</u> / <u>Focused</u>

$$p(X_k | \mathcal{Z}_k, \mathcal{U}_{k-1}) \sim N(X_k^*, \Sigma_k)$$

D. Kopitkov, Efficient Belief Space Planning in High-dimensional State Spaces by Exploiting Sparsity and Calculation Re-use, Graduate Seminar, March 2017

Motivating Example II - Sensor Deployment

- Objective: deploy k sensors in an *N* × *N* area
 - provide localization
 - monitor spatial-temporal field (e.g. temperature)
 - Not-Augmented BSP

Prior uncertainty field:

D. Kopitkov, Efficient Belief Space Planning in High-dimensional State Spaces by Exploiting Sparsity and Calculation Re-use, Graduate Seminar, March 2017

Related Work

- Existing approaches often
 - Propagate posterior belief for each action
 - Compute determinants of huge matrices
 - Assume known environment (e.g. map)
 - Consider small state space

Contributions

- Computationally-efficient information-theoretic BSP approach
 - Without posterior propagation for each candidate action
 - Avoid calculating determinants of large matrices
 - Calculation Re-use
- Per-action evaluation does not depend on state dimension
- Exact and general solution
- Approach addresses all cases of BSP problem:

BSP cases	Non-Augmented	Augmented
Unfocused	\checkmark	\checkmark
Focused	\checkmark	\checkmark

• Consider state vector $X_k \in \mathbb{R}^n$ at time t_k

- e.g. history of robot poses, landmarks, etc.
- *n* can be huge (> 10000), for example..

- Consider its belief $b[X_k] = N(X_k^*, \Sigma_k)$
- Consider candidate actions $\mathcal{A} \doteq \{a_1, a_2, \dots, a_N\}$
- Each candidate a_i provides different posterior belief $b[X_{k+L} | a_i]$
- The goal is to choose optimal action according to some objective:

$$a^* = \operatorname*{argmin}_{a \in \mathcal{A}} J(a)$$

el Institute

echnoloav

- Example from mobile robotics domain:
 - Given action $a = u_{k:k+L-1}$ and new observations $Z_{k+1:k+L}$, future belief is:

(Image is taken from Indelman15ijrr)

• Consider state vector $X_k \in \mathbb{R}^n$ at time t_k

• Posterior at time t_k can be represented in general form via factor terms $F_i = \{f_i^1, \dots, f_i^{n_i}\}$ for $0 \le t_i \le t_k$:

$$\mathbf{P}(X_k \mid history) \propto \prod_{i=0}^k \prod_{j=1}^{n_i} f_i^j(X_i^j)$$

- have form $f_i^j(X_i^j) \propto \exp(-\frac{1}{2} \|h_i^j(X_i^j) r_i^j\|_{\Sigma_i^j}^2)$
- with measurement model $r_i^j = h_i^j(X_i^j) + v_i^j$, $v_i^j \sim N(0, \Sigma_i^j)$
- and *involved* variables X_i^j

• State vector $X_k \in \mathbb{R}^n$ at time t_k • Factors $F_i = \{f_i^1, \dots, f_i^{n_i}\}$ for $0 \le t_i \le t_k$ $P(X_k \mid history) \propto \prod_{i=0}^k \prod_{j=1}^{n_i} f_i^j(X_i^j)$

Maximum A Posteriori (MAP) inference:

$$\underline{b[X_k]} = P(X_k \mid history) = N(X_k^*, \Sigma_k) = N^{-1}(\eta_k^*, \Lambda_k)$$

belief

- Usually information form is used.

- Consider candidate actions $\mathcal{A} \doteq \{a_1, a_2, \dots, a_N\}$
- For each \mathcal{Q}_i we can model
 - Planning horizon L
 - New factors $F_{k+l} = \{f_{k+l}^1, ..., f_{k+l}^{n_{k+l}}\}$ for $1 \le l \le L$
 - New variables X_{new} (empty in not-augmented scenarios)
 - Noise-weighted Jacobian A of new factors with respect to state variables (more details later)
- Posterior belief (considering a_i) is then: $b[X_{k+L}] \propto b[X_k] \prod_{l=k+1}^{k+L} \prod_{j=1}^{n_l} f_l^j(X_l^j)$

General objective function:

14

$$J(a) = \mathop{\mathrm{E}}_{Z_{k+1:k+L}} \left\{ \sum_{l=0}^{L-1} c_l(b[X_{k+l}]) + c_L(b[X_{k+L}]) \right\}$$

