Efficient Belief Space Planning in Highdimensional State Spaces by Exploiting Sparsity and Calculation Re-use

Dmitry Kopitkov

Under the supervision of Assistant Prof. Vadim Indelman
of Technology

Autonomous Navigation and Perception Lab

Introduction

- Belief Space Planning - fundamental problem in autonomous systems and artificial intelligence, where states are beliefs
- Examples
- Active simultaneous localization and mapping (SLAM)
- Informative planning, active sensing
- Sensor selection, sensor deployment
- Multi-agent informative planning and active SLAM
- Graph sparsification for long-term autonomy
- Autonomous navigation
 of Technology

Dnomous Novigotion ani
Percepption Lob

Introduction

- Information-theoretic belief space planning
- Objective: find action that minimizes an information-theoretic metric (e.g. entropy, information gain, mutual information)
- Decision making over high-dimensional state spaces is expensive!

$$
X \in \mathbb{R}^{n} \quad \Lambda \equiv \Sigma^{-1} \in \mathbb{R}^{n \times n}
$$

- Evaluating action impact typically involves determinant calculation: $O\left(n^{3}\right)$
- Existing approaches typically calculate posterior information (covariance) matrix for each candidate action, and then its determinant Perception Lob

BSP Problem Types

- By objective's goal:
- Unfocused - reduce uncertainty of all variables
- Focused - reduce uncertainty of only specific variable subset
- By state dimensionality:
- Not-Augmented - state vector is unchanged by action
- Augmented - new state variables are introduced by action (e.g. new robot poses)

BSP cases	Non-Augmented	Augmented
Unfocused	\checkmark	\checkmark
Focused	\checkmark	\checkmark

of Technology

Motivating Example I - Belief Space Planning

- Joint state vector

$$
\begin{aligned}
& X_{k} \doteq\left\{x_{0}, \ldots, x_{k}, L_{k}\right\} \\
& \text { Past \& current Mapped } \\
& \text { robot states environment }
\end{aligned}
$$

- Joint probability distribution function $p\left(X_{k} \mid \mathcal{Z}_{k}, \mathcal{U}_{k-1}\right)$

$$
p\left(X_{k} \mid \mathcal{Z}_{k}, \mathcal{U}_{k-1}\right)=\text { priors } \cdot \prod_{i=1}^{k} p\left(x_{i} \mid x_{i-1}, u_{i-1}\right) \frac{p\left(z_{i} \mid X_{i}^{o}\right)}{\frac{\text { General }}{\text { observation model } X_{i}^{o} \subseteq X_{i}}}
$$

- Computationally-efficient maximum a posteriori inference e.g. [Kaess et al. 2012]

$$
p\left(X_{k} \mid \mathcal{Z}_{k}, \mathcal{U}_{k-1}\right) \sim N\left(X_{k}^{*}, \Sigma_{k}\right)
$$

Perception Lob

Motivating Example I - Belief Space Planning

- How to autonomously determine future action(s)?
- Involves reasoning, for different candidate actions, about belief evolution
- Problem is to find trajectory with minimal posterior uncertainty:
- Augmented BSP
- Objective can be Unfocused / Focused

$$
p\left(X_{k} \mid \mathcal{Z}_{k}, \mathcal{U}_{k-1}\right) \sim N\left(X_{k}^{*}, \Sigma_{k}\right)
$$

onomous Novigotion a
Perception Lob

Motivating Example II - Sensor Deployment

- Objective: deploy k sensors in an $N \times N$ area
- provide localization
- monitor spatial-temporal field (e.g. temperature)
- Not-Augmented BSP

Prior uncertainty field:

ANPL
Pencepotion Lob
Pous Navion

Related Work

- Existing approaches often
- Propagate posterior belief for each action
- Compute determinants of huge matrices
- Assume known environment (e.g. map)
- Consider small state space
nomous Novigation and
Percepption Lob

