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Abstract

We develop a belief space planning approach that advances the state of the art by incorporating reasoning about data asso-

ciation within planning, while considering additional sources of uncertainty. Existing belief space planning approaches

typically assume that data association is given and perfect, an assumption that can be harder to justify during opera-

tion in the presence of localization uncertainty, or in ambiguous and perceptually aliased environments. By contrast, our

data association aware belief space planning (DA-BSP) approach explicitly reasons about data association within belief

evolution owing to candidate actions, and as such can better accommodate these challenging real-world scenarios. In

particular, we show that, owing to perceptual aliasing, a posterior belief can become a mixture of probability distribu-

tion functions and design cost functions, which measure the expected level of ambiguity and posterior uncertainty given

candidate action. Furthermore, we also investigate more challenging situations, such as when prior belief is multimodal

and when data association aware planning is performed over several look-ahead steps. Our framework models the belief

as a Gaussian mixture model. Another unique aspect of this approach is that the number of components of this Gaussian

mixture model can increase as well as decrease, thereby reflecting reality more accurately. Using these and standard costs

(e.g. control penalty, distance to goal) within the objective function yields a general framework that reliably represents

action impact and, in particular, is capable of active disambiguation. Our approach is thus applicable to both robust

perception in a passive setting with data given a priori and in an active setting, such as in autonomous navigation in

perceptually aliased environments. We demonstrate key aspects of DA-BSP in a theoretical example, in a Gazebo-based

realistic simulation, and also on the real robotic platform using a Pioneer robot in an office environment.
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1. Introduction

Belief space planning and decision making under uncer-

tainty are fundamental problems in robotics and artificial

intelligence, with applications including autonomous navi-

gation, object grasping and manipulation, active simultane-

ous localization and mapping (SLAM), and robotic surgery.

In the presence of uncertainty, such as uncertainty in robot

motion and sensing, the true state of variables of inter-

est (e.g. robot poses), is unknown and can only be repre-

sented by a probability distribution of possible states given

available data.

Planning and decision making should therefore be per-

formed over that distribution of possible states, the belief

space, that can be inferred using probabilistic approaches

based on incoming sensor observations and prior knowl-

edge. The corresponding problem is an instantiation of a

partially observable Markov decision problem (POMDP)

(Kaelbling et al., 1998), where, given an objective function,

one aims to determine an optimal control policy as a func-

tion of belief evolution over variables of interest, which are

application-dependent.

However, state-of-the-art belief space planning

approaches typically assume data association to be

given and perfect (see Figure 1b), i.e. the robot is assumed

to correctly perceive the environment to be observed by its

sensors given a candidate action. Yet, the world is often

full of ambiguity, which, together with other sources of

uncertainty, make perception a challenging task. As an

example, one might consider matching images from two

different but similar-in-appearance places, or attempting
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Fig. 1. (a) Generative graphical model. While standard belief

space planning approaches typically assume that data associa-

tion is given and perfect, we incorporate data association aspects

within belief space planning and thus enable reasoning about

ambiguity (e.g. perceptual aliasing) at a decision-making level. (b)

Schematic representation of pose, scene, and observation spaces.

Scenes A1 and A3, when viewed from perspective x and x′, respec-

tively, produce the same nominal observation ẑ, giving rise to

perceptual aliasing.

to recognize an object that is similar in appearance,

from the current viewpoint, to another object. Both cases

are examples of ambiguous situations, where naïve and

straightforward approaches are likely to yield incorrect

results, i.e. mistakenly considering the two places to be

the same place, and incorrectly associating the observed

object.

Considering data association to be solved and perfect

within belief space planning can thus lead, in the pres-

ence of ambiguity, to incorrect posterior beliefs and, as a

result, to sub-optimal actions that do not properly consider

perceptual aliasing aspects. More advanced approaches are

therefore required to enable reliable operation in ambiguous

conditions, approaches often referred to as (active) robust

perception. These approaches typically involve probabilis-

tic data association and hypothesis tracking, given available

data. Thus, for the object detection example, each hypothe-

sis may represent a candidate object from a given database

to which the current observation (e.g. image or point-cloud)

is successfully registered. Similarly, one might reason prob-

abilistically regarding perceptual aliasing, as in the first

example, which would also involve probabilistic data asso-

ciation. Yet, existing robust perception approaches focus on

the passive case, where robot actions are externally deter-

mined and given, while the closely related approaches for

active object detection and classification consider the robot

to be perfectly localized.

In this work, we develop a general data association aware

belief space planning (DA-BSP) framework capable of bet-

ter handling complexities arising in real-world, possibly

perceptually aliased, scenarios. To this end, we rigorously

incorporate reasoning about data association within belief

space planning, while also considering other sources of

uncertainty (motion, sensing, and environment). In partic-

ular, we show that our framework can be used for active

disambiguation by determining appropriate actions, e.g.

future viewpoints, for increasing confidence in a certain

data association hypothesis.

1.1. Related work

Calculating optimal solutions to POMDP is computation-

ally intractable (PSPACE complete) (Papadimitriou and

Tsitsiklis, 1987) for all but the smallest problems. The

research community has thus been extensively investigating

approximate approaches to reduce computational complex-

ity and facilitate their application to real-world problems.

These approaches can be roughly segmented into point-

based value iteration methods (Kurniawati et al., 2008;

Pineau et al., 2006), simulation-based (Stachniss et al.,

2005) and sampling-based approaches (Agha-Mohammadi

et al., 2014; Bry and Roy, 2011; Prentice and Roy, 2009),

and direct trajectory optimization (Indelman et al., 2015;

Patil et al., 2014; Van den Berg et al., 2012) methods. In

all cases, finding the (locally) optimal actions involves the

evaluation of a given objective function while consider-

ing future observations to be acquired as a result of each

candidate action.

However, an underlying typical assumption in these

approaches is that data association for these future obser-

vations is known and perfect. For example, it is typically

assumed that the robot can be localized by making obser-

vations of known landmarks or beacons (see, e.g. Agha-

Mohammadi et al. (2014) and Prentice and Roy (2009)),

while assuming that each future measurement is correctly

associated with an appropriate landmark. Although such an

assumption is reasonable in certain scenarios, it becomes

unrealistic when considering perceptually aliased environ-

ments (two scenes that look alike) and localization uncer-

tainty, as we do in this study.

While belief space planning approaches typically assume

the environment to be accurately known (e.g. a given

map), recent works, including those of Chaves et al. (2014,

2015), Indelman et al. (2015), Kim and Eustice (2014),

and Walls et al. (2015), relax this assumption and model

the uncertainty of the environment mapped thus far within

the belief. The corresponding framework is thus tightly

related to active SLAM, with the well-known trade-off

between exploration and exploitation. Recent work (Chaves

et al., 2015; Indelman et al., 2015; Kim and Eustice, 2014;

Walls et al., 2015) in this branch focused, in particu-

lar, on probabilistically modeling what future observations

would be obtained given a candidate action. However, these

approaches consider each such future observation to be

correctly associated with an appropriate scene, and hence,

assume data association to be given and perfect.

In the last few years, the SLAM research community has

investigated approaches to be resilient to false data asso-

ciation (outliers) overlooked by front-end algorithms (e.g.

image matching); see, e.g. Carlone et al. (2014), Indelman
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et al. (2014b, 2016), Olson and Agarwal (2013), and Sun-

derhauf and Protzel (2012). However these approaches, also

known as robust graph optimization approaches, are devel-

oped only for the passive problem setting, i.e. robot actions

are given and externally determined. By contrast, we con-

sider a complimentary active framework and incorporate

data association aspects within belief space planning.

Our approach is also tightly related to recent work on

active hypothesis disambiguation in the context of object

detection and classification (Atanasov et al., 2014; Lauri et

al., 2015; Patten et al., 2016; Sankaran et al., 2015; Wong

et al., 2015). Given hypotheses regarding object class and

pose, these approaches aim to find a sequence future view-

points that will lead to disambiguation, i.e. identifying the

correct hypothesis. However, these approaches assume that

the sensor is perfectly localized and thus the corresponding

belief is only about the considered hypotheses. Also, during

such data associations, a null hypothesis may be consid-

ered, where the scene or the object is assumed to be novel

and undetected in the previous instances. See, e.g. Fourie

et al. (2016), Indelman et al. (2016), and Pfingsthorn and

Birk (2016). In this work, however, we assume that the set

of scenes are known a priori, even though their locations

might be uncertain. In a slightly different context, there are

approaches to perform data-driven disambiguation, such as

in multihypothesis tracking. Our approach, however, could

be considered a more general one, where both passive and

active robust perception occur within a unified framework.

Probably the closest work to our approach is that of

Agarwal et al. (2015), who also consider hypotheses due

to ambiguous data association and develop a belief space

planning approach for active disambiguation. However, in

their work, Agarwal et al. (2015) only consider ambigu-

ous data association within the prior belief, modeling it

as a mixture of Gaussians, and assume that there indeed

exists an action that can yield complete disambiguation.

By contrast, our framework is more general, since we addi-

tionally consider ambiguous data association within future

belief (owing to future observations) about given candidate

actions and do not assume that there is necessarily a fully

disambiguating action. Consequently, in our approach, the

number of modes may decrease or increase as is suitable for

the given environment; ambiguity would persist wherever

full disambiguation is not possible.

1.2. Contributions

This paper is an extension of the preliminary work pre-

sented in Pathak et al. (2017), where the relaxation of a

known data association was first considered, albeit in a

myopic setting. Further contributions of this manuscript are

as follows:

1. We develop a unified framework for DA-BSP in both

active and passive contexts. Here, the components of

our belief may both increase and decrease, thereby mod-

eling the perceptually aliased environment more faith-

fully. Additionally, the framework does not require a

fully disambiguating unique observation.

2. We extend DA-BSP by considering prior belief as a

Gaussian mixture model, as well as by considering

planning for several look-ahead steps.

3. We show how under helpful assumptions this general

approach degenerates to known belief space planning

approaches.

4. We present a complexity analysis of such an algorithm

discrete state settings and comment on its correctness.

5. Finally, we analyze key aspects arising as a result of

explicitly considering data association aspects within

belief space planning in a simplified toy example, as

well as in extensive experiments with a realistic syn-

thetic simulation and in a real robotics scenario using a

Pioneer robot.

1.3. Organization

The rest of this paper is organized as follows. We formu-

late the considered problem in Section 2 and then provide

concept overview in Section 3. Thereafter, we consider a

simpler case of myopic data association aware planning in

Section 4. Later, in Section 5, we generalize the planning to

consider a Gaussian mixture model prior and subsequently

to the non-myopic setting. Then, Section 6 demonstrates

key aspects in realistic simulations as well as a real-world

scenario with a Pioneer robot platform. Section 7 concludes

the discussion and suggests potential directions for future

research.

2. Notation and problem formulation

Consider a robot, uncertain about its pose, operating in a

partially known or premapped environment. The robot takes

observations of different scenes or objects in the environ-

ment and uses these observations to infer random variables

of interest that are application-dependent. Thus, in local-

ization, these observations can be used to better estimate

the robot pose, while in search and rescue missions, one is

looking for survivors in a certain region.

A schematic equivalent to this is shown in Figure 1. As

can be seen, it involves three spaces: pose space, scene

space, and observation space. The pose space involves all

the possible perspectives a robot can take with respect to a

given world model and in the context of the task in hand.

We shall denote a particular pose at any time step k

as xk , and the sequence of these poses from 0 to k as

Xk
.
= {x0, . . . , xk}. By uncertainty in the robot’s pose, we

mean that the current pose of the robot, at any step k, is

known only through an a-posteriori probability distribu-

tion function P( Xk|u0:k−1, Z0:k) , given all controls u0:k−1
.
=

{u0, . . . , uk−1} and observations Z0:k
.
= {Z0, . . . , Zk} up to

time k. For notational convenience, we define histories Hk
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and H
−
k+1 as

Hk
.
= {u0:k−1, Z0:k} , H

−
k+1

.
= Hk ∪ {uk} (1)

and we rewrite the posterior at time k as b[Xk]
.
= P( Xk|Hk).

By contrast, the scene space involves a discrete set of

objects (or a collection of objects)—called scenes and

denoted by the set {AN}—in the given world model. Scenes

can be detected through the robot’s sensors. We shall use

symbols Ai and Aj to denote such typical scenes. Note that

even if the objects are identical, they are distinct in scene

space. This is important when we consider the cases where

the objects look similar from some perspectives. Finally,

the observation space is the set of all possible observations

that the robot is capable of obtaining when considering its

mission and sensory capabilities.

