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Abstract— Simultaneous localization and mapping (SLAM) is
essential in numerous robotics applications such as autonomous
navigation. Traditional SLAM approaches infer the metric state
of the robot along with a metric map of the environment. While
existing algorithms exhibit good results, they are still sensitive
to measurement noise, sensors quality, data association and
are still computationally expensive. Alternatively, we note that
some navigation and mapping missions can be achieved using
only qualitative geometric information, an approach known as
qualitative spatial reasoning (QSR). In this work we contribute
a novel probabilistic qualitative localization and mapping ap-
proach, which extends the state of the art by inferring also
the qualitative state of the camera poses (localization), as well
as incorporating probabilistic connections between views (in
time and in space). Our method is in particular appealing in
scenarios with a small number of salient landmarks and sparse
landmark tracks. We evaluate our approach in simulation and
in a real-world dataset, and show its superior performance and
low complexity compared to state of the art.

I. INTRODUCTION

Robotic and autonomous navigation has a lot of impact
on state of the art applications in various domains. Image
based navigation and specifically simultaneous localization
and mapping (SLAM) have a key role in this field. The
SLAM problem has been extensively investigated in the
past three decades (see [1] for a recent survey of state of
the art approaches and challenges). In particular, highly-
efficient open source SLAM software packages [2]–[5] have
been developed and are gradually incorporated into real-
world applications. Lately, the problem of planning under
uncertainty and active SLAM, also received considerable
research attention (see, e.g. [6], [7]). Here actions are planned
to realize a given task while accounting for different sources
of uncertainty and considering a SLAM setup.

Some challenges, however, still remain. Firstly, while
online performance for passive SLAM can often be achieved,
real-time performance for low cost platforms is more chal-
lenging. In active planning, complexity is still an obstacle.
Secondly, state of the art approaches are mainly based on
linearization of the non-linear geometric problem in order
to use fast solvers [3], [8]–[10]. Usually a large number
of landmarks is used, to enable noise filtering, and outlier
removal algorithms. This is another factor in both high com-
plexity, and error accumulation. These approaches usually
require an accurate initial guess for the estimated variables,
usually achieved using good GPS or IMU sensors, or via
accurate image based camera re-sectioning techniques. An
overview of basic methods can be found in [11], [12]. Some

advanced robust graph optimization techniques that attempt
to be resilient, or less sensitive, to outliers are [13]–[18].

A different approach is topological mapping, where the
environment is described by a graph that holds distinguish-
able places in its vertices, and relative attributes in the
edges (mostly reachability between places). This problem
is also called ”Visual Place Recognition” as the estimation
usually handles a discrete set of places in a graph. These
approaches usually contain minimal or no geometrical data,
and do not fully integrate geometric inference. The advantage
is that no continuous geometric estimation is performed,
and thus errors are not accumulated, and results are less
noise dependent. On the other hand, the lack of geometric
constraints in the estimation usually makes the approaches
computationally expensive. A survey of topological mapping
and place detection approaches can be found in [19].

Qualitative spatial reasoning (QSR) is yet another ap-
proach, where relative geometrical qualitative constraints
are used for understanding the environment. Recent works
include [20], [21] and [22]. In QSR approaches, estimation
of the map and robot states is qualitative, and hence, less
metrically accurate, but also less noise dependent. This po-
tentially requires less noise filtering and a smaller number of
landmarks which can lead to computationally light inference
algorithms. Using a small number of most salient landmarks
can also improve recognition. These properties, in addition
to the insight that many robotic tasks do not require accurate
metric navigation, motivate the research reported herein.

In this work we contribute a probabilistic QSR based
mapping and localization framework designed to be used
for large scale navigation with simple sensors and with low
complexity. Our approach enables using a small number of
high-quality landmarks unlike metric SLAM which is noise-
sensitive and typically exploits many tracked features to
average noise. Before stating the specific contributions of
this work, we discuss the most relevant QSR approaches.

A. Related Work

Application of QSR to robotic navigation and mapping
started in the 90’s. The early work by [23] suggests qual-
itative localization of a robot in reference to landmarks,
given their azimuth ordering in a single view. This approach
has been extended in [24], [25] and [26] to include multi-
view inference, and some aspects of data association and
place re-identification, but not a full SLAM problem. Other
methods address qualitative representation of relative ori-
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Fig. 1: Different partitions of the metric space: (a) left right [31]; (b) Freska’s double
cross [29]; (c) Extended double cross [21]; (d) TPCC [30].

entation between two oriented landmarks such as ”bipole
orientation” [27], and ”OPRAM” [20]. Another approach
for representing spatial location was suggested by Freksa
[28]. A relative frame is built on two landmarks. Instead of
considering metric location in this frame, it is represented by
a partitioning of the space into a discrete set of qualitative
states known as ”Freska’s single cross”. The ”Freska’s double
cross” was suggested in [29], and was recently extended
by McClelland et al. [21] to the ”extended double cross”
(EDC) for a more detailed representation. Other qualitative
partitions were also proposed over the years, including a
”close and far pie” (TPCC) by [30], and ”Left Right” by
[31]. These different partitions are illustrated in Figure 1.