Contributions

- Computationally-efficient information-theoretic BSP approach
- Without posterior propagation for each candidate action
- Avoid calculating determinants of large matrices
- Calculation Re-use
- Per-action evaluation does not depend on state dimension
- Exact and general solution
- Approach addresses all cases of BSP problem:
 ANPL

Autonomous Novigation and
Perception Lot

Problem Formulation

- Consider state vector $X_{k} \in \mathbb{R}^{n}$ at time t_{k}
- e.g. history of robot poses, landmarks, etc.
- n can be huge (>10000), for example..
- Consider its belief $b\left[X_{k}\right]=\mathrm{N}\left(X_{k}^{*}, \Sigma_{k}\right)$
- Consider candidate actions $\mathcal{A} \doteq\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}$
- Each candidate a_{i} provides different posterior belief $b\left[X_{k+L} \mid a_{i}\right]$
- The goal is to choose optimal action according to some objective:

$$
a^{*}=\underset{a \in \mathrm{~A}}{\operatorname{argmin}} J(a)
$$

Problem Formulation

- Example from mobile robotics domain:
- Given action $a=u_{k: k+L-1}$ and new observations $Z_{k+1: k+L}$, future belief is:

(Image is taken from Indelman15ijrr)

$$
\begin{aligned}
& b\left[X_{k+L}\right]=p\left(X_{k+L} \mid Z_{0: k+L}, u_{0: k+L-1}\right) \propto p\left(X_{k} \mid Z_{0: k}, u_{0: k-1}\right) \prod_{l=k+1}^{k+L} \frac{p\left(x_{l} \mid x_{l-1}, u_{l-1}\right)}{\text { motion model }} \frac{p\left(Z_{l} \mid X_{l}^{o}\right)}{\begin{array}{c}
\text { measurement } \\
\text { likelihood }
\end{array}} \\
& \quad » L \text { is planning horizon }
\end{aligned}
$$

toonomous Novigotion a
Perception Lob

Problem Formulation

- Consider state vector $X_{k} \in \mathbb{R}^{n}$ at time t_{k}
- Posterior at time t_{k} can be represented in general form via factor terms $F_{i}=\left\{f_{i}^{1}, \ldots, f_{i}^{n_{i}}\right\}$ for $0 \leq t_{i} \leq t_{k}$:

$$
\mathrm{P}\left(X_{k} \mid \text { history }\right) \propto \prod_{i=0}^{k} \prod_{j=1}^{n_{i}} f_{i}^{j}\left(X_{i}^{j}\right)
$$

where each factor f_{i}^{j} :

- have form $f_{i}^{j}\left(X_{i}^{j}\right) \propto \exp \left(-\frac{1}{2}\left\|h_{i}^{j}\left(X_{i}^{j}\right)-r_{i}^{j}\right\|_{\Sigma_{i}}^{2}\right)$

- with measurement model $r_{i}^{j}=h_{i}^{j}\left(X_{i}^{j}\right)+v_{i}^{j}, \quad v_{i}^{j} \sim \mathrm{~N}\left(0, \Sigma_{i}^{j}\right)$
- and involved variables X_{i}^{j}

Problem Formulation

- State vector $X_{k} \in \mathbb{R}^{n}$ at time t_{k}
- Factors $F_{i}=\left\{f_{i}^{1}, \ldots, f_{i}^{n_{i}}\right\}$ for $0 \leq t_{i} \leq t_{k}$

$$
\mathrm{P}\left(X_{k} \mid \text { history }\right) \propto \prod_{i=0}^{k} \prod_{j=1}^{n_{i}} f_{i}^{j}\left(X_{i}^{j}\right)
$$

- Maximum A Posteriori (MAP) inference:

$$
\frac{b\left[X_{k}\right]}{\text { belief }}=\mathrm{P}\left(X_{k} \mid \text { history }\right)=\mathrm{N}\left(X_{k}^{*}, \Sigma_{k}\right)=\mathrm{N}^{-1}\left(\eta_{k}^{*}, \Lambda_{k}\right)
$$

- Usually information form is used.