We shall consider such an observation as the model

zk = h( xk , Ai)+vk , vk ∼ N ( 0, 6v) (2)

and represent it probabilistically as P( zk|xk , Ai). Here, we

have assumed the same Gaussian noise for all observations,

irrespective of the scenes being observed. This is a rea-

sonable assumption, since such noise would be a typical

property of the robotic sensors employed. Also, h( xk , Ai)

is a noise-free observation, which we would refer to as a

nominal observation ẑ.

For example, in the case of a camera, the function h could

be defined as a pinhole projection operator, thereby project-

ing the object Ai onto the image plane, while in the case of

a range sensor, this function calculates the range between (a

particular point on) the object and the robot actual location.

Note that the exposition thus far is equivalently valid in

the case where the environment model is given but uncer-

tain, and when this model is unknown a priori and instead

constructed online within a SLAM framework.

We also consider a standard motion model with Gaussian

noise

xi+1 = f ( xi, ui)+wi , wi ∼ N ( 0, 6w) (3)

where 6w is the process noise covariance, and denote this

model probabilistically by P( xi+1|xi, ui).

Given a prior distribution P( x0) and motion and obser-

vation models, the joint posterior probability distribution

function at the current time k can be written as

P( Xk|H)= P( x0)

k
∏

i=1

P( xi|xi−1, ui−1) P( Zi|xi, Ai) (4)

This posterior probability distribution function is thus a

multivariate Gaussian P( Xk|Hk)= N ( X̂k , 6k), with mean

X̂k and covariance 6k , that can be efficiently calculated

via maximum a-posteriori inference, see e.g. Kaess et al.

(2012).

It is important to note that the underlying assumption in

factorization (equation (4)) is that it is known which object

is being observed at each time i, i.e. data association is given

and error-free. We will come back to this key point later.

Given the posterior probability distribution (equation (4))

at the current time k, one can reason about the robot’s best

future actions that would minimize (or maximize) a certain

objective function. Such a function, for a single look-ahead

step, is given by

J ( uk)= E
zk+1

{c( P( Xk+1|H
−
k+1, zk+1) )} (5)

where the expectation is taken about the random variable

zk+1 with respect to the propagated belief P( Xk+1|H
−
k+1)

to consider all possible realizations of a future observation

zk+1.

For notational convenience, we will often represent the

posterior probability distribution P( Xk+1|H
−
k+1, zk+1) as the

belief b[Xk+1], i.e.

b[Xk+1]
.
= P( Xk+1|H

−
k+1, zk+1) (6)

Note that, according to equation (5), we need to calculate

the posterior belief (equation (6)) for each possible value of

zk+1.

Similarly, we define the propagated joint belief as

b[X−k+1]
.
= P( Xk+1|H

−
k+1)= P( Xk|Hk) P( xk+1|xk , uk) (7)

from which the marginal belief over the future pose xk+1

can be calculated as

b[x−k+1]
.
=

∫

¬xk+1

b[X−k+1] (8)

As earlier, if data association is assumed given and per-

fect, as is commonly the case in belief space planning, then

one can consider, for each specific value of zk+1, the cor-

responding observed scene Ai, and express the posterior

(equation (6)) as

b[Xk+1]=ηP( Xk|Hk) P( xk+1|xk , uk) P( zk+1|xk+1, Ai) (9)

which can be represented as b[Xk+1] = N ( X̂k+1, 6k+1),

with appropriate mean X̂k+1 and covariance 6k+1.

The objective function (equation (5)) can now be evalu-

ated, given a candidate action uk , by calculating the cost c( .)

for each zk+1. Finally, the optimal action u?
k is defined as

u?
k = arg min

uk

J ( uk) (10)

Assuming data association to be given and perfect greatly

simplifies the above formulation. Yet, in practice, deter-

mining data association reliably is often a non-trivial task

in itself, especially when operating in perceptually aliased

environments. An incorrect data association (wrong scene

Ai in equation (9)) can lead to catastrophic results, see,

e.g. Indelman et al. (2014a,b, 2016). In this work, we relax

this restricting assumption and rigorously incorporate data

association aspects within belief space planning.
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Fig. 2. Example of perceptual aliasing when observing one of

two identical rocking chairs. Each rocking chair creates a Gaus-

sian belief component; the corresponding factor graphs are shown

here.

3. Concept and approach overview (DA-BSP)

Consider Figure 2, where an observation regarding a rock-

ing chair is made. Since the environment contains two iden-

tical rocking chairs, data association with either of these

scenes cannot be deemed to be solved. Instead, we must

consider every plausible data association and its corre-

sponding component in the posterior belief. Note that what

we will describe as a scene need not necessarily be a sin-

gle object; e.g., later on we shall consider a cubicle with a

desk and a chair as a single scene. We shall now discuss

the overall approach by making the following observations,

which will be transformed into a rigorous mathematical

framework in the following sections.

3.1. Data association while planning

Given some candidate action (or sequence of actions) and

the belief at planning time k, we can reason about a future

observation zk+1 (e.g. an image) to be obtained once this

action is executed. This future observation is yet to be

acquired, and therefore its actual value is unknown. For

this reason, all the possible values such an observation can

assume should be taken into account while evaluating the

objective function; hence, the expectation operator in equa-

tion (5). To see this, we write the expectation operator

explicitly, which transforms equation (5) to

J ( uk)
.
=

∫

zk+1

(a)
︷ ︸︸ ︷

P( zk+1 | H
−
k+1) c






(b)
︷ ︸︸ ︷

P( Xk+1|H
−
k+1, zk+1)






(11)

The two terms ( a) and ( b) in this equation have intuitive

meaning: for each considered value of zk+1, ( a) represents

how likely it is to get such an observation when both the

history H and control uk are known, while ( b) corresponds

Fig. 3. Relation of DA-BSP with the usual approaches within

belief space planning (BSP). Note that in DA-BSP both plan-

ning and inference consider multimodal beliefs. Thus, DA-BSP

is capable of handling a general Gaussian mixture model dis-

tributions in both passive and active data association setups.

to the posterior belief b[Xk+1] from equation (6), given this

specific observation zk+1.

Considering that the data association is solved and per-

fect means we can correctly associate each possible mea-

surement zk+1 with the corresponding scene Ai that it

captures, as in equation (9).

Yet it is unknown from what future robot pose xk+1 the

actual observation zk+1 will be acquired, since the actual

robot pose xk at time k is unknown and the control is

stochastic. Indeed, as a result of action uk , the robot’s actual

(true) pose xk+1 can be anywhere within the propagated

belief b[x−k+1].

In typical cases, such as with navigation assisted through

GPS, this data association is trivially known, since the

scene coincides with the pose. However, in more complex

applications, such as perceptual robotics, the observations

could come from several different poses of viewing differ-

ent scenes. In the belief space planning framework, such a

data association is assumed to be solved. In other words, if

A represents the total space of scenes (or the real world)

from where all observations {z} are made and {AN} is the

partitioning of this scene space, then belief space plan-

ning assumes that for each such observation z ∈ {z} the

corresponding observed scene Ai ∈ A is known.

In contrast, in this work, we do not assume that data asso-

ciation is solved, and instead reason about possible scenes

or objects that the future observation zk+1 could be gener-

ated from, see Figure 1. Clearly, if the environment has only

distinct scenes or objects, then for each specific value of
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zk+1, there will be only one scene Ai that can generate such

an observation according to the model (equation (2)). How-

ever, in the case of perceptually aliased environments, there

could also be several scenes (or objects) that are either com-

pletely identical, or have a similar visual appearance when

observed from appropriate viewpoints that could equally

well explain the considered observation zk+1. In such a

case, there are several possible associations {Ai}; owing to

localization uncertainty, determining which association is

the correct one is not trivial. As we show later, in these

cases, the posterior belief b[Xk+1] (term ( b) in equation

(11)) becomes a Gaussian mixture with appropriate weights

that we rigorously compute (See Fig. 3 for the comparison).

In the following sections, we formalize these aspects

probabilistically and develop an algorithm for data associa-

tion aware belief space planning, capable of determining the

best actions in perceptual aliased and distinct environments

without considering that data association is solved. First,

however, we formally define what we mean by perceptually

aliasing.

3.1.1. Perceptual aliasing. Intuitively speaking, percep-

tual aliasing occurs when an object different from the actual

one produces the same observation and thereby provides

an alias, in the sense of perception, to the true object. We

shall now define two notions of perceptual aliasing that we

consider: exact and probabilistic. Exact perceptual alias-

ing of scenes Ai and Aj is defined as ∃x, x′, h( x, Ai)=

h( x′, Aj), and will be denoted in this paper by {Ai, Aj}alias.

In other words, the same nominal (noise-free) observa-

tion ẑ can be generated by observing different scenes,

possibly from different viewpoints. Such a situation is

depicted in Figure 1. A probabilistic perceptual aliasing

is a more general form of aliasing, and can be defined

as ∃x, x′, |P( z|Ai, x)−P( z|Aj, x′) | < ε for some small

threshold ε.

If there is a unique feature in the environment that does

not alias with any observation anywhere in the world and

hence allows what we call full disambiguation, this would

imply that eventually all multicomponent beliefs would be

reduced to a single component belief. This can indeed be a

very useful property. However, in some practical cases, such

a guarantee cannot be made. In DA-BSP, we do not assume

that a fully disambiguating feature exists in the environ-

ment. On the contrary, only partial disambiguation might

be available. This hardens the planning problem but, as we

shall see in this work, DA-BSP successfully tackles it by

considering the data association (and its ambiguities) within

the belief space planning framework.

3.2. Data association while perceiving

By inference, we have a similar situation, with the key

difference that the observation z is given, i.e. it has been

acquired. Let us now consider this setting for a moment.

Also here, the robot pose at measurement acquisition time

is unknown—rather, we are trying to estimate it. To do so,

we must first associate the captured measurement z with the

scene or object Ai that it describes, i.e. write the appropriate

measurement likelihood term in the posterior probability

distribution (equation (4)).

A similar situation, however, also arises in our case: while

the probability of acquiring a specific observation zk+1 is

represented by the term ( a) in equation (11), the posterior in

the term ( b) is conditioned on this specific observation zk+1.

As such, evaluating the posterior probability distribution

given zk+1 involves inference, as if that observation were

actually acquired. Thus, also here data association needs to

be resolved or to be assumed given.

The DA-BSP framework can be used to calculate an opti-

mal control u?
k . On execution of the control u?

k , the robot

takes an actual observation zk+1, which, given the Gaussian

mixture model belief b[Xk] (see equation (44)), can be used

to calculate the posterior probability distribution at time

tk+1. Interestingly, while within planning at time tk we con-

sidered all possible realizations {zk+1} of the future obser-

vation zk+1, in inference we get some specific observation

zk+1. Consequently, the posterior probability distribution in

inference is a specific instantiation of the different pos-

terior probability distributions P( Xk+1|H
−
k+1, zk+1) already

calculated within planning, see Section 3.1. Thus, similar

equations apply.

In particular, we first propagate the Gaussian mixture

model belief based on control u?
k from b[Xk] to b[X−k+1]

via equation (36) and then calculate the posterior Gaussian

mixture model b[Xk+1] conditioned on the obtained obser-

vation zk+1 via equation (38). Observe that exactly the same

insights regarding full or partial disambiguation discussed

in Section 3.1 in the context of planning apply here as well.

This forms a closed loop between planning and inference;

for example, an optimal action calculated by the former,

while considering the ambiguity cost cw, should indeed lead

to disambiguation on execution in inference.

4. Myopic data association aware belief space

planning

For the sake of simplicity, in this section we would assume

myopic planning i.e., with the planning horizon L = 1.

Recall that we need to calculate each of the two terms, ( a)

and ( b), in equation (11). For convenience, we specify the

corresponding expressions again

( a) : P( zk+1 | H
−
k+1) ( b) : P( Xk+1|H

−
k+1, zk+1) (12)

Before proceeding further, recall the conceptual difference

between the two terms: term ( a) represents the likelihood

of obtaining an observation zk+1, while within term ( b), the

observation zk+1 is considered as given.
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4.1. Computing term ( a): P( zk+1 | H
−
k+1)

Applying total probability over non-overlapping {AN} and

marginalizing over all possible robot poses yields

P( zk+1 |H
−
k+1)≡

∑

i

∫

x

P( zk+1, x, Ai |H
−
k+1)

.
=
∑

i

wi (13)

As seen from this equation, to calculate the likelihood of

obtaining some observation zk+1, we consider separately,

for each scene Ai ∈ {AN}, the likelihood that this obser-

vation was generated by scene Ai. This probability is cap-

tured for each scene Ai by a corresponding weight wi; these

weights are then summed to get the actual likelihood of

observation zk+1. As will be seen, these weights naturally

account for perceptual aliasing aspects for each considered

zk+1.