- This work information-theoretic objectives
 - (Differential) Entropy measures uncertainty of estimation

$$H(X) = -\int_{X} p(x) \cdot \log p(x) dx$$

- BSP Information term (<u>Unfocused</u>):
 - (Differential) Entropy:

$$J_{\mathrm{H}}(a) = \mathrm{H}\left(b[X_{k+L}]\right)$$
$$a^* = \operatorname*{argmin}_{a \in \mathrm{A}} J_{\mathrm{H}}(a)$$

Information Gain:

$$J_{IG}(a) = H(b[X_k]) - H(b[X_{k+L}])$$
$$a^* = \underset{a \in A}{\operatorname{argmax}} J_{IG}(a)$$

- Mathematically <u>identical</u>
- Each can be computationally preferable in different scenarios

- Assuming Gaussian Distributions
- Objectives for Not-Augmented <u>Unfocused</u> BSP:

$$J_{\rm H}(a) = dim.const - \frac{1}{2} \ln \left| \Lambda_{k+L} \right| , \quad J_{IG}(a) = \frac{1}{2} \ln \frac{\left| \Lambda_{k+L} \right|}{\left| \Lambda_{k} \right|}$$

Objectives for Augmented <u>Unfocused</u> BSP:

NAug Aug
U
$$\checkmark$$
 $J_{\rm H}(a) = dim.const - \frac{1}{2} \ln |\Lambda_{k+L}|$, $J_{IG}(a) = dim.const + \frac{1}{2} \ln \frac{|\Lambda_{k+L}|}{|\Lambda_k|}$

- Where
 - Λ_k is prior information matrix
 - Λ_{k+L} is posterior information matrix

complexity!!!

- Focused setting:
 - Consider focused variables $X_{k+L}^F \subseteq X_{k+L}$
 - Its posterior marginal covariance:

$$(\Sigma_{k+L} = \Lambda_{k+L}^{-1})$$

Measure the posterior information (entropy, IG) for these variables:

$$J_{\rm H}^{F}(a) = {\rm H}(X_{k+L}^{F}) = dim.const + \frac{1}{2}\ln\left|\Sigma_{k+L}^{M,F}\right|$$
$$J_{IG}^{F}(a) = {\rm H}(X_{k}^{F}) - {\rm H}(X_{k+L}^{F}) = \frac{1}{2}\ln\frac{\left|\Sigma_{k}^{M,F}\right|}{\left|\Sigma_{k+L}^{M,F}\right|}$$

D. Kopitkov, Efficient Belief Space Planning in High-dimensional State Spaces by Exploiting Sparsity and Calculation Re-use, Graduate Seminar, March 2017

Standard Approaches

- Propagate posterior belief for each action
- Calculate determinants of large matrices
- Per-action complexity $O(N^3)$, where N is posterior state dimension
- More information later..

BSP cases	Non-Augmented	Augmented
Unfocused	$J_{\rm H}(a) = dim.const - \frac{1}{2} \ln \left \Lambda_{k+L} \right $ $J_{IG}(a) = \frac{1}{2} \ln \frac{\left \Lambda_{k+L} \right }{\left \Lambda_{k} \right }$	$J_{\rm H}(a) = dim.const - \frac{1}{2} \ln \left \Lambda_{k+L} \right $ $J_{IG}(a) = dim.const + \frac{1}{2} \ln \frac{\left \Lambda_{k+L} \right }{\left \Lambda_{k} \right }$
Focused	$J_{\rm H}^{F}(a) = dim.const + \frac{1}{2} \ln \left[\sum_{k+L}^{M,F} \right]$ $J_{IG}^{F}(a) = \frac{1}{2} \ln \left[\frac{\left \sum_{k}^{M,F} \right }{\left \sum_{k+L}^{M,F} \right } \right]$	

D. Kopitkov, Efficient Belief Space Planning in High-dimensional State Spaces by Exploiting Sparsity and Calculation Re-use, Graduate Seminar, March 2017

Our Approach *rAMDL* (Re-use with Augmented Matrix Determinant Lemma)

- Without posterior propagation for each candidate action
- Avoid calculating determinants of large matrices through AMDL
- Calculation Re-use
- Per-action evaluation does not depend on state dimension
- Solve each of BSP problem types:

Factor Graph Representation

Not-Augmented BSP:

D. Kopitkov, Efficient Belief Space Planning in High-dimensional State Spaces by Exploiting Sparsity and Calculation Re-use, Graduate Seminar, March 2017

onomous Navigation and Perception Lab

D. Kopitkov, Efficient Belief Space Planning in High-dimensional State Spaces by Exploiting Sparsity and Calculation Re-use, Graduate Seminar, March 2017