Perception Lob

Problem Formulation

- Consider candidate actions $\mathcal{A} \doteq\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}$
- For each a_{i} we can model
- Planning horizon L
- New factors $F_{k+l}=\left\{f_{k+l}^{1}, \ldots, f_{k+l}^{n_{k+l}}\right\}$ for $1 \leq l \leq L$
- New variables $X_{\text {new }}$ (empty in not-augmented scenarios)

NAug Aug

empty

- Noise-weighted Jacobian A of new factors with respect to state variables (more details later)
- Posterior belief (considering a_{i}) is then: $\quad b\left[X_{k+L}\right] \propto b\left[X_{k}\right] \prod_{l=k+1}^{k+L} \prod_{j=1}^{n_{l}} f_{l}^{j}\left(X_{l}^{j}\right)$
- General objective function: $\quad J(a)=\underset{Z_{k+l k+k+L}}{\mathrm{E}}\left\{\sum_{l=0}^{L-1} c_{l}\left(b\left[X_{k+l}\right]\right)+c_{L}\left(b\left[X_{k+L}\right]\right)\right\}$

Problem Formulation

- This work - information-theoretic objectives
- (Differential) Entropy - measures uncertainty of estimation
- BSP Information term (Unfocused):

$$
\mathrm{H}(X)=-\int_{X} p(x) \cdot \log p(x) d x
$$

- (Differential) Entropy:

$$
\begin{gathered}
J_{\mathrm{H}}(a)=\mathrm{H}\left(b\left[X_{k+L}\right]\right) \\
a^{*}=\underset{a \in \mathrm{~A}}{\operatorname{argmin}} J_{\mathrm{H}}(a)
\end{gathered}
$$

- Information Gain:

$$
\begin{aligned}
& J_{I G}(a)=\mathrm{H}\left(b\left[X_{k}\right]\right)-\mathrm{H}\left(b\left[X_{k+L}\right]\right) \\
& a^{*}=\underset{a \in \mathrm{~A}}{\operatorname{argmax}} J_{I G}(a)
\end{aligned}
$$

- Mathematically identical
- Each can be computationally preferable in different scenarios

Problem Formulation

- Assuming Gaussian Distributions
- Objectives for Not-Augmented Unfocused BSP:

NAug Aug | U |
| :--- |
| F |

$$
J_{\mathrm{H}}(a)=\text { dim.const }-\frac{1}{2} \ln \left|\Lambda_{k+L}\right| \quad, \quad J_{I G}(a)=\frac{1}{2} \ln \frac{\left|\Lambda_{k+L}\right|}{\left|\Lambda_{k}\right|}
$$

- Objectives for Augmented Unfocused BSP:

NAug Aug

- Where

$$
J_{\mathrm{H}}(a)=\operatorname{dim} . c o n s t-\frac{1}{2} \ln \left|\Lambda_{k+L}\right|, \quad J_{I G}(a)=\text { dim.const }+\frac{1}{2} \ln \frac{\left|\Lambda_{k+L}\right|}{\left|\Lambda_{k}\right|}
$$

$-\Lambda_{k}$ is prior information matrix

- Λ_{k+L} is posterior information matrix

Problem Formulation

- Focused setting:
- Consider focused variables $X_{k+L}^{F} \subseteq X_{k+L}$
- Its posterior marginal covariance:

$$
\left(\Sigma_{k+L}=\Lambda_{k+L}^{-1}\right)
$$

- Measure the posterior information (entropy, IG) for these variables:

NAug Aug
U

$$
\begin{aligned}
& J_{\mathrm{H}}^{F}(a)=\mathrm{H}\left(X_{k+L}^{F}\right)=\operatorname{dim} \cdot c o n s t+\frac{1}{2} \ln \left|\sum_{k+L}^{M, F}\right| \\
& J_{I G}^{F}(a)=\mathrm{H}\left(X_{k}^{F}\right)-\mathrm{H}\left(X_{k+L}^{F}\right)=\frac{1}{2} \ln \frac{\left|\sum_{k}^{M, F}\right|}{\left|\sum_{k+L}^{M, F}\right|}
\end{aligned}
$$

Perception Lob

Standard Approaches

- Propagate posterior belief for each action
- Calculate determinants of large matrices
- Per-action complexity - $O\left(N^{3}\right)$, where N is posterior state dimension
- More information later..