Proceeding with the derivation further, using the chain

rule we get

∑

i

∫

x

P( zk+1 | x, Ai,H
−
k+1) P( Ai, x | H−k+1) (14)

However, since this integral could be over any arbitrary total

distribution of x, we can use the propagated belief b[x−k+1],

see equation (8), to compute it as

∑

i

∫

x

P( zk+1|x, Ai,H
−
k+1) P( Ai|H

−
k+1, x) b[x−k+1 = x] (15)

Thus

wi
.
=

∫

x

P( zk+1|x, Ai,H
−
k+1) P( Ai|H

−
k+1, x) b[x−k+1=x] (16)

Here, P( zk+1 | Ai, x,H−k+1)≡ P( zk+1 | Ai, x) is the standard

measurement likelihood term, while P( Ai | H
−
k+1, x) rep-

resents the event likelihood, which denotes the probabil-

ity that scene Ai will be observed from viewpoint x. In

other words, this scenario-dependent term encodes from

what viewpoints each scene Ai is observable and could also

model occlusion and additional aspects. As such, this term

can be determined given a model of the environment and

thus, in this work, we consider this term to be given.

The weights wi (equation (16)) naturally capture the per-

ceptual aliasing aspects discussed in Section 3.1.1: con-

sider some observation zk+1 and the corresponding genera-

tive model zk+1 = h( xtr, Atr)+v with appropriate unknown

true robot pose xtr and scene Atr ∈ {AN}. Clearly, the mea-

surement likelihood P( zk+1 | x, Ai,H
−
k+1) will be high when

evaluated for Ai = Atr and in the vicinity of xtr. Note that

we will necessarily consider such a case, since according

to equation (13) we separately consider each scene Ai in

{AN}, and, given Ai, we reason about all poses x in equation

(16). In the case of perceptual aliasing, however, there will

be other scenes, Aj 6= Atr, which could generate the same

observation zk+1 from the appropriate robot pose x′. Thus,

the corresponding measurement likelihood term to Aj will

also be high in the vicinity of x′.

However, the actual value of wi (for each Ai ∈ {AN}) also

depends, in addition to the measurement likelihood, on the

aforementioned event likelihood and on the belief b[x−k+1],

with the latter weighting the probability of each considered

robot pose. This correctly captures the intuition that those

observations z with low-probability poses b[x−k+1 = xtr]

will be unlikely to be actually acquired, leading to a low

value of wi with Ai = Atr. However, the likelihood term

(equation (13)) could still increase in the case of percep-

tual aliasing, where the aliased scene Aj generates a similar

observation to zk+1 from viewpoint x′, with the latter being

more probable, i.e. high probability b[x−k+1 = x′].

In practice, the integral in equation (20) can be cal-

culating efficiently if both the measurement likelihood

P( zk+1 | Ai, x,H) and the predicted belief b[x−k+1] are Gaus-

sians, since a product of Gaussians remains Gaussian. The

integral can then be only calculated for the window where

the event likelihood is non-zero, i.e P( Ai | x,H) > 0. In

the absence of such assumptions, in general, the integral

in equation (20) should be computed numerically. Since in

practical applications P( Ai | x,H) is sparse with respect to

x, this computational cost is not severe. For example, for

a robot navigating in a two-floor environment, even under

extreme uncertainty of pose, while reasoning for a scene

such as a chair, we would only consider the viewpoints from

which the latter is observable, instead of the entire belief

space.

4.2. Computing term ( b): P( Xk+1|H
−
k+1, zk+1)

The term ( b), P( Xk+1|H
−
k+1, zk+1), represents the poste-

rior probability conditioned on observation zk+1. This term

can be similarly calculated, with a key difference: since

the observation zk+1 is given, it must have been generated

by one specific (but unknown) scene Ai according to the

measurement model (equation (2)). Hence, also here, we

consider all possible such scenes and weight them accord-

ingly, with weights w̃i representing the probability that each

scene Ai will have generated the observation zk+1. As will

be seen next, in both terms ( a) and ( b), the same weights

are obtained; however, only in the latter case are the weights

to be normalized such that
∑

i w̃i = 1.

Applying total probability over non-overlapping {AN}

and the chain rule, we get

∑

i

P( Xk+1, Ai | H
−
k+1, zk+1)=

∑

i

P( Xk+1 | H
−
k+1, zk+1, Ai) ·P( Ai | H

−
k+1, zk+1) (17)

Here, the first term is the posterior belief, conditioned on

observations and history, as well as a candidate scene Ai that

supposedly generated the observation zk+1. We discuss how

this term can be calculated in Section 4.5.

The second term, P( Ai | Hk , uk , zk+1), is merely the like-

lihood of Ai being actually the one that generated the obser-

vation zk+1. As will be seen now, this term is actually the
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normalized weight wi from Section 4.1. Marginalizing over

all robot poses and applying Bayes rule yields

P( Ai | H
−
k+1, zk+1)=

∫

x

P( Ai, x | H−k+1, zk+1) (18)

= η

∫

x

P( zk+1 | Ai, x,H−k+1) P( Ai, x | H−k+1) (19)

with a normalization constant η
.
= P( zk+1 | H

−
k+1).

Like the derivation in Section 4.1, since this integral

could be over any arbitrary total distribution of x, we can

use the propagated belief b[x−k+1], to compute it as

P( Ai | zk+1,H−k+1)=

η

∫

x

P( zk+1 | Ai, x,H−k+1) P( Ai | x,H−k+1) b[x−k+1 = x]

(20)

As seen, the same expression is obtained as in equation

(16), except for the normalization constant η. Hence

P( Ai | zk+1,H−k+1)= ηwi
.
= w̃i (21)

In practice, one can avoid calculation of η, and instead

normalize the weights wi such that
∑

i w̃i = 1.

4.3. Summary thus far

To summarize the discussion thus far, we have shown that

the objective function (equation (11)) can be rewritten as

J ( uk)=

∫

zk+1

(

∑

i

wi

)

· c

(

∑

i

w̃ib
[

X i+
k+1

]

)

(22)

with weights wi and w̃i defined in equations (16) and (21),

and the posterior given scene Ai, defined as

b[X i+
k+1]

.
= P( Xk+1 | H

−
k+1, zk+1, Ai) (23)

Observe that, for each considered observation zk+1, we get

a mixture probability distribution function inside of the cost

c( .), where each component represents the posterior proba-

bility distribution conditioned on the observation capturing

scene Ai, and weighted by w̃i. If there is no perceptual alias-

ing, there will be only one component with large weight w̃i,

that corresponds to the correct data association with scene

Ai, with all other weights being negligible. Conversely, in

the presence of perceptual aliasing, we expect to see numer-

ous non-negligible weights. In the extreme case, where all

scenes (objects) are identical, we will get equal normalized

weights w̃i for each Ai ∈ {AN}.

These insights also apply to the unnormalized weights

wi that appear outside of the cost, from which the likeli-

hood of obtaining observation zk+1 is calculated. However,

as already discussed in Section 4.1, this likelihood is calcu-

lated by summing over all such weights (
∑

i wi), with each

weight properly capturing the likelihood that a measure-

ment zk+1 will be generated by scene Ai while taking into

account the probability of the corresponding robot pose x,

given the propagated belief, i.e. b[x−k+1 = x].

For practical purposes, one can thus only consider view-

points with non-negligible probability according to b[x−k+1].

Moreover, it is possible to threshold the weights in the mix-

ture
∑

i w̃ib[X i+
k+1], instead of always considering all scenes

{AN}.

Having shown that incorporating data association within

belief space planning leads to equation (22), we now pro-

ceed with the exposition of our approach.

4.4. Simulating future observations {zk+1} given

b[X−k+1]

Calculating the objective function (equation (22)) for each

candidate action uk involves considering all possible real-

izations of zk+1. One approach to perform this, in prac-

tice, is to simulate future observations {zk+1} given the

propagated belief b[X−k+1], scenes {AN}, and observation

model (equation (2)). One can then evaluate equation (22)

considering all observations in the set {zk+1}.

We now briefly describe how this concept can be real-

ized. First, viewpoints {x} are sampled from b[X−k+1]. For

each viewpoint x ∈ {x}, an observed scene Ai is determined

according to event likelihood P( Ai | Hk , x). Together, x and

Ai are used to generate nominal ẑ = h( x, Ai) and noise-

corrupted observations {z} according to the observation

model (equation (2)): z = h( x, Ai)+v. The set {zk+1} is

then the union of all such generated observations {z}. Note

that while generating {zk+1}, the true association is known

(scene Ai) but it is unknown to our algorithm, i.e. while

evaluating equation (22).

4.5. Computing a mixture of posterior beliefs
∑

i w̃ib[X i+
k+1]

As seen from equation (22), reasoning about data associ-

ation aspects resulted in a mixture of posterior probability

distributions within the cost c( .), i.e.
∑

i w̃ib[X i+
k+1], for each

possible observation zk+1 ∈ {zk+1}. In this work, the set

{zk+1} is simulated as discussed in Section 4.4; however,

one could also consider treating future observation zk+1 as

a random variable (Indelman et al., 2015; Platt et al., 2011;

Van den Berg et al., 2012).

In this section, we briefly describe how one can actually

calculate the corresponding posterior distributions, given

some specific observation zk+1 ∈ {zk+1}. For simplicity,

we consider the belief at planning time k as a Gaussian

b[Xk] = N ( X̂k , 6k). However, our approach could also be

applied to more general cases (e.g. a mixture of Gaussians)

with a certain price in terms of computational complex-

ity. Further investigation of these aspects is left to future

research.

Under this setting, each of the components b[X i+
k+1] in the

mixture probability distribution function can be written as

b[X i+
k+1] ∝ b[Xk]P( xk+1 | xk , uk) P( zk+1 | xk+1, Ai) (24)
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It is then not difficult to show that this belief is a Gaussian

and to find its first two moments via maximum a-posteriori

inference

b[X i+
k+1] = N ( X̂ i

k+1, 6i
k+1) (25)

with mean X̂ i
k+1 and covariance 6i

k+1.

Obviously, the mixture of posterior beliefs in the cost c( .)

from equation (22) is now a mixture of Gaussians:

∑

i

w̃ib[X i+
k+1] =

∑

i

w̃iN ( X̂ i
k+1, 6i

k+1) (26)

At this point, it is useful to recall that the correspond-

ing mean and covariance of a general Gaussian mixture

probability distribution function

p( x)=

n
∑

j=1

wjN ( x̂j, 6j)

are given by (Bar-Shalom et al., 2004)

x̂ =

n
∑

j=1

wjx̂j , 6 =

n
∑

j=1

wj6j + 6̃ (27)

with 6̃ =
∑n

j=1 wj( x̂j − x̂) ( x̂j − x̂)T.

Thus, in cases where a combination of the conditional

posterior probability distributions (equation (25)) makes

sense, the overall combined belief can be collapsed to a

Gaussian distribution according to equation (27). As will

be seen later, this could indeed be required for certain cost

functions c( .).

4.6. Under uncertain scenes

So far we have assumed that scenes were known fairly well

i.e., Ai was known with little uncertainty. This might, how-

ever, not be true in practice, for example when such scenes

arise out of a previous SLAM session. In such a scenario, it

is more appropriate to consider the uncertainty of Ai, again

within the DA-BSP framework. This implies that equation

(20) should incorporate the actual model of variation of Ai.

More precisely

P( Ai | x,H−k+1)= N ( x̂Ai
, 6Ai

) (28)

where x̂Ai
is the nominal position around which the scene Ai

is distributed while 6Ai
is the covariance. Hence we have

P( Ai | zk+1,H−k+1)

= η

∫

x

P( zk+1 | Ai, x,H−k+1)N ( x̂Ai
, 6Ai

) b[x−k+1 = x]

(29)

Now consider that the prior (and hence also propagated)

belief is a Gaussian. We have already seen that the observa-

tion likelihood (i.e., P( zk+1 | Ai, x,H−k+1)) is a Gaussian too.