The first full QSR based mapping and navigation frame-
work was proposed by McClelland et al. [21] for NASA’s
planetary rover. They proposed a 2D large scale qualitative
algorithm to be used with low quality monocular camera,
and no GPS or ego-motion sensing. For each triplet of land-
marks observed together, one landmark location is estimated
in a local frame defined by the other two using azimuth
measurements and range ordering of the landmarks. Instead
of considering the metric location of the landmark in this
local frame, it is represented by a discrete set of EDC
partitioned qualitative states. Geometric estimation classifies
each qualitative state to be ”feasible” or ”non-feasible” in a
binary manner. Mapping goal is to associate feasible qual-
itative states to each landmark triplet. Measurements from
different viewpoints can reduce ambiguity. An additional
”composition” stage is taken where qualitative data is prop-
agated through triplets with common landmarks, including
triplets that were never viewed together. Further work [22]
extends this method to probabilistic estimation. Instead of
assigning true or false labels, a probability is calculated for
each qualitative state of each landmark triplet. [32] takes
another step, and addresses qualitative active planning.

However, [21] and [22] do not model any spatial connec-
tion between different camera views of the same triplet (such
as geometric triangulation). Furthermore, no probabilistic
”composition” is addressed. Finally, in both papers the focus
is on mapping, and camera pose is not inferred.

B. Contributions

In this work we develop a probabilistic qualitative ap-
proach for localization and mapping. We aim for an al-
gorithm used with simple sensors (such as low quality
monocular camera, with no GPS or significant IMU), low
complexity, and large scale navigation. Low complexity and
robustness to error potentially enables a global non-linear

solution that is better suited to large scale navigation and
does not require prior knowledge. The properties of QSR
estimation enable to achieve this at the expense of accuracy.
These properties, in addition to the key insight that many
robotic tasks do not require accurate metric navigation, drive
us to further extend existing QSR approaches. Moreover, we
envision the developed approach to be a step towards an
active QSR planning framework, leveraging a belief space
planning formulation (e.g. [7], [18], [33]).

Our approach uses a different and innovative formulation
of the problem to address some of the key limitations and
introduces a number of improvements with respect to the
state of the art, most notably [21] and [22]. In particular, our
main contributions are as follows: (a) While existing QSR
approaches handle mainly the environment mapping, we de-
velop a full probabilistic QSR approach for concurrent qual-
itative localization and mapping; (b) We incorporate motion
model and line of sight triangulation to improve both results,
and complexity; (c) We further develop an approximated
algorithm that uses inherent robustness of the qualitative
inference to small errors, and is much faster but with similar
performance; (d) We develop probabilistic composition for
propagating information between different landmark triplets,
thereby extending the deterministic approach developed in
the seminal work [21], and further improving results; (e) We
evaluate the performance of our approach in simulation and
in a real-world dataset, and compare it to the state of the art.

The paper is organized as follows. Section II introduces
notations and provides problem formulation. Section III
describes in detail our approach. It presents a probabilis-
tic formulation of the qualitative localization and mapping
problem. Then it presents in detail our proposed algorithm,
while also addressing run-time aspects. Lastly it also includes
the derivation of our probabilistic composition technique.
Section IV provides performance evaluation, while Section
V concludes the discussion and suggests several avenues for
future research. Additional details and result analysis can be
found in [34].

II. NOTATIONS AND PROBLEM FORMULATION

We consider a robot navigating in and mapping an un-
known 2D environment. As the robot moves, it tracks a
few high quality landmarks across different image frames.
Our goal is to qualitatively describe the environment, and
camera trajectory. Motivated by the approach in [21], [22],
we consider multiple landmark-centric frames, and use qual-
itative states to describe the geometry of landmark triplets,
and corresponding camera poses.

For each three landmarks A,B,C observed together, we
set a landmark-centric local frame so that landmark A is
located in LA = (0, 0) and landmark B in LB = (0, 1).
The metric location of landmark C in this frame is LAB:C .
Alternatively, we use a qualitative partition of the space
(see Figure 1), and associate C to a discrete set of m
qualitative states. The qualitative state SAB:C is a vector
of dimension m × 1 that contains hypothesis for C being
in each qualitative state. The event that a qualitative state



SAB:C = i;∈ {1, ...,m} is denoted as sAB:C
i . Environment

map is then described as the collection of all observed
landmark triplets (i, j, k), and their qualitative states {Si,j:k}
(see Figures 2a and 2b).