BSP cases

Non-Augmented

$$
\begin{aligned}
& \left.J_{\mathrm{H}}(a)=\operatorname{dim} \cdot \mathrm{const}-\frac{1}{2} \ln \Lambda_{k+L} \right\rvert\, \\
& J_{I G}(a)=\frac{1}{2} \ln \frac{\left|\Lambda_{k+L}\right|}{\left|\Lambda_{k}\right|}
\end{aligned}
$$

$$
J_{\mathrm{H}}^{F}(a)=\text { dim.const }+\frac{1}{2} \ln \Sigma_{k+L}^{M, F}
$$

$$
J_{I G}^{F}(a)=\frac{1}{2} \ln \frac{\left|\sum_{k}^{M, F}\right|}{\left|\sum_{k+L}^{M, F}\right|}
$$

Our Approach rAMDL (Re-use with Augmented Matrix Determinant Lemma)

- Without posterior propagation for each candidate action
- Avoid calculating determinants of large matrices through AMDL
- Calculation Re-use
- Per-action evaluation does not depend on state dimension
- Solve each of BSP problem types:

Perception Lob

Factor Graph Representation

- Not-Augmented BSP:

Factor Graph Representation

- Augmented BSP:

Perception Lot

Jacobian Structure Sparsity

- Matrix A is Jacobian of new factors, with dimension $m \times N$
- Its rows represent new factors (measurements)
- Its columns represent state variables (old and new)
- Only variables involved in new factors will have non-zero columns in A
- Typically m and number of involved variables is very small

Factors

Appropriate rows in Action Jacobian

Not-Augmented BSP, Unfocused Setting

BSP cases	Non-Augmented	Augmented
Unfocused		
Focused		

onomous Novigation
Perception Lob
of Technology

Posterior Information Matrix

- Not-augmented case (no new variables were introduced by a_{i}):

Posterior belief:

Its information matrix:

ANPL

Matrix Determinant Lemma (MDL)

- We use MDL to reduce calculations:

$$
\begin{aligned}
& \left|\Lambda_{k}+A^{T} \cdot A\right|=\left|\Lambda_{k}\right| \cdot\left|I_{m}+A \cdot \Sigma_{k} \cdot A^{T}\right| \\
& \text { where } \Sigma_{k} \equiv \Lambda_{k}^{-1} \in \mathbb{R}^{n \times n}, \quad A \in \mathbb{R}^{m \times n}
\end{aligned}
$$

- Applying it to unfocused not-augmented BSP:

$$
\begin{aligned}
J_{I G}(a)=\frac{1}{2} \ln \frac{\left|\Lambda_{k+L}\right|}{\left|\Lambda_{k}\right|} & =\frac{1}{2} \ln \frac{\left|\Lambda_{k}+A^{T} \cdot A\right|}{\left|\Lambda_{k}\right|} \\
& =\frac{1}{2} \ln \left|I_{m}+A \cdot \Sigma_{k} \cdot A^{T}\right|=\frac{1}{2} \ln \left|I_{m}+{ }^{I} A \cdot \Sigma_{k}^{M,{ }^{I} X} \cdot\left({ }^{I} A\right)^{T}\right|
\end{aligned}
$$

where:
${ }^{\text {» }}{ }^{I} A$ is partition of A with all non-zero columns
» $\Sigma_{k}^{M,{ }^{I} X}$ is prior marginal covariance of involved variables ${ }^{I} X$