Note that by uncertain Ai, we imply that the position from

whence Ai can be viewed is uncertain, not the class of the

scene itself. Therefore, we can still harness the observation

model to compute the term P( zk+1 | Ai, x,H−k+1). Further-

more, under the maximum likelihood assumption, we know

that this observation is distributed normally around the most

likely observation ẑml
k+1. Therefore the right-hand side of

the equation can be reduced to a single Gaussian. In other

words, the weights wi used in equations (16) and (20) can

be computed efficiently through analytical approach.

Similarly, if the propagated belief b[x−k+1 = x] is a mix-

ture of Gaussians, we can see that the expression in the

left-hand side of equation (29) yields another mixture of

Gaussians, with the same number of modes. Here too, com-

putation could be performed analytically, by iterating over

each Gaussian component. Obviously, the ease of compu-

tation of wi is afforded not by the fact that Ai is uncertain,

but by the fact that its uncertainty is of a specific structure

(namely, a Gaussian distribution).

4.7. Designing a specific cost function

The treatment so far has been noncommittal to the struc-

ture of the cost function c( .). Recalling equation (22), we

see that the belief over which the cost function is defined is

multimodal in general. Standard cost functions in the lit-

erature typically include such terms as control usage cu,

distance to goal cG and uncertainty c6 , see e.g. Indelman et

al. (2015) or Van den Berg et al. (2012). In our case, how-

ever, the specific form of the latter should be re-examined

and an additional term quantifying ambiguity level can be

introduced. In this section, we thus briefly discuss these two

terms, starting with the cost over posterior uncertainty.

Since, unlike usual belief space planning, the posterior

belief in our case is multimodal and represented as a mix-

ture of Gaussians
∑

i w̃iN ( X̂ i
k+1, 6i

k+1) (see equation (26)),

we could define several different cost structures, depend-

ing on how we treat the different modes. Two particular

examples involve taking the worst-case covariance among

all covariances 6i
k+1 in the mixture, e.g. 6 = maxi{tr( 6i) },

or collapsing the mixture into a single Gaussian N ( ., 6),

according to equation (27). In both cases, we can define the

cost due to uncertainty as c6 = trace( 6̂).

The cost due to ambiguity, cw, should penalize such

ambiguities as those arising out of perceptual aliasing.

Here, we note that the non-negligible weights wi in equa-

tion (22) arise as a result of perceptual aliasing with respect

to any scene Ai, whereas in the case of no aliasing, all but

one of these weights are zero. In the most severe case of

aliasing (all scenes or objects Ai are identical), all of these

weights are comparable with each other. Thus, we take the

Kullback–Leibler divergence KLu( {w̃i}) of these weights

{w̃i} from a uniform distribution to penalize higher aliasing,

and define

cw( {w̃i})
.
=

1

KLu( {w̃i})+ε



10 The International Journal of Robotics Research 00(0)

where ε is a small number, included to avoid division by

zero in the case of extreme perceptual aliasing.

The overall cost can then be defined as a combination

c
.
= Mucu +MGcG +M6c6 +Mwcw (30)

with user-defined weights Mu, MG, M6 , and Mw.

4.8. Formal algorithm for DA-BSP

We now have all the ingredients to present the overall

framework of data association aware belief space planning,

DA-BSP for brevity. It is summarized in Algorithm 1 and

briefly described next.

Given belief b[Xk] and candidate action uk , we first prop-

agate the belief to get b[X−k+1] and then simulate future

observations {zk+1} (line 2), as described in Section 4.4. The

algorithm then calculates the contribution of each observa-

tion zk+1 ∈ {zk+1} to the objective function (22). In par-

ticular, in lines 8 and 11 we calculate the weights wi and

the posterior beliefs b[Xk+1i+ ] for each Ai ∈ {AN}, respec-

tively, according to Sections 4.1 and 4.5. Then, after weight

normalization in line 13, we evaluate the cost c( .) (line 14)

and use the accumulated unnormalized weights ws ≡
∑

i wi

to update the value of the objective function J with the

weighted cost for measurement zk+1 (line 15).

Later on, in Section 5.7, we comment more precisely

on both the computational complexity of DA-BSP and

its correctness when viewed from the perspective of data

association.

4.9. An abstract example for DA-BSP

Consider the problem of robotic manipulation of objects in

the kitchen. For simplicity, let us abstract it to a simpler

domain of three objects, |{AN}| = 3. We consider a single

step control at time step k, from a given belief b[Xk], as well

as that of one step ahead b[X−k+1], and assume the following

motion and observation models f and h

f ( x, u) =

(

1 0

0 1

)

· x+ d

{

[0, 1]T if u = up

[1, 0]T if u = right
,

h( x, Ai) = hi( x)=

(

1 0

0 1

)

·( x− xi)+si (31)

where the observations, as well as the metric shift si, are

in an object-centric frame, with xi representing the location

of Ai. Intuitively, si is a simple mechanism to model per-

ceptual aliasing between objects; e.g., for identical objects,

each Ai would have si that compensates for xi in such a way

that it results in the same observation h. The first row (pan-

els a to d) of Figure 4 illustrates the process of simulating

future observations {zk+1} for uk = up, considering unique

and perceptually aliased scenes (Figure 4(c) and (d)). In par-

ticular, a sampled pose xtr used to generate an observation

zk+1 ∈ {zk+1} is shown in 4(b).

Figure 4 demonstrates key aspects in our approach, con-

sidering a single observation zk+1 each time. Our approach

reasons about data association; hence, we consider that each

zk+1 could have been generated by one of the three objects;

each such association would fetch us a conditional poste-

rior belief b[X i+
k+1], as denoted by small ellipses. Finally, we

compute the total cost according to Algorithm 2.

Figure 4(e) to (h) denotes the situation when the true pose

xtr is close to the center and observes A2, while in Figure

4(i) to (l) the true pose is at the left side and observes A1.

Different degrees of aliasing are considered. Both weights

wi and w̃i are shown in the inset histograms. Note that the

unnormalized weight wi is greater when the object is at the

center, because the overall likelihood of the observation is

greater. Also, with no aliasing, for any scene Aj other than

the true one, the normalized weight wj is small, irrespec-

tive of where xtr is. In other words, weights are also related

to how likely the objects are to be the causes behind an

observation; in the case of no aliasing, this can be negli-

gibly small. This is crucial, since it implies that DA-BSP,

in practical applications with infrequent aliasing, would not

require any significant additional computational effort with

respect to usual belief space planning.

Figure 4(f) to (h) depicts {A1, A2}alias, {A1, A3}alias, and

{A1, A2, A3}alias. When {A1, A3}alias, the weights wi are sim-

ilar, and indeed our cost cw of weights (in equation (30)) is

high. For similar uncertainty in pose, this cost would remain

constant. Hence, in the presence of identical objects placed

similarly within the current belief, optimization of general

cost function would be guided toward active localization.

Conversely, if one object j lies closer to the current nominal

pose, it will have slightly higher wj. If {A1, A2, A3}alias, i.e.

all objects are identical, the weights wi are simply an indi-

cation of the prior distribution. This is reasonable since, in

such a case, considering different data association does not

yield any new information.

5. Non-myopic data association aware multi-

modal belief space planning

This section would generalize the DA-BSP that was devel-

oped in Section 4. We will start by considering a prior dis-

tribution that is non-Gaussian. In particular, we will assume

our prior distribution to be a mixture of Gaussians and then

follow a similar approach to compute the belief update and

perform myopic planning, as done earlier. Once this is done

and we have an approach that takes in a Gaussian mix-

ture model belief and updates to another Gaussian mixture

model belief, we will present the most general DA-BSP in a

non-myopic setting of several look-ahead steps of planning.

5.1. Prior belief as a mixture of Gaussians

Let us assume that the prior belief is a Gaussian mixture

model. In other words, our belief at time k is a linear
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Algorithm 1 Myopic data association aware belief space planning.

Input: Current belief b[Xk] at step k, history Hk , action uk , scenes {AN}, event likelihood P( Ai | Hk , x) for each Ai ∈ {AN}

1: b[X−k+1]← b[Xk]P( xk+1 | xk , uk)

2: {zk+1} ← SimulateObservations(b[X−k+1], {AN})

3: J ← 0

4: for ∀zk+1 ∈ {zk+1} do

5: ws← 0

6: for i ∈ [1 . . . |A|] do

7: F compute weight, equation (16)

8: wi← CalcWeights(zk+1, P( Ai | H
−
k+1, x) , b[X−k+1])

9: ws← ws + wi

10: F Calculate posterior belief given Ai, Section 4.5

11: b[X i+
k+1]← UpdateBelief(b[X−k+1], zk+1, Ai)

12: end for

13: {w̃i} ← NormalizeWeights({wi})

14: c← CalcCost({w̃i}, {b[X i+
k+1]}) F Section 4.7

15: J ← J + ws · c

16: end for

17: return J

Fig. 4. (a) Black samples {xk} are drawn from b[Xk]
.
= N ( [0, 0]T, 6k), from which, given control uk , samples {xx+1} are computed,

colored according to different scenes Ai being observed, and used to generate observations {zk+1}. (b) Event likelihood, P( Ai|x,H) ∀i.

Three vertical stripes represent locations from which each scene Ai is observable; histogram represents distribution of {xk+1}, which

corresponds to b[X−
k+1]. (c,d) distributions of {zk+1} without aliasing and when {A1, A3}alias. (e)–(h) DA-BSP for a single observation

zk+1. Red-dotted ellipse denotes b[X−
k+1], while the true pose that generated zk+1 is shown by an inverted triangle. Smaller ellipses are

the posterior beliefs b[X i+
k+1]. Top row xtr is near center, observing A2; bottom row xtr is on the left, observing A1. Columns represent

different perceptual aliasing cases. Weights wi and w̃i, corresponding to each scene Ai are shown in the inset bar graphs.
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Algorithm 2 Non-myopic data association aware belief space planning.

Input: Current Gaussian mixture model belief b[Xk] at step k, history Hk , action uk , scenes {AN}, event likelihood

P( Ai | Hk , x) for each Ai ∈ {AN}

1: b[X−k+1]← b[Xk]P( xk+1 | xk , uk) F equation (8)

2: {zk+1} ← SimulateObservations(b[X−k+1], {AN})

3: J ← 0

4: for ∀zk+1 ∈ {zk+1} do

5: ws← 0

6: for i ∈ [1 . . . |A|] do

7: F compute weight, equation (16)

8: wi
k+1← CalcWeights(zk+1, P( Ai | H

−
k+1, x) , b[X−k+1])

9: ws← ws + wi

10: for ∀j ∈ [1, . . . , Mk] do

11: F compute weight w̃
ij

k+1 for each Gaussian mixture model component, equation (37)

12: w̃
ij

k+1← CalcWeights(zk+1, P( Ai | H
−
k+1, x) , b[X

j−
k+1])

13: ξ
ij

k+1← ξ
j

kw̃
ij

k+1 F equation (39)

14: F Calculate posterior of b[X
j−

k+1], given Ai, Section 5.2

15: b[X
ij+
k+1]← UpdateBelief(b[X

j−
k+1], zk+1, Ai)

16: end for

17: end for

18: Prune components with weights ξ
ij

k+1 below a threshold

19: Construct b[X+k+1] from the remaining Mk+1 components via equation (38)

20: c← CalcCost(b[X+k+1]) F Section 4.7

21: J ← J + ws · c

22: end for

23: return J

combination of Mk ∈ N Gaussians, i.e.,

b[Xk]
.
= P( Xk|H

−
k , zk)=

Mk∑

i=1

ξk,iN ( X̂k,i, 6k,i) (32)

Since our motion model (see equation (3)) is still a Gaus-

sian, the propagated belief is also a Gaussian mixture model

with Mk components. More precisely

b[X−k+1]
.
= P( Xk+1|H

−
k+1) = P( Xk|Hk) P( xk+1|xk , uk)

=

Mk∑

i=1

ξk,iN ( X̂−k+1,i, 6
−
k,i) (33)

Once the observation zk+1 is obtained, for each of the Mk

components, we can consider all the aliased scenes {AN}.

The derivation is very similar to the lines of the discus-

sion in Section 4, with additional parameters introduced.

