

Motivation

- State information recovery from stochastic sensor measurements is a fundamental task in robotics, challenged by a complex relation between state and measurements.
- Examples:
 - Simultaneous localization and mapping (SLAM)
 - o Autonomous navigation/cars
 - Informative planning, active sensing
 - o State transition in reinforcement learning

Related Work

- Measurement model is typically treated as given or hand-engineered
- Gaussian density assumption prevails, limiting state inference accuracy
- Images are handled through landmark detection/matching using hand-engineered feature detectors (e.g. SIFT). Unreliable due to mistakes in data association and uses only part of image information
- Recently more methods learn measurement likelihood in a supervised way via DL

Objective

- Infer robot pose x from odometry and image measurements by first learning image (representation)
 f likelihood
 - f is the output of a pre-trained CNN classifier
- Challenges:
 - **x** is unknown and only partially observed through measurements **f**
 - Likelihood P(**f**)**x**) is very intricate with both first and second moments spatially changing
 - Opposite conditional P(x|f) is multimodal
- Contributions:
 - We learn likelihood from collected data via another NN
 - We combine it within Bayesian inference and infer robot's trajectory
 - o No data association is required in our approach

Key Idea

- Pre-deployment stage:
 - Image (feature representation) measurement likelihood P(*f*|*x*) is learned from training dataset via DL:

Deployment stage:

 Robot trajectory is estimated via Bayesian inference using the learned likelihood:

0.4

0.3

Validation area:

Learned Likelihood

<u>"park bench" feature:</u>

Learned mean:

300

500 y 400

600

800 700

100

200

0.015

0.01

0.005

300

400

500

600

× 700

800

900

1000

Learned std:

Bayesian Information Recovery from CNN for Probabilistic Inference Dmitry Kopitkov and Vadim Indelman

Bayesian Formulation for Pose Estimation

Results

Estimated trajectory

 Total error for 25 trained models under various inference configurations:

Robust kernel inference

Conclusions

- State information can be recovered from DL-learned measurement likelihood
- The likelihood estimation was very rough
- Gaussian assumption is unrealistic
- Can we do better? (DeepPDF**)

** D. Kopitkov and V. Indelman, "Deep PDF: Probabilistic Surface Optimization and Density Estimation," arXiv preprint arXiv:1807.10728, 2018.