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Motivation
» State information recovery from stochastic sensor
measurements is a fundamental task in robotics,
challenged by a complex relation between state and
measurements.
+  Examples:
o Simultaneous localization and mapping (SLAM)
o Autonomous navigation/cars
o Informative planning, active sensing
o State transition in reinforcement learning

Related Work

» Measurement model is typically treated as given or
hand-engineered

* Gaussian density assumption prevails, limiting state
inference accuracy

» Images are handled through landmark
detection/matching using hand-engineered feature
detectors (e.g. SIFT). Unreliable due to mistakes in
data association and uses only part of image
information

» Recently more methods learn measurement likelihood
in a supervised way via DL
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Objective

Infer robot pose x from odometry and image
measurements by first learning image (representation)
f likelihood

o fisthe output of a pre-trained CNN classifier
Challenges:

o X is unknown and only partially observed
through measurements f

o Likelihood P(f|x) is very intricate with both first
and second moments spatially changing

o Opposite conditional P(x|f) is multimodal
Contributions:

o We learn likelihood from collected data via
another NN

o We combine it within Bayesian inference and
infer robot’s trajectory

o No data association is required in our approach
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Key Idea
*  Pre-deployment stage:

o Image (feature representation) measurement
likelihood P(f|x) is learned from training dataset
via DL:
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» Deployment stage:
o Robot trajectory is estimated via Bayesian
inference using the learned likelihood:
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Learned Likelihood
*  ‘“park bench” feature:
Ground truth: Learned mean: Learned std:

Validation area:
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*  “rocking chair” feature:

Ground truth: Learned mean: Learned std:
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Bayesian Formulation for Pose Estimation
» Belief over trajectory:
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Results
» Estimated trajectory
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»  Estimation error

+ CNN Covariance
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» Total error for 25 trained models under various
inference configurations:
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Robust kernel inference

= -117.3374 - Nomal Inference
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Conclusions

State information can be recovered from DL-learned
measurement likelihood

The likelihood estimation was very rough
Gaussian assumption is unrealistic
Can we do better? (DeepPDF**)

** D. Kopitkov and V. Indelman, “Deep PDF:
Probabilistic Surface Optimization and Density
Estimation,” arXiv preprint arXiv:1807.10728, 2018.