For ease of disposition, let us reproduce the steps, such as

equation (15), which we get after applying the chain rule

and subsequent marginalization over all x and Ai ∈ {AN}

{AN}∑

i

∫

x

P( zk+1|x, Ai,H
−
k+1) P( Ai|H

−
k+1, x) b[x−k+1 = x]

Thus

wi
.
=

∫

x

P( zk+1|x, Ai,H
−
k+1) P( Ai|H

−
k+1, x) b[x−k+1=x]

Since the propagated belief (see equation (33)), from

which b[x−k+1] is calculated, is also a Gaussian mixture

model, we can replace b[x−k+1 = x] with

b[x−k+1 = x] =

Mk∑

j=1

ξk+1, jb[x−k+1, j = x] (34)

However, the actual value of wi (for each Ai ∈ {AN})

depends, in addition to the measurement likelihood and

event likelihood, on the Gaussian mixture model belief

b[x−k+1], with the latter weighting the probability of each

considered robot pose x. This correctly captures the intu-

ition that those observations z with low-probability poses

b[x−k+1 = xtr] will be unlikely to be actually acquired,

leading to low values of wi with Ai = Atr. Since b[x−k+1]

is a Gaussian mixture model with Mk components, the

low-probability pose xtr corresponds to low probabilities

b[x
j−

k+1 = xtr] for each component j ∈ {1, . . . , Mk}. How-

ever, the likelihood term (equation (13)) could still increase

in the case of perceptual aliasing, where the aliased scene

Aj generates a similar observation to zk+1 from viewpoint

x′ with the latter being more probable, i.e. high probability

b[x−k+1 = x′].

In practice, the integral in equation (16) can be calculated

efficiently by considering each component of the Gaussian

mixture model b[x−k+1] separately. Each such component is
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a Gaussian that is multiplied by the measurement likelihood

P( zk+1 | Ai, x,H), which is also a Gaussian; it is known that

a product of Gaussians remains a Gaussian. The integral can

then only be calculated for the window where event likeli-

hood is non-zero, i.e. P( Ai | x,H) > 0. For general prob-

ability distributions, the integral in equation (16) should

be computed numerically. Since, in practical applications,

P( Ai | x,H) is sparse with respect to x, this computational

cost is not severe.

Similarly for term ( b), P( Xk+1|H
−
k+1, zk+1), applying

total probability over non-overlapping {AN} as well as all

the components of the propagated belief, we get

P( Xk+1|H
−
k+1, zk+1)

=

Mk∑

j=1

|AN|∑

i=1

P( Xk+1, Ai, γ = j | H−k+1, zk+1) (35)

Proceeding as before, we split the term inside the summa-

tion using the chain rule as follows

P( Xk+1, Ai, γ = j | H−k+1, zk+1)

= P( Xk+1 | H
−
k+1, zk+1, Ai, γ = j)

· P( Ai, γ = j | H−k+1, zk+1)

The first term is the posterior obtained with the scene Ai

while considering the jth propagated belief component; we

denote this b[X
j+

k+1|Ai].

For the second term, we again apply the chain rule, to

obtain

P( Ai, γ = j | H−k+1, zk+1)

= P( Ai | γ = j,H−k+1, zk+1) ·P( γ = j | H−k+1, zk+1)

Here, P( γ = j | H−k+1, zk+1) is equal to ξ
j

k , which is the

weight of the jth component of the prior belief. For the

first term, we marginalize over all x to obtain the weights

w̃
ij

k+1. This is identical to marginalization done in the previ-

ous Section 4 (see equation (20)), with the only difference

that here all x considered are from the jth component of the

belief

b[Xk+1]

=

Mk∑

j=1

|AN|∑

i=1

ξ
j

kP( Ai | H
−
k+1, zk+1, γ = j) b[X

j+
k+1|Ai] (36)

w̃
ij

k+1

.
= η′

∫

x

P(zk+1|Ai, x,H−k+1) P( Ai|H
−
k+1, γ = j, x) b[x

j−
k+1=x]

(37)

with η′ = 1/P( zk+1 | H
−
k+1). Note that for each compo-

nent j,
∑

i w̃
ij

k+1 = 1. Finally, we can rewrite equation (36)

as

P( Xk+1|H
−
k+1, zk+1)=

Mk+1∑

r=1

ξ r
k+1P( Xk+1|Hk+1, γ = r) (38)

or, in short

b[Xk+1] =

Mk+1∑

r=1

ξ r
k+1b[X r+

k+1]

where

ξ r
k+1

.
= ξ

ij

k+1 ≡ ξ
j

kw̃
ij

k+1 , b[X r+
k+1]

.
= b[X

j+
k+1|Ai] (39)

As seen, we get a new Gaussian mixture model with Mk+1

components, where each component r ∈ [1, Mk+1], with

appropriate mapping to indices ( i, j) from equation (36), is

represented by weight ξ r
k+1 and posterior conditional belief

b[X r+
k+1]. The latter can be evaluated as the Gaussian

b[X r+
k+1] ∝ b[X

j−
k+1]P( zk+1 | xk+1, Ai)

= N ( X̂ r
k+1, 6r

k+1) (40)

where the mean X̂ r
k+1 and covariance 6r

k+1 can be efficiently

recovered via maximum a-posteriori inference.

5.2. Non-myopic DA-BSP

It is easy to see that once the prior, as well as the poste-
rior, belief is represented as a mixture of Gaussians, we can
extend the DA-BSP to a non-myopic setting. Informally, for
planning over a horizon of L steps, starting with a mul-
timodal prior and a control sequence u0:L−1, the planning
would involve reasoning about the plausible data associa-
tions at each intermediate l ∈ [1, L − 1] step. To make it
more concrete, consider a non-myopic cost function as

J ( uk:k+L−1)

=

∫

zk+1:k+L

L
∑

l=1

(a)
︷ ︸︸ ︷

P( zk+l | H
−
k+l

) cl







(b)
︷ ︸︸ ︷

P( Xk+l|H
−
k+l

, zk+l)







(41)

where the expectation over future observations is written

explicitly, accounting for all possible realizations of these

unknown observations. Although dropped to reduce clutter,

the history H
−
k+l includes future observations zk+1:k+l−1 up

to the lth look-ahead step.

Like the myopic case in Section 4, the two terms ( a)

and ( b) in equation (41) have intuitive meaning: for each

considered value of zk+l, term ( a) represents how likely is

it to get such an observation, while term ( b) corresponds

to the posterior belief, given this specific zk+l. However,

the difference in a non-myopic case is that both terms are

conditioned on the history H
−
k+l, which is a function of

zk+1:k+l−1; hence, this reasoning is valid for all possible

realizations of zk+1:k+l−1 and the corresponding posterior

beliefs P( Xk+l−1|Hk+l−1).

It is not difficult to show that the posterior belief at each

step k is actually the Gaussian mixture model

P( Xk+l | H
−
k+l, zk+l, Ai)=

Mk+l−1∑

j=1

ξ
j

k+l−1b[X
j+

k+l|Ai] (42)
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where b[X
j+

k+l|Ai]
.
= P( Xk+l|H

−
k+l, γ = j, Ai, zk+l) is the pos-

terior belief of the jth Gaussian mixture model component

of the propagated belief b[X−k+l].

Plugging equation (42) into P( Xk+l|H
−
k+l, zk+l)≡ b[Xk+l]

from equation (9) yields

b[Xk+l]

=

|AN|∑

i=1

Mk+l−1∑

j=1

ξ
j

k+l−1P( Ai | H
−
k+l, zk+l) b[X

j+
k+l|Ai] (43)

Accounting for b[x
j−
k+l] for each considered jth compo-

nent as P( Ai | H
−
k+l, zk+l)=

∫

x
P( Ai, x | H−k+l, zk+l), and

applying Bayes’ rule yields

w̃
ij

k+l

.
=η′
∫

x

P(zk+l|Ai, x,H−k+l) P( Ai|H
−
k+l, x) b[x

j−
k+l=x] (44)

with η′ = 1/P( zk+l | H
−
k+l). Note that for each component

j,
∑

i w̃
ij

k+l = 1. Finally, we can rewrite equation (36) as

b[Xk+l] =

Mk+l∑

r=1

ξ r
k+lP(Xk+l|Hk+l, γ = r)

=

Mk+l∑

r=1

ξ r
k+lb[X r+

k+l] (45)

where ξ r
k+l

.
= ξ

ij

k+l ≡ ξ
j

k+l−1w̃
ij

k+l and b[X r+
k+l]

.
=

P(Xk+l|Hk+l, γ = r). As seen, we get a new Gaussian mix-

ture model with Mk+l components, where each component

r ∈ [1, Mk+l], with appropriate mapping to indices ( i, j)

from equation (36), is represented by weight ξ r
k+l and pos-

terior conditional belief b[X r+
k+l]. The latter can be evaluated

as the Gaussian b[X r+
k+l] = N ( X̂ r

k+l, 6
r
k+l), with mean X̂ r

k+l

and covariance 6r
k+l.

The associated cost of the overall posterior distribution

of this L-step planning can then be compared with that of

similar posterior distributions of other control sequences,

enabling us to choose an optimal single step action. After

the action is taken and a real observation is obtained, the

inference over this observation allows us to update the pos-

terior distribution, which then serves as a prior distribution

for next-L-step planning. However, a naïve implementation

of such a planning would likely suffer from the usual curses

of dimensionality and history. Luckily, DA-BSP provides

a principled way to strike a balance between the require-

ment for an efficient solution and not losing the correct data

association in a challenging aliased environment.

5.3. Overall algorithm

We now have all the ingredients to present the overall

framework of data association aware belief space plan-

ning, calling it DA-BSP for brevity. It is summarized in

Algorithm 2 and briefly described next.

We shall, in general, refer to Section 5.2 now. Given a

Gaussian mixture model belief b[Xk] and candidate action

Fig. 5. Gaussian mixture model posterior b[Xk+1] given zk+1

∈ {zk+1}. The prior has two equiprobable components while the

posterior has different weights for the two components.

uk , we first propagate the belief to get b[X−k+1] and then

simulate future observations {zk+1} (line 2), as described

in Section 4.4. The algorithm then calculates the contri-

bution of each observation zk+1 ∈ {zk+1} to the objective

function (equation (22)). In particular, in lines 8 and 9, we

calculate the weights wi
k+1 that are used in evaluating the

likelihood ws of obtaining observation zk+1. In lines 10 to

16, we compute the posterior belief: this involves updat-

ing each jth component from the propagated belief b[X
j−

k+1]

with observation zk+1, considering each of the possible

scenes Ai. After pruning (line 18), this yields a posterior

Gaussian mixture model with Mk+1 components. We then

evaluate the cost c( .) (line 20) and use ws to update the

value of the objective function J with the weighted cost for

measurement zk+1 (line 21).

One can observe that, according to equation (43), each

of the Mk components from the belief at a previous time is

split into |AN| new components with appropriate weights.

This would imply an explosion in the number of compo-

nents, making the proposed framework hardly applicable.

However, in practice, the majority of the weights will be

negligible, and can therefore be pruned, while the remain-

ing number of components is denoted by Mk+1 in equa-

tion (38). Depending on the scenario and the degree of

perceptual aliasing, this can correspond to full or partial

disambiguation (see Figure 5).

5.4. Effect of reducing a mixture of belief

We have seen that DA-BSP, on account of considering all

the possible data association, suffers from exponential blow

up in a number of components. Using the discrete case as

an example, it is easy to show that this—under a reason-

able assumption that scene space is much smaller than state

space—does not deteriorate the complexity of the underly-

ing problem. Moreover, it is important to notice that each

such association is accompanied with the weights, which

reflect the significance of such a data association. In par-

ticular, if a scene is quite unique, it is unlikely to be aliased

with any other; consequently, only the posterior conditioned

on this correct association would have significant weight.

A simple threshold-based pruning is then sufficient to dis-

card insignificant modes, as shall also be evident from our

extensive experiment in this regard later on.
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Fig. 6. When pose uncertainty is not taken into account, overly

confident and wrong inference can be made. Here, in the absence

of uncertainty and because L2 > L1, an observation from the

ground truth (shown C) is likely to be solely attributed to an

incorrect component 2.