Similarly, the metric location of the camera in the AB
frame at time step n is denoted by XAB

n and the corre-
sponding camera qualitative state is denoted by SAB:X

n . The
camera qualitative location at time step n is then described as
the collection of states in all local frames: SXn = {Si,j:Xn }.

The partition of the space into a set of qualitative states can
be chosen freely to fit different tasks, platforms or scenarios.
In our implementation and tests we use the EDC partition
that was used in previous works [22], [21].

The true mapping and localization qualitative states (Sij:k

and Si,j:X1:n ) are unknown; In this work we infer them within
a Bayesian framework using a set of measurements ZABC1:n =
{ZABCj ; j ∈ {1, ..., n}} from time steps 1, ..., n. ZABCj

denotes an observation of landmarks A,B,C from time
instant j. We note that while, for simplicity, this notation
suggests observations are assumed to exist for all time
instances [1, n], in practice our method does not require this
assumption, as further elaborated in Section III-E.

Herein, we also introduce an innovative usage of a motion
model within a qualitative formulation, which was not incor-
porated in previous work. As will be seen, this enables us
to use stronger geometric constraints to improve estimation.
Thus, we assume some action an−1 is given for moving the
camera between time instances n− 1 and n.

Our goal at time instant n is to estimate the posterior
probabilities of landmark C and camera qualitative states,
given history HABC

n
.
= {ZABC1:n , a1:n−1}:

P(SAB:C |HABC
n ) , P(SAB:X

1:n |HABC
n ). (1)

The formulation in this paper is general, and any measure-
ment and motion model can be taken (although we use the
Markov assumption). In our implementation and results we
consider 2D coordinate systems, and a monocular camera
setup. Therefore LAB:C = (xAB:C , yAB:C) and XAB

n =
(xAB:X
n , yAB:X

n , αAB:X
n ), where α is the camera orientation

angle. Measurements are bearing angles to landmarks A,B
and C, i.e. ZABCn = {φAn , φBn , φCn }.

For this setup we assume a Gaussian measurement model,
which is given for i ∈ {A,B,C} by

P(φin|Li, Xn) ∝ exp

{
−1

2
‖φin − f(Li, Xn)‖2Σv

}
, (2)

where Σv is the measurement noise covariance and

f(Li, Xn)
.
= atan2(yi − yXn , xi − xXn ). (3)

Considering bearing measurements to different landmarks
statistically independent, the joint likelihood for ZABCn is
readily obtained as a product of individual likelihood terms
(2) for each bearing measurement φin ∈ ZABCn .

In our setup, we also consider a simple motion model
that can be used with a monocular camera, and basic
azimuth keeping control. Specifically, we consider the robot

is moving along a specific heading an = ψn relative to the
previous camera frame and assume Gaussian noise as in

P(XAB
n |XAB

n−1, an−1)∝

exp

{
−1

2
‖an−1−g(XAB

n ,XAB
n−1)‖2Σw

}
,

(4)

where Σw is the motion (process) noise covariance and
g(.) is defined, similarly to Eq. (3), as g(Xn, Xn−1)

.
=

atan2(yXn − yXn−1, x
X
n − xXn−1). We note the motion model

(4) does not constrain the camera orientation. As will be
seen, incorporating a motion model, even as simple as this,
leads to a much better qualitative state estimation.

III. APPROACH

In this section we present our probabilistic qualitative
localization and mapping approach. First, we formulate the
probabilistic inference of camera and landmark triplet qual-
itative states with multiple views, incorporating a motion
model. Next, we present our implementation and how it
uses the advantages of our approach. Finally, we derive a
novel probabilistic composition algorithm for propagating
information between different landmark triplets.

As specified in Section II, our approach considers multiple
landmark-centric triplet frames. For each local frame, the
underlying metric problem is actually a SLAM problem
determining camera poses and landmark C location, given a
set of noisy measurements P(XAB

1:n , L
AB:C |ZABC1:n ). It is well

known that incorporating a motion model, makes the problem
easier to solve, and requieres less measurements. This insight
is also valid for the qualitative problem. Therefore we
expect incorporating a motion model will enable solving the
qualitative problem better and with less measurements and
prior knowledge (demonstrated by results in section IV-A).

A. Probabilistic Formulation
In this section we focus on a single triplet of landmarks

A,B and C viewed together at time steps 1, . . . , n. Given the
motion model (4) for each camera transition, we want to infer
the posterior probabilities (1) of landmark C qualitative state,
and camera qualitative trajectory, both in the AB frame. To
reduce clutter, in this section we drop the superscript AB
notation, as long as everything is in the AB frame. Also, for
easier explanation, instead of looking at P(SC |Hn) we look
at the separate components of this random vector: P(sCi |Hn)
(i.e. the probabilities of landmark C to be in each qualitative
state separately). Generalizing to P(SC |Hn) is trivial.

