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This document provides supplementary material to the paper [2]. Therefore,
it should not be considered a self-contained document, but instead regarded as
an appendix of [2]. Throughout this report, all notations and definitions are
with compliance to the ones presented in [2].

1 Extended Geometrical Analysis

In this section we analyze the geometric properties of our problem, and the
effect of incorporating a motion model on the solution quality.

As specified in [2, Section 3b], our approach considers multiple landmark-
centric triplet frames. For each local frame, the underlying basic metric problem
determines camera poses XAB

1:n and landmark C location LAB:C in the local AB
frame, given a set of measurements ZABC

1:n .
When considering measurement noise, the problem P(XAB

1:n , L
AB:C |ZABC

1:n ) is
actually a SLAM problem. The SLAM problem is observable only with enough
landmark measurements and camera poses. It can also be solved with less
measurements, if priors are available. Remembering we solve many small local
3 landmark and few cameras problems, achieving enough measurements or priors
for each local frame, can be a difficulty.

Incorporating a motion model, P(XAB
1:n , L

AB:C |ZABC
1:n , a1:n−1), makes the

problem easier to solve, and requieres less measurements. This can be demon-
strated through a simple degrees of freedom analysis for the 2D case. The un-
knowns are landmark C location (xC , yC), and camera poses (x1:n, y1:n, α1:n).
For n time steps, we have 3n + 2 unknowns. When using only azimuth mea-
surements (φA1:n, φ

B
1:n, φ

C
1:n) to landmarks A,B and C, the number of equations

is 3n. This problem is therefore under-determined. When considering actions
a1:n−1 (i.e. the azimuth angles from one camera pose to the next, ψ1:n−1) and
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the corresponding motion model (specified in [2, Section 2], the number of equa-
tions is 4n− 1. For n ≥ 3, the number of equations is equal or greater than the
number of unknowns, and the problem becomes fully observable. The intuition
is that, incorporating a motion model enables to solve landmark C location by
triangulating line of sight vectors from multiple views.

This well-known insight related to the metric problem is also valid for the
qualitative problem. Therefore we expect incorporating a motion model will
enable solving the qualitative problem with less measurements and prior knowl-
edge. This is our motivation for incooperating a motion model into the quali-
tative inference. Here we will look at this effect in more detail.

In this section we consider the basic geometry of our problem, and do a
metric deterministic analysis. Thus, for the sake of explanation, we consider
the measurement and motion models ideal, noise-free observations that we shall
denote by Z̄.

First, we shall look at the single view case. Landmarks A,B are known (we
work in the AB frame), while the camera pose and landmark C are unknown.
Determining camera pose by 2D azimuth measurements to two known land-
marks is a well known 2D 2-point camera resection problem. A full and efficient
analytic solution to this problem can be found in [3]. Given these azimuth
measurements, the camera’s location must be on a circle that goes through the
two landmarks A,B. The ”locus circle” center and radius calculation is given
in [3]. Azimuth ordering of φAn , φ

B
n further confines the camera location to left

or right to the AB vector, see Figure 1b. It is not difficult to show that camera
orientation αn is directly determined by its location:

αn = atan2(yXn , x
X
n ) + φA = atan2(yXn − 1, xXn ) + φB . (1)

Per every possible camera pose, landmark C can be located somewhere on the
line of sight corresponding to the azimuth measurement φCn . A diagram illus-
trating these aspects is given in Figure 1b, while a simulative example can be
seen in Figures 2a and 2b. A crucial insight is that even in this determinis-
tic setting the problem is not fully observable, i.e. solutions for metric camera
poses and landmark locations are continuously distributed. We denote this joint
distribution by P(XAB

n , LAB:C |Z̄ABC
n ).

If measurements from several time instances are available, the joint pdf is:

P(XAB , LAB:C |Z̄ABC
1:n ) =

n∏
i=1

P(XAB , LAB:C |Z̄ABC
i ) (2)

As described in [2], the posterior distribution over qualitative states can be
extracted by integration.