One can notice that the objective of curtailing the com-

plexity of data structure through some pruning heuristics is

not a novel approach. Even in the context of data associa-

tion, it occurs in slightly different form when the problem

is posed as a multihypothesis tracking. Roughly speaking,

in such a scenario, planning is through explicit instantiation

of the trajectory of control and pruning decision is often

based on the information-theoretic value a particular branch

is expected to hold. Thus, multihypothesis tracking can han-

dle the passive case of belief space planning where disam-

biguation is sought only in the inference step and not in the

planning. By contrast, DA-BSP argues for data association

within the belief space planning framework and can thus

utilize weights that are shaped by the actual future associ-

ations. Nevertheless, we can harness similar approaches to

curtailing the empirical complexity of DA-BSP, classifying

them as local or global and pruning or merging. When the

decision about how to reduce a given mode in DA-BSP is

based on the overall likelihood of associations considered

from the initial position, we call it global, while in the local

approach, only local information of the conditional poste-

rior is sufficient to decide on it being reduced via merging

or pruning. As is evident from the name, pruning is the

process of dropping a component in a conditional posterior

distribution and re-normalizing the other weights, whereas

merging is the process of combining two components to

form a single component, which is an optimal (in some

heuristic sense) representation of the both. Both pruning

and merging can be recursive processes.

5.5. Full vs. partial disambiguation

In the context of selecting an appropriate horizon for plan-

ning, we can note that in most of the real-world examples,

the greater the horizon, the greater the likelihood of having

a unique observation that results in disambiguation between

several or all components of the belief. However, in general,

DA-BSP does not require a complete or full disambiguation

for its correctness. Recall from Section 3.1 that by full dis-

ambiguation we mean that the posterior belief eventually

has only a single component. For a usual forward L-step

planning, this cannot be guaranteed unless we assume an

existence of a unique observation in the future. At best,

there would be partial disambiguation, i.e. some compo-

nents of the posterior belief vanish due to less aliased

observations. On the contrary, in the cases where a full dis-

ambiguation does not occur within the planning horizon,

DA-BSP would maintain all the components with appropri-

ate weights. This not only allows for partial disambiguation

in such a planning scenario, where only the aliased compo-

nents remain in the posterior belief, but can also eventually

result in a full disambiguation. Hence, DA-BSP captures

the reality of a perceptually aliased environment quite well.

5.6. Degenerate cases of DA-BSP

Two prominent reasons for considering data association

aware belief space planning are, firstly, that it accurately

reflects the reality where, owing to pose uncertainty, the

observation may no longer be associated with that from the

nominal pose and, secondly, that it is a generalization of the

usual belief space planning. To elucidate the latter, we shall

consider three degenerate cases of data association aware

belief space planning: without pose uncertainty, with data

association solved and without perceptual aliasing.

5.6.1. Without pose uncertainty. Consider that for all prac-

tical purposes, the pose is known with certainty; hence, the

belief is a Dirac pulse around the nominal x̂k . Since the

scene space could still be uncertain, the belief space plan-

ning should consider all possible scenes being observed.

However, in this case, the integral in equation (37) reduces

to a single term. In a more realistic case of small variance in

the pose, considering only the most likely data association

may still lead to a reasonable performance. This is simi-

lar to many passive inference based approaches, where the

most likely component is often sufficient to account for the

overall posterior.

Note that when significant pose uncertainty exists, yet

is not assumed to do so, wrong and catastrophic infer-

ence could be made. This is seen in Figure 6, where it

is wrongly inferred with certainty that the robot is in a

vertically aligned pathway corresponding to component 2,

whereas the ground truth is that the robot is in a horizontally

aligned pathway corresponding to component 1.

5.6.2. With data association solved. In this case, the scene

that is captured from perspective xk+1 when observation

zk+1 is obtained is known. More precisely

∃t, P( zk+1|xk+1, Aj)=

{

1 j = t

0 j 6= t

This implies that the summation over all {AN} is reduced

to a single At, known a priori for each observation zk+1.

Therefore, with data association solved, the framework

degenerates to the usual belief space planning.
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5.6.3. Without perceptual aliasing. In the absence of per-

ceptual aliasing, while considering the observation zk+1, we

are guaranteed to have only a single pose and scene pair

( xk+1, Aj) that generated it. This implies that if the obser-

vation zk+1 were given, the posterior beliefs would be all

zero, except for the one corresponding to Aj. However, since

while planning at step k, the observation zk+1 is an unknown

random variable, we would still need to consider all possible

events {AN} that generated it.

5.7. On complexity and correctness of non-

myopic DA-BSP

In this section, we are interested in answering two ques-

tions: first, how much more computational effort would be

required to consider uncertain data association in the con-

text of belief space planning and, second, would such an

approach always guarantee a correct association—in other

words, will it guarantee that the component corresponding

to the ground truth association will be recovered whenever

possible. For the former, we need to analyze the compu-

tational complexity of DA-BSP, which, in general, would

depend on size of the state space. Thus, we shall con-

sider only the discrete state space where such a complexity

can be derived. We first note that belief space planning

can be framed as a POMDP. In a general infinite horizon

case, the POMDP is undecidable (Madani et al., 1999),

whereas for a finite horizon polynomial in |S|, it is known to

be PSPACE complete (Papadimitriou and Tsitsiklis, 1987).

Since DA-BSP seeks to solve a harder problem than the

usual belief space planning, i.e. to perform belief space

planning under uncertain data association, it is natural that

DA-BSP incorporates all scalability issues involved in solv-

ing any POMDP. In this section, we seek to make it more

explicit by considering a discrete state POMDP.

As is usually done, let the POMDP be represented by the

tuple 〈S,A, �, T , O, r, b0〉 and, furthermore, let the index i

represent the time-epoch at which decisions regarding con-

trol actions are executed. Let L be the horizon of the prob-

lem, i.e. i ∈ { j|1 ≤ j ≤ L, j ∈ N}. The tuple symbols

are:

• S. The set of unobservable states into which the system

can possible transit; ∀i, xi ∈ S;

• A. The set of all admissible control actions that the

system can perform; ∀i, ui ∈ A;

• �. The set of all possible observations that can be

obtained; ∀i, zi ∈ �;

• T . The transition function denoting the probability of

transiting from state x to state x′ under action u; T :

S ×A× S 7→ R[0,1];

• O. The observation function denoting the probability of

observation z under action u; O : S ×A×� 7→ R[0,1];

• r. The reward function for calculating the reward in each

state x and action u; T : S ×A 7→ R\{−∞,∞};

• b0. The initial belief; the probability distribution over

whole state space S.

Fig. 7. Explicit representation of underlying POMDP as a belief

Markov decision problem. Each circle represents a Gaussian com-

ponent of the belief; rectangles denote actions u. Note that, owing

to uncertain data association, more such Gaussian nodes may be

created, as shown in the cloud here. In contrast, under unam-

biguous data association, such as that shown with bold-and-filled

arrows, efficient planning can be performed by collapsing all the

Gaussian beliefs into a single Gaussian. See Section 5.7 for the

analysis in case of discrete state space.

Since, at any time step k, the actual underlying state is

unknown, the system should reason about probability dis-

tribution over all states. The belief of being in state x is

represented as b( x). After each observation, this belief is

updated as

bu,z( x′)=
O( x′, u, z)

P( z|u, b)
·
∑

x∈S

T( x, u, x′) b( x) (46)

which implies

bu,z( x′)∝ O( x′, u, z) ·
∑

x∈S

T( x, u, x′) b( x) (47)

Note that in the notation introduced in this paper, this can

be written as:

b[Xk+1|zk+1, uk]

∝ P( zk+1|xk+1, uk) ·

∫

xk

P( xk+1|xk , uk) P( xk) (48)

Visualizing equation (47) as a system of equations in

|S| variables (denoted by b( x)), we can see that each such

update requires O( |S|2) computational effort, where O

stands for big-O notation.

When data association is not solved, such a belief update

must be made against each possible data association (see

Figure 7), hence

b[Xk+1|Ai, zk+1, uk]

∝ P( zk+1|Ai, xk+1, uk) ·

∫

xk

P( xk+1|xk , uk) P( xk) (49)

Consequently, the data-aware belief update would require

O( ( |S||E |)2 ) computational effort, where E is the set of all

events {AN}. Assuming a finite horizon of size L, the over-

all complexity of the problem is O( ( |O||A|)L ( |S||E |)2 ).

Finally, we also note that, in practical applications, |E | �

|S|.
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To reason about the correctness of DA-BSP; i.e. when-

ever there is a single disambiguating data association, the

algorithm will recognize it and associate the observation

correctly, we first define pruned and unpruned DA-BSP.

Recall that DA-BSP adjusts the subsequent weights of the

components based on the likelihood of the observation

and of it being explained by the considered association.

An unpruned DA-BSP considers all such associations, no

matter how small the weights are (provided they are non-

zero), while pruned DA-BSP has some reasonable thresh-

old, below which all of the weights are pruned away. It is

easy to see the correctness of unpruned DA-BSP. Consider

that, at step k ∈ [1,∞), a full disambiguation occurs; then,

by definition, the belief at k − 1, i.e. b[Xk−1], will also con-

tain the component corresponding to the ground truth. The

subsequent computation of DA-BSP would yield weights

that are all strictly zero, except the one corresponding to

this ground truth. However, in the case of pruned DA-BSP,

this might not necessarily be true, as the ground truth com-

ponent might be pruned away in b[Xk−1], possibly even

leading to a catastrophic bad data association in the last

step k. Note that this requires either the weight of the cor-

rect component to be too low or the pruning threshold to

be too high. The former usually does not hold if we assume

that, at the start, the multimodal belief contains the correct

component as well. The latter can be avoided by judicious

choice of pruning threshold. As shown in the experiments,

DA-BSP is not sensitive to the choice of this threshold.

6. Experiments

In this section, we present an extensive analysis of the pro-

posed approach. Throughout this section, we will assume

that the set of action trajectories, from which the robot has

to plan its future actions, is given a priori. DA-BSP is a gen-

eral framework, which does not rely on any specific form of

these trajectories. Typically, the nature of these actions is

domain-specific, as we shall see in various setups analyzed

in this section. How these actions are actually generated is

outside of the scope of this work.

This section is organized into five different parts. First,

we describe the relevant software and hardware infras-

tructure that was set up for experimenting with DA-BSP.

Second, we mention some metrics that could be devised

to evaluate the usefulness of considering data association

within belief space planning. Since most state-of-the-art

approaches assume the data association as given and per-

fect, such metrics are essential to evaluate DA-BSP. Third,

we look into the abstract example introduced in Section 4.9,

under the simplistic assumption of myopic planning, i.e.,

the planning horizon is one step. As we shall see, this allows

us to understand conceptual differences that arise when data

association is considered, even in this fairly simple exam-

ple. Fourth, the case for explicit scenes is considered using

AprilTags (Olson, 2011), in a perceptually aliased corri-

dor environment with a Pioneer platform fitted with an

Fig. 8. Overall infrastructure of implementation of DA-BSP.

Note that thanks to the middleware block of ROS, the algorithm is

independent of whether it is applied to a real setup or a simulated

one.

RGB camera. Here, we use non-myopic planning. Finally, to

consider arbitrary levels of ambiguities, we create a simu-

lated world model (in Gazebo) of two nearly identical office

floors with various lookalike cubicles. In these simulations,

the Pioneer robot is fitted with a laser scanner. Thus, scenes

in this setup are implicit features of the world and may be

a combination of several objects. In particular, each cubicle

with walls and a chair would typically form a part of a scan

that is treated as a single scene.

6.1. Implementation of data association aware

belief space planning

Effective and realistic implementation of DA-BSP requires

two separate threads of development. To be efficient, it is

crucial that the algorithmic as well as the real-time cost

of incorporating the data association within belief space

planning remains as low as possible. We ensured this by rep-

resenting each component of the Gaussian mixture model

as a factor graph, so that state-of-the-art tool GT-SAM

could be harnessed for a time-efficient inference. Con-

versely, to be realistic enough, we implemented it using

a real robotic platform, Pioneer. Here, a propriety ROS

Robotics Toolbox was used, which enabled our implemen-

tation to work seamlessly for both a simulated world and

a real-world scenario. To simulate a complex world with

arbitrary levels of ambiguity, we chose Gazebo, since it fits

nicely with both the robotic platform and the ROS infras-

tructure. These two streams of development are shown in

Figure 8. The DA-BSP algorithm itself was implemented in

object-oriented MATLAB with the aim of striking a balance

between rapid prototyping and obtaining a generalizable

implementation that can be easily ported to such languages

as C++.1

6.2. Metrics for evaluating DA-BSP and com-

pared approaches

Evaluation of DA-BSP is linked to the notion of data asso-

ciation, which is typically assumed to be solved in belief

space planning. As mentioned before, accounting for data

association within belief space planning does not come

free. Conversely, assuming such an association randomly is

bound to fail. For a very simple case of myopic planning, we

compute the error in the posterior distribution as the metric
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distance between the ground truth and the mean of the clos-

est component. Suppose that the Gaussian mixture model

belief has N components with weights wi, means µi and

covariances 6i for i = [1, N]. Now, if x is the ground truth

position, then error δ is defined as

δ = min
i
‖ x− µi ‖ (50)

Such an error for a usual belief space planning approach

shall be denoted δBSP. Note that since usual belief space

planning has a single component, δBSP is the distance

between the mean of this component and the ground truth.