We start by marginalizing over the metric camera poses
and landmark locations, writing the belief over sCi as:

P(sCi |Hn) =

∫∫
X1:n,LC

P(sCi , X1:n, L
C |Hn)dLCdX1:n. (5)

We shall now apply chain rule. Note that LC uniquely
determines sCi so that P(sCi |LC) = 1 for LC ∈ sCi and 0
else. Since P(sCi |LC) is independent of any other history and
can also be replaced by the corresponding integration range,
we get

P(sCi |Hn) =

∫∫
LC∈sCi ,X1:n

P(X1:n, L
C |Hn)dLCdX1:n. (6)



The camera qualitative state can be similarly inferred:

P(sXi
i |Hn) =

∫∫
Xi∈si,X1:n/i,LC

P(X1:n, L
C |Hn)dLCdX1:n. (7)

We get an intuitive result: solve the corresponding SLAM
problem, P(X1:n, L

C |Hn), in the AB frame and marginalize
over camera trajectories, and over LC from the relevant
qualitative state.

This approach is very different from previous works
[22], [21], and has several advantages: (i) Summing over
qualitative states also can be trivially adjusted to use any
qualitative space partition (see Figure 1); (ii) While we
choose a specific method, solving the small metric SLAM
problem can be done using any existing method or code to
fit different applications or scenarios

Using a standard SLAM formulation, the problem can be
broken down into simpler factors. We use the assumptions
that measurement model P(Zn|Xn, L

C) is independent of
history, and that the motion model has Markov property. The
result of such decomposition is:

P(X1:n, L
C |Hn) =

P(Z1|X1, L
C)P(X1, L

C)

P(Z1)
n∏
i=2

1

ζi
P(Zi|Xi, L

C)P(Xi|Xi−1, ai−1),

(8)

where ζi
.
= P(Zi|a1:i−1, Z1:i−1). Using this decomposi-

tion, we can see how both measurement and motion models
can be used to solve the underlying SLAM problem.

Recalling Eqs. (6) and (7), we can see that estimating
required qualitative states can be done by integrating over
camera trajectories, or landmark locations.

B. Algorithm Design Considerations
Standard SLAM approaches usually address big bundle

adjustment problems with many landmarks and camera
poses. It is hard to achieve a global solution for such
problems. These approaches therefore model the estimated
variables as multi-variate Gaussian, resort to linearization
and find only locally optimal solutions. Moreover, these ap-
proaches require enough measurements for initial geometric
estimation, or prior knowledge.

Alternatively, we solve many small landmark-centric
SLAM problems with 3 landmarks, and a few camera poses
at a time. We want to be able to work with a small number
of measurements, and no prior knowledge. Under these
conditions, we choose a sampling based approach to solve
the global non-linear small SLAM problem. This approach
avoids linearization, and gets a global robust solution. Also,
integration over coarse resolution qualitative states compen-
sates for some of the sampling error.

For a large SLAM problem this approach can be com-
putationally expensive, but for many small problems, it is
feasible. Furthermore, the fact that we use a motion model
allows us to test consistency of samples for motion model
and geometric camera line of sight triangulation constraints.
Practically, this drastically reduces valid samples for two or
more views, making this method fast.

C. Detailed Algorithm

We now describe the specific algorithm we use for es-
timating each single landmark triplet. Usually, a camera-
centric global frame is used for solving SLAM problems. We
use a different, landmark-centric frame by fixing landmarks
A = (0, 0) and B = (0, 1), as we believe it is more intuitive
to infer qualitative landmark-related states. [35] suggests a
full and efficient solution to this problem geometry.

First, we introduce a few notations. While the random
variable Xn represents camera pose at time n, we denote
samples of this camera pose as X

(kn)
n , where n and kn

are, respectively, time and sample indices. We also define
a ”trajectory hypothesis” thjn

.
= {X(k1)

1 , . . . , X
(kn)
n } as a set

of specific camera pose samples - one for each time step.
Index j 7→ {k1, . . . , kn} is a simplification for the collection
of specific sample indices for all n time steps. With a slight
abuse of notation, we denote Xj

l as the camera pose sample
from time l in thjn. The set of all trajectory hypotheses at
time n is THn

.
= {thjn}.