Jacobian Structure Sparsity

- Matrix A is Jacobian of **new** factors, with dimension $m \times N$
- Its rows represent new factors (measurements)
- Its columns represent state variables (old and new)
- Only variables *involved* in new factors will have non-zero columns in A
- Typically *m* and number of *involved* variables is <u>very small</u>

Not-Augmented BSP, Unfocused Setting

BSP cases	Non-Augmented	Augmented
Unfocused	en la	
Focused		

Posterior Information Matrix

• Not-augmented case (no new variables were introduced by \mathcal{Q}_i):

Posterior belief:

Its information matrix:

Matrix Determinant Lemma (MDL)

We use MDL to reduce calculations:

$$\begin{split} \left| \Lambda_k + A^T \cdot A \right| = \left| \Lambda_k \right| \cdot \left| I_m + A \cdot \Sigma_k \cdot A^T \right| \\ \text{where } \Sigma_k \equiv \Lambda_k^{-1} \in \mathbb{R}^{n \times n} \text{,} \quad A \in \mathbb{R}^{m \times n} \end{split}$$

• Applying it to unfocused not-augmented BSP:

$$J_{IG}(a) = \frac{1}{2} \ln \frac{\left|\Lambda_{k+L}\right|}{\left|\Lambda_{k}\right|} = \frac{1}{2} \ln \frac{\left|\Lambda_{k} + A^{T} \cdot A\right|}{\left|\Lambda_{k}\right|}$$
$$= \frac{1}{2} \ln \left|I_{m} + A \cdot \Sigma_{k} \cdot A^{T}\right| = \frac{1}{2} \ln \left|I_{m} + I_{A} \cdot \Sigma_{k}^{M, I_{X}} \cdot (I_{A})^{T}\right|$$

where:

» ${}^{I\!\!A}$ is partition of A with all non-zero columns » $\Sigma_k^{M,{}^{I\!\!X}}$ is prior marginal covariance of <code>involved</code> variables ${}^{I\!\!X}$

Aua

NAua

Not-Augmented BSP, Unfocused Setting

Objective:

$$J_{IG}(a) = \frac{1}{2} \ln \left| I_m + {}^{I}\!A \cdot \Sigma_k^{M, {}^{I}\!X} \cdot ({}^{I}\!A)^T \right|$$

- Calculation complexity depends on m and dim(X)
- Given $\Sigma_k^{M, {}^I\!\!X}$, does not depend on state dimension N
- Only **few entries** from the prior covariance are actually required!
- Very cheap
- For example, in measurement selection m = 1, dim(X) < 10

Calculation Re-use

Key observations:

$$J_{IG}(a) = \frac{1}{2} \ln \left| I_m + {}^{I}\!A \cdot \Sigma_k^{M, {}^{I}\!X} \cdot ({}^{I}\!A)^T \right|$$

- » We can avoid posterior propagation and determinants of large matrices
- » Calculation of action impact does not depend on ${\cal N}$
- » Still, we need $\Sigma_k^{M, {}^t\!X}$
- » Different candidate actions often **share** many *involved* variables ${}^{I}\!X$

We propose re-use of calculation:

- » Combine variables *involved* in all candidate actions into set $X_{All} \subseteq X_k$
- » Perform <u>one-time calculation</u> of $\Sigma_k^{M,X_{All}}$ (depends on *N*)
- » Calculate $J_{IG}(a)$ for each action, using $\Sigma_k^{M,X_{All}}$

Not-Augmented BSP, Focused Setting

BSP cases	Non-Augmented	Augmented
Unfocused		
Focused	and the second s	

Not-Augmented BSP, Focused Setting

- NAugAugU_____F✓
- Consider focused variables $X^F \subseteq X$ and unfocused $X^U = X / X^F$
- Partition $\Sigma_{k/k+L}$ and $\Lambda_{k/k+L}$ appropriately:

$$\Sigma = \begin{bmatrix} \Sigma^{U} & \Sigma^{UF} \\ (\Sigma^{UF})^{T} & \Sigma^{F} \end{bmatrix}, \qquad \Lambda = \begin{bmatrix} \Lambda^{U} & \Lambda^{U,F} \\ (\Lambda^{U,F})^{T} & \Lambda^{F} \end{bmatrix}$$

• We have Λ_k and Λ_{k+L} , but for <u>focused</u> BSP we need $\left|\Sigma_{k+L}^F\right|$ (for entropy) or $\frac{\left|\Sigma_{k+L}^F\right|}{\left|\Sigma_{k+L}^F\right|}$ (for IG) • How to calculate $\frac{\left|\Sigma_{k}^F\right|}{\left|\Sigma_{k+L}^F\right|}$ efficiently?