Now we examine the impact of incorporating a motion model. Given a
specific pose for the first camera (x∗1, y

∗
1 , α

∗
1), the action ψ1, and the second

measurement Z2 = {φA2 , φB2 , φC2 } obtained after executing the action, the second
camera location (x∗2, y

∗
2) can be calculated as the intersection of the line of

motion with the valid part of the second measurement locus circle (see Figure
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(a) (b) (c)

Figure 1: (a) Extended double cross spatial partition sugested in [1]. (b) 2D 2-point camera
resection. (c) camera resection and landmark triangulation with two measurements

1c). As this intersection can occur once, twice or not at all. As a result, some
camera poses are disqualified. Another consequence is geometric ambiguity:
some measurements can support two solutions for landmark location and the
corresponding second camera pose.

Given the two camera poses (x∗1, y
∗
1 , α

∗
1), (x∗2, y

∗
2 , α

∗
2) and azimuth measure-

ments φC1 , φ
C
2 to landmark C, its location (x∗c , y

∗
c ) can be triangulated. Con-

sidering all possible poses for the first camera, the mapping of landmark C is
reduced to a curve (might be split into two curves) - see Figure 1c. A simulation
example that displays how our motion model allows to disqualify certain camera
poses, and triangulate the landmark C can be seen in Figure 2c.

When considering three or more measurements, triangulation consistency
further disqualifies most camera poses and landmark locations, leaving only one
or few discrete possible locations for landmark C, and the corresponding camera
trajectories. The surviving landmark C locations are in fact an intersection of
the curve estimates for pairs of consecutive views.

These geometric properties of the problem are the main motivation of our
work. The deterministic analysis reveals that incorporating a motion model
into the formulation improves results in the metric problem. Since probability
for qualitative states is an integration on the metric pdf, it should improve
as well. We also notice that the geometric ambiguity enables several distinct
solutions to the problem. Therefore probabilistic solutions based on linearization
might converge to local minima and achieve bad results. A global solution, or
a hypothesis based approach is therefore needed.

2 Extended Result Analysis

In [2] we present part of the results to best explain the our main insights. Ac-
tually we used more metrics, and various noise level instances to get a good
understanding of the meaning of the results. In this section we give some addi-
tional details to support out conclusions.
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Figure 2: Simulation example for first camera resection and landmark estimation. True camera
positions, and landmark positions marked in circles.(a) First view. Estimated camera position
marked by blue +. Estimated landmark C location marked in magenta (.) - see legend. (b) Second
view. Same markings. (c) Estimation by both views using motion model. Estimated camera position
marked by +,x. Estimated landmark C location marked in magenta circles (see legend).

2.1 Result Metrics

In our work [2] we use various metrics to analyses inference performance. This
is actually an important addition for QSR SLAM, since it gives us deeper un-
derstanding than what was presented in previous works. We use two types of
metrics:

ground truth (GT) related metrics:

• Probability DMSE: This is the mean square error for the difference be-
tween estimated qualitative state vector to GT state vector DMSE =√∑m

i=1 (sAB:C
i − sAB:C

GT )2. It tests how accurate is the estimation.

• Ground truth rating: This is the position of the GT qualitative state when
ordering qualitative states by their estimation likelihood (1 is most likely)

• Geometric distance: The mean distance from qualitative state centroids
to GT state centroind weighted by the state estimated probability. gmd =∑m

i=1 ||cAB:C
i − cAB:C

GT ||2 This metric tells us how close are the estimated
states to GT (1 is the distance between A,B).

• Ground truth likelihood: estimated posterior probability of GT qualitative
state P(sAB:C

GT ). This measures the accuracy of estimation, but ignores
false qualitative states.