To estimate a landmark triplet qualitative state with mea-
surements from n time steps we iterativly apply a three-stage
algorithm for each time step:

Sampling step: Generate camera pose samples X
(kn)
n ,

with kn ∈ [1,mn], from the distribution P(Xn|φAn , φBn )
using bearing measurements φAn and φBn to landmarks A
and B. Given these measurements, the 2D camera pose is
determined on a specific part of a circle that goes through
the two landmarks A,B (see Figure 3a). The locus circle
parameters can be calculated as specified in [35] and [34].
Camera poses are sampled in the vicinity of this locus circle
considering the noisy nature of φAn and φBn .

Motion step: For each trajectory hypothesis thjn−1 ∈
THn−1, we can use Xj

n−1 and motion azimuth ψn−1 to
intersect the locus circle from time n (see Figure 3a). Camera
pose samples X(kn)

n that are consistent with this intersection
are found, also considering the noisy nature of the motion
model (4). Using these matches we generate multiple new,
extended trajectory hypotheses thjn. For each thjn, we also
calculate and keep motion model consistency wight: wmj

n =
P(Xj

n|X
j
n−1, ψn−1).

Resection step: For each valid trajectory hypothesis
thjn, we test consistency of bearing measurements from all
cameras to landmark C. First, we use camera poses Xj

1:n

and bearing measurements φC1:n to triangulate landmark C
location, denoted by LC,j . It is estimated to be the centroid
of all line of sight pairs intersection points (see Figure 3a).
Then we estimate the probability for this configuration as:
wrji = P(φCi |LC,j , X

j
i ),∀i ∈ {1...n} (assuming independent

measurement noise). We disqualify trajectories that do not
intersect, or have low probability.

Remark: Using a single LC,j for each thjn is a heuristic
for n > 1. We can sample over the area of line of sight
intersections to cover all probable LC locations. We choose
the simpler way for run-time considerations.

If we have measurements from only one time step, we
sample landmark C location LC from P(LC |X(k1)

1 , φC1 ) for



each sampled camera pose X(k1)
1 .

Thus far, the results of our algorithm so far are the set of
valid trajectory hypotheses thjn ∈ THn. For each , thjn we
keep consistency weights wmj

i and wrji ∀i ∈ {1...n}, and a
single landmark location LC,j .

Finally, we approximate Eqs. (6) and (7) by summing over
each qualitative state to get state probability distribution (see
the similarity to (8)):

P(sCk |Hn) ≈ ηC
∑
j

1(LC,j ∈ sCk )wr1

n∏
i=2

wmj
iwr

j
i , (9)

P(sXi

k |Hn) ≈ ηXi

∑
j

1(Xj
i ∈ s

Xi

k )wr1

n∏
i=2

wmj
iwr

j
i ,

(10)
where ηC and ηXi are normalization constants, and the sum
is over all trajectory hypotheses thjn ∈ THn. Note the term
wr1

∏n
i=2 wm

j
iwr

j
i is a sampled approximation of the joint

pdf P(X1:n, LC |Hn).
This algorithm seems to handle a large number of trajec-

tory hypotheses that grows exponentially in time. Practically,
the geometric constraints enforced in the ”motion” step and
the ”resection” step dramatically decrease the number of
hypotheses for two views, and even more for three views
or more. This effect of incorporating a motion model to the
qualitative estimation makes our algorithm much faster. It
also means that using this algorithm incrementally, requires
to save only a small number of hypotheses, and therefore
is not memory intensive. A pseudo-code for a simplified
version of this approach is given in Algorithm 1.

Algorithm 1 Single triplet qualitative state estimation

1: sample camera poses X(k1)
1 ∼ P(X1|φA1 , φB1 ) with k1 ∈ [1,m1]

2: initialize trajectory hypothesis set: TH = {X(k1)
1 }

3: for i = 1, ..., n do
4: // sampling step:
5: sample camera pose X(ki)

i ∼ P(Xi|φAi , φBi ) with ki = [1,mi]
6: // motion model step:
7: - ∀thji−1 find Xj

i that are consistent with motion azimuth ψi−1

8: - extend THi with new matches
9: - keep consistency weight: wmj

i = P(X(ki)
i |Xj

i−1, ψi−1)
10: // resection step:
11: - ∀thji find LC,j by line of sight triangulation
12: - keep consistency weight: wrjt = P(φCt |LC,j , Xj

t ),∀t ∈ {1...i}
13: - dismiss low probability hypotheses
14: end for
15: estimate landmark qualitative state probability via Eq. (9)
16: estimate camera qualitative state probability via Eq. (10)

Remark: This algorithm is simplified for the sake of
explanation. Our actual implementation is more efficient.

D. Faster Variant

We seek to further utilize the ability of the qualitative
coarse resolution to absorb errors, aiming to achieve a
faster algorithm. With this motivation in mind, we introduce
an approach similar to the full sampling based approach
described above, but sampling is done only to represent
the prior term in Eq. (8). Motion and measurement noise
are neglected. In Section IV-A we evaluate this algorithm
variant to see how much noise-related errors it can handle.