Not-Augmented BSP, Unfocused Setting

- Objective:

$$
J_{I G}(a)=\frac{1}{2} \ln \left|I_{m}+{ }^{I} A \cdot \Sigma_{k}^{M,{ }^{I} X} \cdot\left({ }^{I} A\right)^{T}\right|
$$

- Calculation complexity depends on m and $\operatorname{dim}\left({ }^{I} X\right)$
- Given $\Sigma_{k}^{M,{ }^{I} X}$, does not depend on state dimension N
- Only few entries from the prior covariance are actually required!
- Very cheap
- For example, in measurement selection $m=1, \operatorname{dim}\left({ }^{I} X\right)<10$

Calculation Re-use

- Key observations: $\quad J_{I G}(a)=\frac{1}{2} \ln \left|I_{m}+{ }^{I} A \cdot \Sigma_{k}^{M,{ }^{I} X} \cdot\left({ }^{I} A\right)^{T}\right|$
» We can avoid posterior propagation and determinants of large matrices
» Calculation of action impact does not depend on N
» Still, we need $\Sigma_{k}^{M,{ }^{I} X}$
» Different candidate actions often share many involved variables ${ }^{I} X$
- We propose re-use of calculation:
" Combine variables involved in all candidate actions into set $X_{A l l} \subseteq X_{k}$
» Perform one-time calculation of $\Sigma_{k}^{M, X_{A l l}}$ (depends on N)
» Calculate $J_{I G}(a)$ for each action, using $\Sigma_{k}^{M, X_{A l l}}$

Not-Augmented BSP, Focused Setting

BSP cases	Non-Augmented	Augmented
Unfocused		
Focused	B	

onomous Novigation
Perception Lob
of Technology

Not-Augmented BSP, Focused Setting

- Consider focused variables $X^{F} \subseteq X$ and unfocused $X^{U}=X / X^{F}$
- Partition $\Sigma_{k / k+L}$ and $\Lambda_{k / k+L}$ appropriately:

$$
\Sigma=\left[\begin{array}{cc}
\Sigma^{U} & \Sigma^{U F} \\
\left(\Sigma^{U F}\right)^{T} & \Sigma^{F}
\end{array}\right], \quad \Lambda=\left[\begin{array}{cc}
\Lambda^{U} & \Lambda^{U, F} \\
\left(\Lambda^{U, F}\right)^{T} & \Lambda^{F}
\end{array}\right]
$$

- We have Λ_{k} and Λ_{k+L}, but for focused BSP we need $\left|\Sigma_{k+L}^{F}\right|$ (for entropy) or $\frac{\left|\sum_{k}^{F}\right|}{\left|\sum_{k+L}^{F}\right|}$ (for IG)
- How to calculate $\frac{\left|\Sigma_{k}^{F}\right|}{\left|\Sigma_{k+L}^{F}\right|}$ efficiently?

ANPL of Technology
tonomous Novigotion and
Perception Lob

Not-Augmented BSP, Focused Setting

- Consider focused variables $X^{F} \subseteq X$ and unfocused $X^{U}=X / X^{F}$
- Partition $\Sigma_{k / k+L}$ and $\Lambda_{k / k+L}$ appropriately:

$$
\Sigma=\left[\begin{array}{cc}
\Sigma^{U} & \Sigma^{U F} \\
\left(\Sigma^{U F}\right)^{T} & \Sigma^{F}
\end{array}\right], \quad \Lambda=\left[\begin{array}{cc}
\Lambda^{U} & \Lambda^{U, F} \\
\left(\Lambda^{U, F}\right)^{T} & \Lambda^{F}
\end{array}\right]
$$

- Connection through Schur complement:

$$
\left(\Sigma_{k}^{F}\right)^{-1}=\Lambda_{k}^{M, F}=\Lambda_{k}^{F}-\left(\Lambda_{k}^{U F}\right)^{T} \cdot\left(\Lambda_{k}^{U}\right)^{-1} \cdot \Lambda_{k}^{U F}, \quad\left|\Lambda_{k}\right|=\left|\Lambda_{k}^{M, F}\right| \cdot\left|\Lambda_{k}^{U}\right|
$$