Similarly, δDA stands for the error in DA-BSP. To capture

the probabilistic aspect of the problem, these metrics are

averaged over several random trials.

Later, to evaluate the data association aware approach, we

keep track of how many components the belief has and how

many times it can make a correct association. We define

m̃ as an average number of components over all random

runs, i.e. for R random runs where Nr is the number of

components for run r

m̃ =

∑R
r=1 Nr

R
(51)

Recall from Section 5.7 that, as long as the component

corresponding to the ground truth is present in the belief,

we define the belief to be correct (from the data associa-

tion point of view). We denote this by Boolean symbol data

association. Note that, in the case of no pruning, DA-BSP
is guaranteed to be correct; hence, the data association is

set as true. This is also true if the pruning is not detrimental

to the correct component and association. ξca measures the

weight of the correct component in the belief, i.e. if, out of

N components, the component c corresponds to the correct

data association, then

ξca = ωc (52)

If the correct component is lost, the corresponding value

of ξca will be 0. Time taken by DA-BSP in any epoch is

directly related to the number of the components in the

belief. We keep track of this through the metric m̃.

Since usual belief space planning considers data associa-

tion to be given and perfect, DA-BSP cannot be compared

directly against the state-of-the-art approaches. To evaluate

DA-BSP, we compare it against the approach where, with

some probability 1 − ε, the true association is known and

made by the planning while, in all other cases, a random

choice from incorrect associations is made. This approach

implies that the belief is always unimodal and is there-

fore named BSP-uni. Similarly, in another approach, we

assume that the correct association with the scene is made

with probability 1−ε. However, all components of the prop-

agated belief are considered for such an association. This

approach implies that a multimodal prior distribution also

remains multimodal after inference. It is named BSP-mul
here. In both of these variants, we are interested in correct

data associations being made out of many trials. This is

measured by the metric ξca, where the value 1 would indi-

cate that, in all random trials, the component corresponding

to the correct data association had weight 1 in the belief,

i.e. the belief had a single component, corresponding to the

correct association. This could happen, for example, when

the belief is unimodal, owing to lack of ambiguity in the

vicinity.

These metrics are summarized in Table 1.

6.3. An abstract example for DA-BSP

Referring to the abstract example mentioned in Section 4.9,

we present in Table 2 a numerical analysis of the cost com-

putation (see equation (30)) of these configurations, as well

as a metric {δBSP, δDA} quantifying the estimation error,

defined over incorrect (with respect to ground truth) associ-

ations through N = 100 random samples of various modes.

Note that DA-BSP is independent of the cost function con-

sidered while planning. Here, we consider three different

costs. We refer the reader to Section 4.7 for details. The

worst cost is the trace of the maximal covariance among

all components while maximum weight considers the com-

ponent with the greatest weight while computing the trace.

In this case, both these result in the identical values of the

cost. As mentioned before, KLu is the Kullback–Leibler

divergence of the weights of the components of the belief

compared with the uniform distribution. Under no aliasing,

i.e. {8}alias, the number of components denoted by modes

does not increase.

Now, consider the action u1. Since it may lead to three

scenes that are perceptually aliased, DA-BSP may have

three components, whereas the usual belief space planning

approaches are bound to commit to a single data associ-

ation. Thus, as would be expected, this leads to a smaller

error in the case of DA-BSP; e.g. when A1 and A2 alias

({A1, A2}alias), δBSP is almost 6× δDA. Recall from equation

(31) that, unlike action u1, action u2 leads to fully unam-

biguous observations around the most likely values (see

Figure 4) and, consequently, δBSP ' δDA. Thus, we can

conclude that not only would DA-BSP lead to smaller esti-

mation error when there is a perceptual aliasing but also

that DA-BSP degenerates to usual belief space planning

approaches when helpful assumptions could be made (such

as in the case of no perceptual aliasing).

6.4. Real-world application with explicit

scenes—octagonal corridor

To elucidate the crucial properties of non-myopic DA-BSP,

we consider a real-world experiment, as shown in Figure 9

with a single Pioneer robot. The robot resides in an octag-

onal corridor with ample instances of ambiguous scenes.

The abstracted schema of the world is shown in the cen-

ter, while the surrounding figures are the third-person view

of the environment. The state space X ∈ R
3 consists of
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Table 1. Metrics used in the experiments.

Metric Description

δBSP Distance between ground truth and closest component under usual belief space planning

δDA Distance between ground truth and closest component under data association aware belief space planning

Data association Boolean flag, which is set true if the ground truth component is within the belief

ε Probability of incorrect data association

ξca Weighted probability of correct data association

m̃ Number of components in the belief

Table 2. Evaluating different cost functions for various configurations (see Figure 4).

Configuration Cost Estimation error U

Worst

Maximum weight KLu Mode

δBSP δDA u1/u2

{8}alias 0.0977 0.0977 0.3496 1.1000 0.1851 0.1717 u1

0.1009 0.1009 na 1.0000 0.3461 0.3999 u2

{A1, A2, A3}alias 0.0508 0.0508 0.5072 3.0000 1.1654 0.4772 u1

0.1009 0.1009 na 1.0000 0.3832 0.3990 u2

{A1, A2}alias 0.0833 0.0833 0.3757 1.5500 1.2197 0.2114 u1

0.1009 0.1009 na 1.0000 0.3912 0.3992 u2

{A1, A3}alias 0.0849 0.0849 0.3649 1.4000 1.0552 0.4197 u1

0.1009 0.1009 na 1.0000 0.4101 0.3940 u2

na: not applicable.

2D coordinates, as shown, as well as the orientation of the

robot. Here, the actual floor is shown via a laser scan. The

map of the environment is given in terms of AprilTags and

their corresponding ids. This enables us to simulate arbi-

trary levels of perceptual aliasing by AprilTags with iden-

tical tag ids. In particular, we have tags with ids 1 and 2

depicted in blue ‘+’ and red ‘*’ markers, respectively. Note

that the laser scanned map is depicted here for representa-

tion purposes only. It is neither exact nor is it provided to

the robot while planning. Because of this, some tag posi-

tions might appear non-aligned to the laser map. Initially,

the belief of the robot is a multimodal distribution, repre-

sented by a Gaussian mixture model with four components

having equal weights and shown by the ellipses in Fig-

ure 9. Typically, the tag detection is decided through the

centrality of the tag in the image observed by the camera.

Figure 10 shows the case where the off–center tag is not

detected.

The objective of the robot is to both localize itself and

to reach a specific elevator; all elevators are denoted O.

Initially, the planner is provided with a set T of control tra-

jectories; see Figure 11 for some of the trajectories consid-

ered. Consequently, depending on the planning algorithm

used (DA-BSP, BSP-uni, or BSP-mul), as well as the

planning horizon L, the cost of each trajectory τ ∈ T is

evaluated and the optimal (with respect to this cost) tra-

jectory is chosen. Note that these trajectories are different

in length and, owing to the specific nature of the problem,

the robot will also witness different levels of perceptual

aliasing while following them. Later on, in further exper-

iments, the results would be shown for an arbitrarily chosen

trajectory, viz. trajectory 1. The L-step planning, followed

by enacting one optimal control action and the consequent

inference, shall together be called an epoch. Note that

this simple representation of the world is very general.

Indeed, real-world complications—such as the state space

being of higher dimension, different levels of ambiguities

between the scenes, and planning problems of longer time

scales—can all be easily incorporated into it.

Since we model the visual observation via AprilTags,

owing to sensory limitations (such as out-of-view or far-

from-center tags), a reliable observation might not be avail-

able at each motion step. One such instance is depicted

in Figure 10. In such conditions, no data association can

be made (as there is no measurement) and consequently,

DA-BSP behaves exactly like the usual belief space plan-

ning, albeit with a prior distribution that could have many

components.

The purpose of Figure 12 is to illustrate the evolution

of belief in the DA-BSP framework. The prior distribution

is a multimodal belief with four components. When only

the motion model is incorporated, the propagated belief

still has four components but each has higher uncertainty.

Finally, when a perceptually aliased observation is made,

DA-BSP adjusts the weights of the components of the

posterior distribution where, after a simple pruning, only

three components remain. This reduction is because there

is slight asymmetry at the ends of the corridors. However,

when ambiguous data association occurs, DA-BSP consid-

ers all possible associations and weighs each new compo-

nent of the posterior distribution according to equation (44).

Figure 12 shows one such instance.

The result of running DA-BSP on this setup is shown

in Table 3. As can been seen, the computational cost of
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Fig. 9. Real-world experimental setup (best viewed in color). The images show the actual third-person view at different locations of the

robot, while the two-dimensional figure shows the semantic knowledge of the environment that the robot possesses. Its current belief is

a four-modal Gaussian mixture model with mean position depicted by xinit. The ground truth robot position is indicated by C, while

two sets of aliasing scenes with tag ids 1 and 2 are shown with blue + and red * respectively; arrows indicate orientation (not motion).

The actual scenario is depicted through the laser scan of the environment shown in green. This map is for representative purposes only

and is not available to the robot. The zoomed-in picture of an AprilTag is also shown.

Fig. 10. (a) AprilTag is detected, indicated by green patch at center. This provides the transformation matrix between the pose of

the robot and the landmark pose. Note that a far-away AprilTag, though visible in this frame, is considered undetected, since the

non-centrality of the tag makes the observation highly untrustworthy. (b) No AprilTag lies within the field of view of the camera.

DA-BSP planning depends on the number of components

maintained in the posterior distribution, i.e. by m̃. m̃ indi-

cates the level of disambiguation with the belief while ξca

shows how well the correct data association is accounted

for. For example, at epoch 20, both planning and inference

have high values of ξca (0.73 and 1.00, respectively) but full

disambiguation occurs for inference only (m̃ = 1). Note

that DA-BSP considers robust active and passive inference

in a single framework. Hence, whether it is reasoning about

future observations while planning (the left part of the table)

or inferring based on a given observation (the right part of

the table), the DA-BSP algorithm remains the same.
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Fig. 11. Some of the trajectories considered by the robot (best viewed in color). The starting position is marked with a filled ellipse.

The door on the right, the stairs, and the elevators, are shown by �, 4, and A, respectively, and also marked by the text, where relevant.

Fig. 12. Evolution of belief at epoch E = 3 under DA-BSP. Here, tags are represented by shapes {∗,+, �,4, O}, while the ground

truth robot position is indicated by C. (a) The prior belief is multimodal with four distinct modes, as shown by the colored ellipses. (b)

After incorporating the motion model, the propagated belief is similarly a multimodal distribution. (c) When observation is accounted

for and inference is performed, the posterior belief is as shown. Note that some of the earlier components of the prior might vanish (e.g.

here, the slight asymmetry around the corner causes one component to vanish). Also new components in the posterior may emerge (not

the case here). Here, L = 3.

DA-BSP incorporates planning and inference seamlessly

under one framework, called an epoch earlier. The overall

planning is performed as a model predictive control com-

posed of several such steps. Figure 13 shows some of the

epochs in DA-BSP, along with other approaches such as

BSP-uni and BSP-mul. Here, the trajectory under evalu-

ation has 24 actions. At the start, the belief has four modes

with equal weights. DA-BSP results in these components

being differently weighted in the next epoch, while at epoch

4 only two components remain. Later on (such as epoch 18),

many more components arise, as the AprilTags are more

densely distributed on the inner walls of the initial corri-

dors. In contrast with this, BSP-uni and BSP-mul may

result in catastrophically bad inference; one such instance

of each is depicted in Figure 13.

Once the planning is performed under DA-BSP, the sub-

sequent posterior distribution at the end of each epoch

might have more or even fewer components than before.
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Table 3. Performing DA-BSP on a real corridor environment

shown in Figure 9, with planning horizon L = 4. The times in

seconds spent in planning and in inference are denoted t, while m̃

stands for average modes; refer to Section 6.4.