(a) (b) (c)

Fig. 2: qualitative map: (a) Landmarks A,B,C observed from camera pose 1. Landmarks
B,C,D observed from camera pose 2. (b)qualitative map is represented as landmark
triplet graph (c) Composition: try to estimate triplet AB:D given only AB:C and BC:D
estimations (for unobserved triplets, or improving existing estimations).

As we shall see, it can handle reasonable levels of noise with
accuracy similar to the full algorithm and with a significant
speedup. This is a demonstration of how we can use the
coarse qualitative resolution to cover for fast approximations.

E. Spatial Data Propagation - Probabilistic Composition

Until now, we used inference with information from
different times. In [21], it is noted that if two landmark
triplets share two common landmarks, information can be
propagated from one to the other. This ”composition” oper-
ation enables to enhance estimation for existing overlapping
triplets, and to infer triplets that were not viewed together
at all (see Figure 2). However, in [21] the estimation only
refers to binary evaluation of EDC states.

In this section, we develop a probabilistic com-
position operator. We infer the posterior probability
P(SAB:D|HAB:C

n , HBC:D
n ) of the qualitative state SAB:D,

using history only for triplets AB : C and BC : D.
For the sake of readability, we simplify notations in this

section. We drop the time index n from notations. All history
is taken into account. We also use shortened notations for
triplets. AB : C,BC : D,AB : D are denoted as p1, p2 and
t, respectively (i.e. prior 1,2 and target). So for example:
qualitative states notations sAB:C

i ≡ sp1i .
First, we marginalize over the known qualitative states

sp1i , s
p2
j ;∀i, j ∈ {1, ...,m}:

P(St|Hp1, Hp2) =
∑
sp1i

∑
stj

p(St, sp1i , s
p2
j |H

p1, Hp2).

Using the formula of total probability, and considering proper
dependencies we get:

P(St, sp1i , s
p2
j |H

p1, Hp2) =

= P(St|sp1i , s
p2
i , H

p1, Hp2)P(sp1i |H
p1)P(sp2j |H

p2).
(11)

The factors P(sp1i |Hp1),P(sp2j |Hp2) are the current estima-
tions. The full solution for P(St|sp1i , s

p2
j , H

p1, Hp2) can be
obtained through marginalization over the metric locations
of landmarks C,D in the relevant triplet frames:
P(St|sp1i , s

p2
j , H

p1, Hp2) =

=

∫∫
Lp1,Lp2

P(St, Lp1, Lp2|sp1i , s
p2
j , H

p1, Hp2)dLp1dLp2.

Now, using the formula of total probability, and considering
dependencies we get:



P(St, Lp1, Lp2|sp1i , s
p2
j , H

p1, Hp2)

= P(St|Lp1, Lp2)P(Lp1|sp1i , H
p1)P(Lp2|sp2j , H

p2).
(12)

Note that P(Lp1|sp1i , Hp1) and P(Lp2|sp2j , Hp2) are again,
metric problems with a prior on landmark location, speficied
by the conditioned qualitative state.

approximation: In order to avoid solving these complex
problems multiple times in map update, we introduce an
approximation. We reduce the full history to the estimated
qualitative states: P(L|si, H) ≈ P(L|si). These probabilities
are uniform for all landmark locations in the relevant qual-
itative state, and 0 otherwise. We can express them using
equivalent integration range. Finally we get:
P(St|Hp1, Hp2) ≈

∑
sp1i

∑
stj

P(sp1i |H
p1)P(sp2j |H

p2)·

∫∫
Lp1∈sp1i ,Lp2∈sp2j

P(St|Lp1, Lp2)dLp1dLp2.
(13)

Note that LAB:D = f(LAB:C , LBC:D) is a simple geo-
metric function, and then P(St|Lp1, Lp2) = 1(LAB:D ∈
sAB:D
k ). Furthermore, the double integral is independent of
P(sp1i |Hp1),P(sp2j |Hp2), and can be calculated offline for all
combinations of Sp1 = i, Sp2 = j;∀{i, j}. This gives us a
very low complexity probabilistic composition algorithm.

F. Single View Estimation

The baseline for evaluating our performance is the
previous work of [22] (mapping only). We do not di-
rectly implement [22], but an equivalent algorithm; we
use our formulation from Section III-A, but estimate
each view separately, and assume the views are inde-
pendent. Thus, for the nth view we get P(sCi |Zn) =

1
P(Zn)

∫∫
Xn,LC∈sCi

P(Zn|Xn, LC)dLCdXn. The approach in
[22] estimates multiple views assuming independence, and
not using motion model or triangulation:

P(SC |Z1:n) =
P(SC |Zn)P(SC |Z1:n−1)∑

s=SC P(SC = s|Zn)P(SC = s|Z1:n−1)
,

where ζ =
∑
s=SC P(SC = s|Zn)P(SC = s|Z1:n−1) is a

normalization factor.