- Can be shown that:
$\frac{\left|\Sigma_{k}^{F}\right|}{\left|\Sigma_{k+L}^{F}\right|}=\frac{\left|\Lambda_{k+L}\right|}{\left|\Lambda_{k}\right|}|\cdot| \frac{\left|\Lambda_{k}^{U}\right|}{\left|\Lambda_{k+L}^{U}\right|}$

Not-Augmented BSP, Focused Setting

- Solving:
$\frac{\left|\sum_{k}^{M, F}\right|}{\left|\sum_{k+L}^{M, F}\right|}=\frac{\left|\Lambda_{k+L}\right|}{\left|\Lambda_{k}\right|} \cdot| | \frac{\left|\Lambda_{k}^{U}\right|}{\left|\Lambda_{k+L}^{U}\right|}$
- Term $\frac{\left|\Lambda_{k+L}\right|}{\left|\Lambda_{k}\right|}$ - through Determinant Lemma
- Note: $\Lambda_{k+L}^{U}=\Lambda_{k}^{U}+\left(A^{U}\right)^{T} \cdot A^{U} \quad$ where A^{U} is partition of A
- Thus, term $\frac{\left|\Lambda_{k}^{U}\right|}{\left|\Lambda_{k+L}^{U}\right|}$ - also through Determinant Lemma
- Finally, IG of focused variables X^{F} can be calculated as:

$$
\begin{aligned}
J_{I G}^{F}(a)= & \mathcal{H}\left(X_{k}^{F}\right)-\mathcal{H}\left(X_{k+L}^{F}\right)= \\
& \frac{1}{2} \ln \left|I_{m}+{ }^{I} A \cdot \Sigma_{k}^{M,{ }^{I} X} \cdot\left({ }^{I} A\right)^{T}\right|-\frac{1}{2} \ln \left|I_{m}+{ }^{I} A^{U} \cdot \Sigma_{k}^{I} X^{U}\right| F \\
& \left({ }^{I} A^{U}\right)^{T} \mid
\end{aligned}
$$

Not-Augmented BSP, Focused Setting

- Final solution:

$$
\left.J_{I G}^{F}(a)=\frac{1}{2} \ln \left|I_{m}+{ }^{I} A \cdot \Sigma_{k}^{M}{ }^{I} X \cdot\left({ }^{I} A\right)^{T}\right|-\frac{1}{2} \ln \left|I_{m}+{ }^{I} A^{U} \cdot \Sigma_{k}^{I} X^{U}\right| F \cdot\left({ }^{I} A^{U}\right)^{T} \right\rvert\,
$$

where:

\[

\]

- Calculation complexity depends on m and $\operatorname{dim}\left({ }^{I} X\right)$
- Given $\Sigma_{k}^{M,{ }^{I} X}$ and $\Sigma_{k}^{{ }^{I} X^{U}} \mid F$, does not depend on state dimension N
- For example, in measurement selection $m=1, \operatorname{dim}\left({ }^{I} X\right)<10$

Augmented BSP, Unfocused Setting

BSP cases	Non-Augmented	Augmented
Unfocused		
Focused		

onomous Novigation
Perception Lob
of Technology

Posterior Information Matrix

- Augmented case (new variables were introduced by a_{i}):

- Usual Matrix Determinant Lemma cannot be used
onomous Novigation
Perception Lob

Augmented Matrix Determinant Lemma (AMDL)