• Ground truth likelihood ratio: the ration between estimated probability
of GT qualitative state to estimated probability of the most likely state

P(sGT )
max(SAB:C)

. This metric measures how close the GT state is to being most

likely.

information (or entropy) related metrics:

• Entropy: estimation probability entropy E = −
∑m

i=1 P(sAB:C
i log sAB:C

i )
measures how distributed is the qualitative state distribution (or how
much information is in the distribution).
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Figure 3: Sensitivity to motion model error. The plot shows median and percentiles 25 and 75.
(a) mean geometric distance Vs motion model noise. (b) ground truth rating Vs motion model noise
(c) ground truth likelihood Vs motion model noise.

• Likelihood ration: the ration between the second most likely qualitative
state to the most likely qualitative state. This measure how ”decisive” the
estimation result is. very important to maximal likelihood approaches.

Using all these metrics in different stages of result analysis teaches us much
about the quality of our algorithms.

2.2 Motion Model Inference Extended Results

After noticing that the qualitative localization and mapping fast approximation
algorithm presented in our main paper [2] gives results close to the full algorithm,
we made a more extensive analysis of the approximated algorithm performance.
In this section we’ll test the different effects of motion model and azimuth noise
separately. We use the same framework, and scenarios as specified in [2], but
compare different sets of noise levels.

To test motion model noise effect on our estimation, we use scenarios with
measurement noise 0, and various motion model noise levels. results are pre-
sented in figure 3. It can be seen that motion model noise affect weekly ground
truth likelihood and geometric distance. It does however have more effect on
the ground truth rating (but only on the 75 percentile).

This is an intuitive result. Scenarios with harder geometry (landmark close
to qualitative state edges, or ill conditioned camera poses) are the first to suffer
from the motion model errors. It gives more weight to false qualitative states,
but does not significantly change probability distribution. Generally the esti-
mation handles motion model noise well. Even with very high noise of 20◦, the
estimated probabilities are just minorly affected. GT rating is affected, but GT
is still on the top 3 (and most likely in most cases - median).

To test measurement model noise effect on out estimation, we use scenarios
with motion model noise 0, and various measurement model noise levels. results
can be seen in figure 4. The effect of measurement noise is stronger. Both geo-
metric distance, and ground truth likelihood respond harder as noise increases.
GT rating responds a little harder on 75 percentile but stable on median.
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Figure 4: Sensitivity to measurement model error. The plot shows median and percentiles 25
and 75. (a) mean geometric distance Vs measurement model noise. (b) ground truth rating Vs
measurement model noise (c) ground truth likelihood Vs measurement model noise.

Generaly it seem that estimation handles the noise pretty well in most sce-
narios. We note for camera based platforms a measurement noise of up to 2◦ is
very reasonable. under these conditions estimation handles noise well.

In summary, it seems that our approximated qualitative inference algorithm
is more sensitive to measurement model noise than to motion model noise.
This result is encouraging, since measurement noise is usually smaller in real
world scenarios. In addition, we note response to high levels of noise is gradual
and generally stable. In addition, we also see that our algorithm can handle
reasonable amounts of noise well. Remembering that this is a low compute
algorithm, this is another demonstration to support our conclusion that our
method has potential to be practical for qualitative autonomous navigation and
mapping, for online qualitative active planning. A more comprehensive analysis
should be done to evaluate more realistic scenarios.

References

[1] Mark McClelland, Mark Campbell, and Tara Estlin. Qualitative relational
mapping for mobile robots with minimal sensing. Journal of Aerospace In-
formation Systems, 11(8):497–511, 2014.

[2] R. Mor and V. Indelman. Probabilistic qualitative localization and mapping.
In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2020.

[3] Vincent Pierlot and Marc Van Droogenbroeck. A new three object triangula-
tion algorithm for mobile robot positioning. IEEE Transactions on Robotics,
30(3):566–577, 2014.

6


	Extended Geometrical Analysis
	Extended Result Analysis
	Result Metrics
	Motion Model Inference Extended Results