IV. RESULTS

We evaluate our approach in a number of steps. We first
use simulation, to compare both our full algorithm, and our
fast approximation to previous work [22]. Then we also use
MCRLAM dataset [36] for testing our approach in a more re-
alistic scenario. Finally, we again use simulation to estimate
basic attributes of probabilistic qualitative composition.

Our simulation considers a 2D scenario with point-
landmarks and a mobile camera. All 2D locations are limited
to x ∈ [−3, 3] and y ∈ [−3, 4]. To keep the analysis
general, we consider locations and poses as uniform as pos-
sible: Landmark locations are sampled uniformly; Camera
trajectory is a set of uniformly sampled camera poses. For
each pose, only 3 landmarks are observed. This simulation
meant to avoid biasing results with a specific assumptions on

(a) (b)
Fig. 3: (a) Camera resection and landmark triangulation with two measurements. (b)
Example simulation scenario.

camera trajectory or landmark visibility. A simple example
for a simulation scenario is given in Figure 3b.

We randomize numerous scenarios, with multiple noise
levels. Measurements and motion commands are generated
according to Gaussian models described in Section II, with
σv ∈ [0◦, 10◦] , and σw ∈ [0◦, 20◦] respectively.

We also note that landmark recognition is ideal, and does
not model false identification. Identification error outliers can
be modeled in our approach, but here we want to evaluate
the plain qualitative geometry, and therefore do not consider
these aspects in this study.

To measure performance we use several metrics: (i)
Probability DMSE: mean square error for the difference
between estimated qualitative state probability vector and
ground truth (GT) DMSE =

√∑m
i=1 (P(si)− P(sGT ))2.

It tests estimation accuracy. (ii) GT rating: Position of the
GT qualitative state when ordering qualitative states by
their estimated likelihood (1 is most likely) (iii) geometric
distance: Mean distance from qualitative state centroids to
GT state centroind weighted by their estimated probability,
gmd =

∑m
i=1 P(si)||ci − cGT ||2. It measures if estimated

states are spatially close to GT (1 is the distance between
A,B). (iv) Estimation entropy e = −

∑m
i=1 P(si)log(P(si)).

Using these various metrics (along with others that are not
shown here) helps getting a clearer and deeper understanding
of the algorithm value than was done so far.

A. EDC landmark Triplet Estimation with motion model

To evaluate the effect of our motion model in-cooperated
inference, we compare three different algorithms: (a) Base-
line algorithm: An equivalent to [22] without motion model,
as described in Section III-F. (b) Our full multi-view estima-
tion described in Section III-A. (c) Our faster approximated
inference as described in Section III-A.

For this evaluation we randomize 300 scenarios ×36
different noise levels. In Figure 4 we show a set of scenarios
with 5 different levels of measurement noise. Motion model
noise was taken to be ×2 correspondingly. In this test, we use
landmark triplet estimations with 3 time steps, as shorter tra-
jectories will not use the advantage of our contribution (and
therefore hinder the comparison), while longer trajectories
typically do not improve results significantly. More results
can be found in supplementary material [34].

We observe that using a motion model greatly improves
performance. Up to measurement noise of 2◦ (which is



(a) (b)
Fig. 4: EDC estimation with multi-view motion model and triangulation. The plot
shows median and percentiles 25 and 75 for each algorithm. (a) DMSE Vs measurement
noise. (b) mean geometric distance vs. measurement noise.

single triplet EDC estimation results
baseline ours ours-fast

DMSE 0.39, 0.63, 0.71 0, 0.16, 0.63 0, 0.21, 0.62
geometric distance 0.28, 1.10, 2.30 0, 0.25, 1.15 0, 0.27, 1.16
Entropy 0.28, 0.66, 0.87 0, 5e-3, 0.58 0, 0.07, 0.64
time[sec] 26 18 0.05

TABLE I: Single triplet qualitative state results for bearing measurement noise µv =
3◦ and motion model noise µw = 7◦. For each algorithm, and metric we show: 25
percentile, median, 75 percentile. For run time, only median time is shown.

reasonable to camera based platforms), results are much
better than state of the art, and almost perfect. Up to 7◦

(which is a large error for camera based systems), our
estimated probability DMSE is still better than state of the
art. We can also see that for 7◦ gmd < 1 which means that all
likely qualitative states are close to GT state (demonstrated
in Figure 4 and for a specific noise level in Table I).