Not-Augmented BSP, Focused Setting

- NAugAugUF✓
- Consider focused variables $X^F \subseteq X$ and unfocused $X^U = X / X^F$
- Partition $\Sigma_{k/k+L}$ and $\Lambda_{k/k+L}$ appropriately:

$$\Sigma = \begin{bmatrix} \Sigma^{U} & \Sigma^{UF} \\ (\Sigma^{UF})^{T} & \Sigma^{F} \end{bmatrix}, \qquad \Lambda = \begin{bmatrix} \Lambda^{U} & \Lambda^{U,F} \\ (\Lambda^{U,F})^{T} & \Lambda^{F} \end{bmatrix}$$

Connection through Schur complement:

$$(\Sigma_k^F)^{-1} = \Lambda_k^{M,F} = \Lambda_k^F - (\Lambda_k^U F)^T \cdot (\Lambda_k^U)^{-1} \cdot \Lambda_k^U F, \qquad |\Lambda_k| = |\Lambda_k^{M,F}| \cdot |\Lambda_k^U|$$

Can be shown that:

D. Kopitkov, Efficient Belief Space Planning in High-dimensional State Spaces by Exploiting Sparsity and Calculation Re-use, Graduate Seminar, March 2017

• Finally, IG of <u>focused</u> variables X^F can be calculated as:

$$J_{IG}^{F}(a) = \mathcal{H}(X_{k}^{F}) - \mathcal{H}(X_{k+L}^{F}) = \frac{1}{2} \ln \left| I_{m} + {}^{I}A \cdot \Sigma_{k}^{M, {}^{I}X} \cdot ({}^{I}A)^{T} \right| - \frac{1}{2} \ln \left| I_{m} + {}^{I}A^{U} \cdot \Sigma_{k}^{{}^{I}X^{U}|F} \cdot ({}^{I}A^{U})^{T} \right|$$

Not-Augmented BSP, <u>Focused</u> Setting

Final solution:

$$J_{IG}^{F}(a) = \frac{1}{2} \ln \left| I_{m} + {}^{I}A \cdot \Sigma_{k}^{M, {}^{I}X} \cdot ({}^{I}A)^{T} \right| - \frac{1}{2} \ln \left| I_{m} + {}^{I}A^{U} \cdot \Sigma_{k}^{{}^{I}X^{U}|F} \cdot ({}^{I}A^{U})^{T} \right|$$

where:
Partitioning of:
- state X_{k+L}
- matrix A
 $\neg I_{X}^{U}$
 $\neg I_{X}^{F}$
 $\neg I_{A}^{U}$
 $\neg I_{A}^{F}$
 $\neg I_{A}^{U}$
 $\neg I_{A}^{F}$
 I_{A}^{U}
 I_{A}^{F}
 I_{A}^{F}

- Calculation complexity depends on m and $dim({}^{I}\!X)$
- Given $\Sigma_k^{M,{}^I\!\!X}$ and $\Sigma_k^{{}^I\!\!X^U|F}$, does not depend on state dimension N
- For example, in measurement selection m = 1, dim(X) < 10

Aua

NAua

Augmented BSP, Unfocused Setting

BSP cases	Non-Augmented	Augmented
Unfocused		er de la companya de la compa
Focused		

Posterior Information Matrix

• Augmented case (new variables were introduced by \mathcal{Q}_i):

$$\Lambda_{k+L} = \Lambda_{k+L}^{Aug} + A^T \cdot A$$

- Usual Matrix Determinant Lemma cannot be used

Augmented Matrix Determinant Lemma (AMDL)

We developed Lemma:

$$\frac{\left|\Lambda_{k+L}\right|}{\left|\Lambda_{k}\right|} = \frac{\left|\Lambda_{k+L}^{Aug} + A^{T} \cdot A\right|}{\left|\Lambda_{k}\right|} = \left|\Delta\right| \cdot \left|A_{new}^{T} \cdot \Delta^{-1} \cdot A_{new}\right|$$
$$\Delta \doteq I_{m} + A_{old} \cdot \Sigma_{k} \cdot A_{old}^{T}$$

D. Kopitkov, Efficient Belief Space Planning in High-dimensional State Spaces by Exploiting Sparsity and Calculation Re-use, Graduate Seminar, March 2017