- We developed Lemma:

$$
\begin{aligned}
& \frac{\left|\Lambda_{k+L}\right|}{\left|\Lambda_{k}\right|}=\frac{\left|\Lambda_{k+L}^{\text {Aug }}+A^{T} \cdot A\right|}{\left|\Lambda_{k}\right|}=|\Delta| \cdot\left|A_{\text {new }}^{T} \cdot \Delta^{-1} \cdot A_{\text {new }}\right| \\
& \Delta \doteq I_{m}+A_{\text {old }} \cdot \Sigma_{k} \cdot A_{\text {old }}^{T}
\end{aligned}
$$

of Technology

Augmented BSP, Unfocused Setting

- Objective:

$$
\begin{aligned}
& J_{I G}(a)=\text { dim.const }+\frac{1}{2} \ln |C|+\frac{1}{2} \ln \left|A_{\text {new }}^{T} \cdot C^{-1} \cdot A_{\text {new }}\right| \\
& C=I_{m}+{ }^{I} A_{\text {old }} \cdot \Sigma_{k}^{M, X_{\text {old }}} \cdot\left({ }^{I} A_{\text {old }}\right)^{T}
\end{aligned}
$$

where

- Calculation complexity depends on $m, \operatorname{dim}\left({ }^{I} X_{\text {old }}\right)$ and $\operatorname{dim}\left(X_{\text {new }}\right)$
- Given $\Sigma_{k}^{M,{ }^{I} X_{\text {old }}}$, does not depend on state dimension N
- Only few entries from the prior covariance are actually required!
- Very cheap

Augmented BSP, Focused Setting

BSP cases	Non-Augmented	Augmented
Unfocused		
Focused		By

Atonomous Novigotion and
Perception Lob
of Technology

Augmented BSP, Focused Setting

- Different cases:

1. $X_{k+L}^{F} \subseteq X_{\text {new }}$, for example robot last pose
2. $X_{k+L}^{F} \subseteq X_{\text {old }}$, for example mapped landmarks
3. $X_{k+L}^{F} \subseteq\left\{X_{\text {old }} \cup X_{\text {new }}\right\}$, hard to find example

- We handle first 2 cases

Perception Lob

Augmented BSP, Focused Setting $\mathbf{X}_{\mathrm{k}+\mathrm{L}}^{\mathrm{F}} \subseteq \mathrm{X}_{\text {new }}$

- Objective: $J_{\mathcal{H}}^{F}(a)=$ dim.const $+\frac{1}{2} \ln \left|\left(A_{\text {new }}^{U}\right)^{T} \cdot C^{-1} \cdot A_{\text {new }}^{U}\right|-\frac{1}{2} \ln \left|A_{\text {new }}^{T} \cdot C^{-1} \cdot A_{\text {new }}\right|$

$$
C=I_{m}+{ }^{I} A_{\text {old }} \cdot \Sigma_{k}^{M,{ }^{I} X_{\text {old }}} \cdot\left({ }^{I} A_{\text {old }}\right)^{T}
$$

where

- Calculation complexity depends on $m, \operatorname{dim}\left({ }^{I} X_{\text {old }}\right)$ and $\operatorname{dim}\left(X_{\text {new }}\right)$
- Given $\Sigma_{k}^{M,{ }_{X}}{ }^{\text {old }}$, does not depend on state dimension N
- Only few entries from the prior covariance are actually required!
- Very cheap

ANPL
of Technology
nomous Novigation
Perception Loo

Augmented BSP, Focused Setting $\mathbf{X}_{\mathrm{k}+\mathrm{L}}^{\mathrm{F}} \subseteq \mathbf{X}_{\text {old }}$

- Objective: $J_{I G}^{F}(a)=\frac{1}{2}\left(\ln |C|+\ln \left|A_{\text {new }}^{T} \cdot C^{-1} \cdot A_{\text {new }}\right|-\ln |S|-\ln \left|A_{\text {new }}^{T} \cdot S^{-1} \cdot A_{\text {new }}\right|\right)$