Another important result is that our fast approximated
algorithm achieves performance very close to the full one.
While our full algorithm is about two time faster than the
baseline, approximation is about 100 times faster than both
(Demonstrated for a specific noise level in Table I). This
is a successful usage of the ability of coarse qualitative
estimation to absorb errors and enable fast approximations.
While we use a simple MATLAB implementation, absolute
run times are irrelevant, but good for comparing algorithms.

B. MRCLAM dataset qualitative estimation

To evaluate our method in a realistic scenario, we use the
MRCLAM dataset [36], which comprises several scenarios
of multiple robots moving around pre-set landmarks. We
choose this dataset since it has robot pose GT as well
as landmark identification and location GT. This real-data
dataset allows not only to evaluate how informative our
qualitative estimation framework is (e.g. in terms of entropy),
but also to quantify performance with respect to GT, which
has not been tackled in previous work [22].

We use 5 scenarios, each with 5 robots, and 15 landmarks.
We get 16-230 landmark triplets that are observed more
than 3 times in each scenario. Our qualitative approach thus
generates rich mapping for these scenarios.

A typical estimation result for a single landmark triplet
observed by three cameras is shown in Figure 5a. As seen,
the usage of motion model reduces the trajectory hypotheses
TH (blue color), which is further refined by the landmark C
triangulation step to only a small subset (green color). The
resulting landmark C location hypotheses are shown in red.
One can observe the valid camera and landmark hypothesis

(a)

MRCLAM dataset EDC estimation
ours-fast uniform

DMSE 0.03, 0.45, 0.69 0.97
gmd 5e-3, 0.27, 0.71 2.2
Entropy 4e-3, 0.38, 0.69 3
GT rating 1, 1, 2 -

(b)
Fig. 5: MRCLAM dataset: (a) example EDC scenario result. We can see camera locus
circle with estimated camera poses, and landmark C GT state with estimated location
hypothesis. All estimations are close to GT, and error is still inside GT qualitative state.
(b) Results summary - our approximated fast algorithm is compared to an uninformative
uniform estimation. For each metric we show: 25 percentile, median, 75 percentile.
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Fig. 6: EDC probabilistic composition. The plot shows median and percentiles 25 and
75 for each algorithm. (a) DMSE vs. measurement noise. (b) mean geometric distance
vs. measurement noise. We comare our composition to uninformative estimation.

are very close to GT. As a result, in this example run, the
likelihood of the GT qualitative state is 1.

Results for all the observed landmark triplets in the above
5 scenarios are summarized in Table 5b. We compare results
to an uninformative uniform distribution. Entropy and DMSE
show that estimation is informative, and not too far from the
truth. GT rating metric shows that most of the time the GT
state is the most likely, and mostly it is within the top 2.
Also, looking at gmd we can see that all likely qualitative
states are close to GT. In conclusion, we note that results
show meaningful and informative estimation.

C. Composition

We now evaluate the composition operator on a previously
un-estimated triplet, to test how informative this process is.
We don’t discuss composition effect on existing estimation.
Specifically, we simulate 1000 scenarios comprising three
inter-connected landmark triplets (AB:C, BC:D, AB:D) and
camera trajectories. Measurements ZABC and ZBCD are
available but not ZABD. We estimate SAB:C , SBC:D using
our approximated method, and then infer the SAB:D only
through composition. We also test multiple noise levels.

Figure 6 summarizes the performance evaluation. Results
are far from perfect when looking at DMSE (not shown).
But other more refined metrics, tell us that composition still
holds a lot of information. Looking at GT rating tells us
that for reasonable measurement noise of up to 2◦, GT state
is mostly estimated to be among the 4 most probable EDC
states (and half of the time among the 2 leaders). The gmd
plot shows that the False EDC states are mostly close to the
GT state. Considering that these are triplets that were never
measured together, and could not be estimated otherwise,
this is a considerable value. Looking towards active planning,
composition may enable planning for using unseen triplets.



V. CONCLUSIONS

In this paper we present a new approach for localization
and mapping based on qualitative spatial reasoning. We
demonstrate how incooperating a motion model in qualitative
estimation improves results. Our method is also more general
in the way that it can easily use various types qualitative
space partitions, and various underlying SLAM based meth-
ods. We also successfully used qualitative inference inherent
ability to accommodate small errors, and generated a low
compute approximated algorithm. In addition to improving
both complexity and performance compared to the state of
the art [21] and [22], we also show that this approach is
a practical alternative for low cost robotic systems or for
active planning, in cases where exact metric location is not
important. Another building block in that direction is the
ability to use inference for landmark triplets that were not
seen together through composition.

Future research may focus on using qualitative data for
handling recognition errors, addressing complex volumed
landmarks, and qualitative active planning.
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