Augmented BSP, Unfocused Setting

- Calculation complexity depends on m, $dim(X_{old})$ and $dim(X_{new})$
- Given $\Sigma_k^{M, I_{X_{old}}}$, does not depend on state dimension N
- Only few entries from the prior covariance are actually required!
- Very cheap

Objective:

where

Aug

NAua

Augmented BSP, Focused Setting

BSP cases	Non-Augmented	Augmented
Unfocused		
Focused		and the second s

Augmented BSP, Focused Setting

Different cases:

- $\begin{array}{ll} 1. & X_{k+L}^F \subseteq X_{new} \text{ , for example robot last pose} \\ \mathbf{2.} & X_{k+L}^F \subseteq X_{old} \text{ , for example mapped landmarks} \\ \mathbf{3.} & X_{k+L}^F \subseteq \left\{ X_{old} \text{ U } X_{new} \right\} \text{ , hard to find example} \end{array}$
- We handle first 2 cases

- Calculation complexity depends on m, $dim(X_{old})$ and $dim(X_{new})$
- Given $\Sigma_k^{M, I_{X_{old}}}$, does not depend on state dimension N
- Only few entries from the prior covariance are actually required!
- Very cheap

ECHNION

• Calculation complexity depends on m, $dim({}^{I}\!X_{old})$ and $dim(X_{new})$ • Given $\Sigma_{k}^{M,{}^{I}\!X_{old}}$ and $\Sigma_{k}^{{}^{I}\!X_{old}^{U}|F}$, does not depend on state dimension N

rAMDL Method - Summary

We address all 4 BSP problem types:

BSP cases	Non-Augmented	Augmented
Unfocused	\checkmark	\checkmark
Focused	\checkmark	\checkmark

- No need for posterior belief propagation
- Avoid calculating determinants of large matrices
- Calculation Re-use
- Per-action evaluation does not depend on state dimension
- Exact and general solution

Standard Approaches

- From-Scratch:
 - 1. For each candidate a_i :
 - 1.1. Propagate belief $\Lambda_{k+L} = \Lambda_k + A^T \cdot A$
 - 1.2. <u>Unfocused</u> case compute $|\Lambda_{k+L}|$
 - 1.3. <u>Focused</u> case compute Schur Complement of X_{k+L}^{F} and $|\Sigma_{k+L}^{M,F}|$
 - 2. Select action with minimal posterior entropy

- Per-action complexity - $O(N^3)$ for each candidate, N is posterior state dimension (can be **huge**)

Standard Approaches

- Incremental Smoothing And Mapping (iSAM):
 - Uses iSAM2 incremental inference solver [Kaess et al. 2012] to propagate belief
 - Belief is represented by square-root information matrix R_k
 - Uses incremental factorization techniques (Givens Rotations) for inference
 - Complexity hard to analyze, but faster than *From-Scratch*
 - Still, per-candidate calculation depends on ${\cal N}$

Simulation Results

- Not-Augmented BSP
 - Sensor Deployment
 - Measurement Selection in SLAM
- Augmented BSP
 - Autonomous Navigation in Unknown Environment

Application to Sensor Deployment Problems

Significant time reduction in Unfocused case

Application to Sensor Deployment Problems

Significant time reduction in *Focused* case

TECHNION Israel Institute of Technology

Application to Measurement Selection (in SLAM Context)

ael Institute

Technoloav

Application to Autonomous Navigation in Unknown Environment

• Significant time reduction in *Focused* case – focus on robot's last pose x_{k+L}

Application to Autonomous Navigation in Unknown Environment

 Significant time reduction in *Focused* case – focus on mapped landmarks

Conclusions

rAMDL (Re-use with Augmented Matrix Determinant Lemma):

- Exact (identical to original objectives)
- General (any measurement model)
- Per-candidate complexity does not depend on state dimension
- <u>Unfocused</u> and <u>Focused</u> problem formulations
- Not-Augmented and Augmented cases
- Applicable to Sensor Deployment, Measurement Selection, Graph Sparsification, Active SLAM and many more..

Thanks For Listening

Questions?

Future Research

Tree of Actions

Consider tree of candidates

(Image is taken from "http://mrs.felk.cvut.cz/research/motionplanning")

- Some parts of actions are shared
- Can calculation be re-used?

Tree of Actions

- Yes, it can
- Propagate covariance of only required entries
- Calculate information
 objective through rAMDL

 Preliminary results – very fast solution

nomaus. Navigation and

HNION

rael Institute

Technology