$$
C=I_{m}+{ }^{I} A_{\text {old }} \cdot \Sigma_{k}^{M,{ }^{I} X_{\text {old }}} \cdot\left({ }^{I} A_{\text {old }}\right)^{T}, \quad S \doteq I_{m}+{ }^{I} A_{\text {old }}^{U} \cdot \Sigma_{k}^{I} X_{\text {old }}^{U} \mid F \cdot\left({ }^{I} A_{\text {old }}^{U}\right)^{T}
$$

where

- Calculation complexity depends on $m, \operatorname{dim}\left({ }^{I} X_{\text {old }}\right)$ and $\operatorname{dim}\left(X_{\text {new }}\right)$
- Given $\Sigma_{k}^{M,{ }^{I} \text { Xold }}$ and $\Sigma_{k}^{I^{X}{ }^{U}\left|{ }^{U}\right| F}$, does not depend on state dimension N

rAMDL Method - Summary

- We address all 4 BSP problem types:

BSP cases	Non-Augmented	Augmented
Unfocused	\checkmark	\checkmark
Focused	\checkmark	\checkmark

- No need for posterior belief propagation
- Avoid calculating determinants of large matrices
- Calculation Re-use
- Per-action evaluation does not depend on state dimension
- Exact and general solution

ANPL
Eonomous Novigotion
Perception Lob

Standard Approaches

- From-Scratch:

1. For each candidate a_{i} :
1.1. Propagate belief $\Lambda_{k+L}=\Lambda_{k}+A^{T} \cdot A$
1.2. Unfocused case - compute $\left|\Lambda_{k+L}\right|$
1.3. Focused case - compute Schur Complement of X_{k+L}^{F} and $\left|\Sigma_{k+L}^{M, F}\right|$
2. Select action with minimal posterior entropy

- Per-action complexity - $O\left(N^{3}\right)$ for each candidate, N is posterior state dimension (can be huge)
onomous Novigation
Percepption Lob

Standard Approaches

- Incremental Smoothing And Mapping (iSAM):
- Uses iSAM2 incremental inference solver [Kaess et al. 2012] to propagate belief
- Belief is represented by square-root information matrix R_{k}
- Uses incremental factorization techniques (Givens Rotations) for inference
- Complexity - hard to analyze, but faster than From-Scratch
- Still, per-candidate calculation depends on N

Simulation Results

- Not-Augmented BSP
- Sensor Deployment
- Measurement Selection in SLAM
- Augmented BSP
- Autonomous Navigation in Unknown Environment

ANPL
nomous Novigotion
Perception Lob

Application to Sensor Deployment Problems

- Significant time reduction in Unfocused case

Uncertainty field (dense prior information matrix)
 of Technology

Perception Loto

Application to Sensor Deployment Problems

- Significant time reduction in Focused case

Application to Measurement Selection (in SLAM Context)

'iSAM': for each action, calculate posterior sqrt information matrix via iSAM2, then its determinant

TECHNION
Israel Institute of Technology

Application to Autonomous Navigation in Unknown Environment

- Significant time reduction in Focused case - focus on robot's last pose x_{k+L}
 of Technology

Application to Autonomous Navigation in Unknown Environment

- Significant time reduction in Focused case - focus on mapped landmarks

ANPL
Perception Lob

Conclusions

rAMDL (Re-use with Augmented Matrix Determinant Lemma):

- Exact (identical to original objectives)
- General (any measurement model)
- Per-candidate complexity does not depend on state dimension
- Unfocused and Focused problem formulations
- Not-Augmented and Augmented cases
- Applicable to Sensor Deployment, Measurement Selection, Graph Sparsification, Active SLAM and many more..

Thanks For Listening

nomous Novigatio
Perception Lob

Questions?

Future Research

Tree of Actions

- Consider tree of candidates

(Image is taken from
"http://mrs.felk.cvut.cz/research/motionplanning")
- Some parts of actions are shared
- Can calculation be re-used?

ANPL
toonamous Novigotion chan
Perception Lob

Tree of Actions

- Yes, it can
- Propagate covariance of only required entries
- Calculate information objective through rAMDL
- Preliminary results very fast solution

Perception Loto