Algorithm Epoch Planning Inference

t (s) ξca m̃ t (s) ξca m̃

DA-BSP 1 21.81 0.09 6.00 0.84 0.22 4.00

4 5.19 0.28 2.50 0.84 0.31 3.00

8 8.66 – 1.00 0.80 1.00 1.00

12 19.90 – 6.67 2.48 0.35 5.00

16 3.50 0.16 2.00 0.14 – 10.00

20 4.51 0.73 3.80 0.31 1.00 1.00

The former occurs when the presence of identical close tags

causes perceptual aliasing, while the latter is the result of

unlikely components being pruned away naturally, in the

light of new observations. This is evident in Figure 13(d),

where at epoch 8, the belief distribution is reduced to a sin-

gle component and hence the correct corridor is determined

but later on, by epoch 18, the belief distribution again has

as many as eight components, arising from close identical

AprilTags.

Consider Table 4, where we evaluate DA-BSP as well

as other comparable alternatives, such as BSP-uni and

BSP-mul, described previously. The metrics used here

(such as ξca and data association) were already described

in detail in Section 6.2. The values are averaged over five

random runs, where data association is set true only when

the correct data association is accounted for in all of the ran-

dom runs. When no plausible data association can be made,

we represent these metrics as ‘–’. This can happen either

because there is no AprilTag in the vicinity of the robot

and hence no observation could be made (such as in epoch

E = 8) or when the inference in the previous planning is

too far way from the ground truth to make any plausible

data association (such as several epochs in BSP-uni with

L = 3). It could be argued that, in the presence of severe

perceptual aliasing, both BSP-uni and BSP-mul are ill-

equipped approaches for planning, as incorrect data associ-

ation would imply almost certain catastrophic inference. To

remedy this, we consider first the case where correct data

association is provided to BSP-uni and BSP-mul with

a high probability of 90% i.e., randomization is ε = 0.1.

Later on, in Table 5, we see how BSP-uni deteriorates (ξca

decreases) with increasing randomization, ε.

Naturally, DA-BSP, when compared with BSP-uni and

BSP-mul, trades computation efficiency with such correct-

ness of data association. On the one hand, DA-BSP always

has a component corresponding to correct data associa-

tion (seen from the Boolean flag data association), while

on the other hand, it is significantly slower than BSP-uni
and BSP-mul, especially for non-myopic planning with

larger horizons (seen from the time taken, denoted t).

However, exponential blow up of computational complex-

ity as the planning horizon increases is an issue not spe-

cific to DA-BSP. Unfortunately, DA-BSP cannot solve or

Fig. 13. (a–c) Evolution of inferred belief as decision epoch pro-

gresses with L = 3; epochs depicted are {4, 18, 24}. The trajectory

of actions is Trajectory 1 from Figure 11. These depict evolu-

tion of inferred belief, for different planning algorithms, DA-BSP,

BSP-uni, and BSP-mul, respectively. Gaussian mixture model

components and associated weights are shown in different col-

ors. Ground truth robot position is indicated by C. For clarity, the

detected scenes are shown in different colors. For BSP-mul and

BSP-uni, this particular instance of planning leads to catastroph-

ically bad data association. (d) Evolution of Gaussian mixture

model component weights during these epochs. Note that the num-

ber of components increases and decreases and eventually goes to

1. Here, the planning horizon is L = 3.

even reduce this burden. On the contrary, if the world

is replete with perceptually aliased scenes, computational

effort would increase significantly. Fortunately, owing to

parsimonious data association (grounded in the fact that

the actual world is not replete with exact similarities) the

additional cost of DA-BSP may not be significantly greater;
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Table 4. Comparing DA-BSP against BSP-uni and BSP-mul in several steps of planning and inference, with L = 1 and L = 3. The

times in seconds spent in planning and in inference is denoted by t, while average modes are shown by m̃. Values shown here are for an

average of five random runs. Here, data association signifies correct data association in all of the random runs, as defined in Section 6.2.

Results for BSP-uni and BSP-mul were obtained for ε = 0.1, i.e. correct data association was provided to BSP-uni and BSP-mul

with a high probability of 90%. Performance of these approaches deteriorates for increasing randomization, ε; see Table 5.

Algorithm Epoch L = 1 L = 3 Inference

t (s) ξca m̃ Data association t(s) ξca m̃ Data association t (s) ξca m̃ Data association

DA-BSP 1 2.60 0.11 4.00 X 95.57 0.08 5.95 X 0.80 0.22 4.00 X

2 1.21 0.29 2.00 X 5.75 0.13 1.37 X 0.05 – 4.00 –

4 1.00 0.35 2.00 X 4.29 – 1.00 – 0.61 0.50 2.00 X

8 0.11 – 1.00 – 0.35 – 1.00 – 0.02 – 1.00 –

12 3.90 0.11 4.80 X 191.48 0.08 6.79 X 1.16 0.28 4.20 X

16 2.62 0.12 3.03 X 3.58 – 3.02 – 0.60 0.11 4.60 X

19 3.14 0.09 2.60 X 82.16 0.04 6.10 X 0.94 0.14 6.60 X

t (s) ξca Data association t (s) ξca Data association t (s) ξca Data association

BSP-uni 1 0.43 0.90 × 2.19 – – 0.20 1.00 X

2 0.15 – – 1.43 0.86 × 0.03 – –

4 0.25 1.00 X 4.51 0.98 × 0.17 1.00 X

8 0.15 – – 1.10 – – 0.05 – –

12 0.26 1.00 X 3.90 – – 0.17 1.00 X

16 0.16 – – 1.11 – – 0.08 – –

19 0.30 1.00 X 1.24 – – 0.17 – –

t (s) ξca Data association t (s) ξca Data association t (s) ξca Data association

BSP-mul 1 2.74 0.15 × 34.33 0.18 × 0.86 0.80 ×

2 2.01 0.27 × 20.84 0.40 × 0.03 – –

4 1.66 0.23 × 4.14 – – 0.77 0.20 ×

8 0.77 – – 1.54 – – 0.18 – –

12 0.80 0.80 × 1.52 – – 0.81 0.20 ×

16 2.33 0.27 × 14.39 – – 0.33 – –

19 1.70 0.63 × 38.33 0.82 × 0.48 – –

Table 5. Evaluating non-myopic BSP-uni in several steps of planning and inference, under different randomizations of ε =

{0.25, 0.5, 0.75, 1.0}. Recall that ε is the probability with which BSP-uni chooses a random association out of all plausible asso-

ciations. The times in seconds spent in planning is denoted t, while the average correct association is denoted ξca. Values shown here

are for an average of five random runs while standard deviation is depicted within parentheses.

Algorithm Epoch ε = 0.25 ε = 0.50 ε = 0.75 ε = 1.00

t (s) ξca t (s) ξca t (s) ξca t (s) ξca

BSP-uni 1 1.14 (0.23) 0.78 (0.43) 1.08 (0.33) 0.90 (0.14) 1.14 (0.30) 0.96 (0.06) 1.17 (0.34) 0.92 (0.08)

6 0.13 (0.08) – (–) 0.38 (0.33) – (–) 0.20 (0.10) – (–) 0.23 (0.25) – (–)

12 1.17 (0.61) 0.76 (0.43) 1.30 (0.47) 0.59 (0.54) 0.97 (0.60) 0.54 (0.50) 1.02 (0.63) 0.36 (0.50)

18 1.23 (0.60) 1.00 (0.00) 1.04 (0.74) 0.52 (0.49) 0.60 (0.58) 0.37 (0.51) 0.46 (0.23) 0.20 (0.45)

e.g. BSP-mul has similar magnitude of time taken to

DA-BSP.

DA-BSP accounts for all plausible data association and

hence might have many components in the belief (recall

that the number of components is denoted m̃). We depict in

Table 4 epochs where ξca might be low for DA-BSP, such

as in epoch E = 19. Note that, even here, the correct asso-

ciation is being accounted for by DA-BSP. The low value

of ξca might arise from the exact nature of the observation,

which may be better explained by an aliasing scene than by

the ground truth, in at least some of the random runs.

Another notable aspect is how often the belief incor-

porates the component corresponding to the correct data

association. In the case of all of these algorithms, data asso-

ciation and ξca quantify this aspect. Under highly uncertain

data association, BSP-uni and BSP-mul would always

come up with catastrophically bad inference. Recall that the

results for BSP-uni and BSP-mul are shown in Table 4
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for ε = 0.1. Note that for BSP-uni under myopic plan-

ning (L = 1) correct association is often found and, corre-

spondingly, ξca = 1. However, with a non-myopic planning

horizon (L = 3), this decreases and data association is

never set as true. This also means that ξca for BSP-uni
is higher in inference than in the planning in general. On

the contrary, BSP-mul never has data association set to

true because in at least one of the random runs, it asso-

ciates to the wrong scene. Consequently ξca is always less

than 1. These are highly suitable settings for BSP-uni and

BSP-mul, since the randomization is low (ε = 0.1). Table

5 shows an analysis for BSP-uni when the randomization

is higher.

Table 5 depicts the performance of BSP-uni under dif-

ferent randomizations of ε with planning horizon L = 2.

As can be expected, the data association performance of

BSP-uni deteriorates gradually with increasing ε, while

the computational effort remains the same. For example, for

epoch 12, the metric ξca decreases from 0.76 for ε = 0.25

to 0.36 for ε = 1. Note that, under mild randomization

with ε = 0.25, BSP-uni was successful in obtaining cor-

rect association in all five random runs, hence ξca = 1.

Also, to have sufficiently high ξca at all epochs, the under-

lying algorithm should always guess the data association

correctly. This illustrates the importance of DA-BSP in

realistic scenarios, where this cannot be assumed.

Table 6 shows the effect of the pruning parameter on

DA-BSP. As can be seen, DA-BSP is insensitive to such a

pruning parameter σ . Even at a very high pruning thresh-

old, DA-BSP may result in sufficiently decent planning,

whereas a threshold of σprune = 5% was sufficient to obtain

planning similar to the case of unpruned DA-BSP, which

was simulated by using σprune = 10−10. This is because

realistic scenarios typically do not have persistent ambigu-

ity at each step of navigation; hence, the weights of many

components decrease naturally to afford an easy approach

of pruning. Thus, at first, it might appear that DA-BSP is

hopelessly expensive in terms of computational efforts and

non-trivial pruning techniques might be required to make

it applicable in any realistic scenario. However, quite the

contrary is true.

Another unique aspect of DA-BSP is that the weights of

the components are adjusted as is suitable after consider-

ing all future observations in both myopic and non-myopic

settings. Based on the configuration of the environment, a

longer planning horizon may enable quicker disambigua-

tion and consequently reduced Kullback–Leibler cost. In

Figure 14, we see how the number of components, as well

as this cost, varies across different epochs of DA-BSP and

also under various planning horizons.

6.5. Highly-aliased simulated office scenario

To demonstrate our concept in a more challenging scenario

under a high level of perceptual aliasing, we considered a

Gazebo-based simulation of a Pioneer robot in an aliased

Fig. 14. Evolution of belief as decision epoch progresses dur-

ing DA-BSP planning. The average number of components in the

belief mixtures is depicted in the plot.

two-floor office room environment. This domain also illus-

trates the generality of DA-BSP, since it allows for a differ-

ent representation for the scenes, as against the AprilTags

considered before. The robot is fitted with realistic sensors

enabling laser scans and odometry estimation. Apart from

the implementation mentioned in Section 6.1, we use the

iterative closest point algorithm for laser scan matching.

This implies that the scenes against which DA-BSP con-

siders the data association are reasoned implicitly through

laser scans. In other words, a laser scan of an office cubi-

cle with chair and desk is considered as a single scene.

Based on sufficiently high iterative closest point match-

ing, this scene aliases with the laser scan from another

similar-looking cubicle.

The scenario is as shown in Figure 15(a). Unless stated

otherwise, we will use natural numbers to denote specific

places in this scenario as it is depicted and notation x → y

to show a path from x toward y. The two floors are identi-

cal except that floor 2 has an additional printer p1 (Figure

15(a)). Additionally, each floor has significant perceptual

aliasing within itself, owing to identical cubicles and self-

similar corridors. However, at the ends of the corridors,

there could be a disambiguating feature present, such as a

vending machine and sofa at one end and a printer at the

other. The goal for the robot is to reach cabin c1 (Figure

15(a)) and to disambiguate between the floors. Initially, the

robot wakes up to find itself in either of the places 1 or 6

(facing places 2 or 7, respectively). Hence, its initial belief

is modeled as a four-component Gaussian mixture model

(two for each floor), whereas the ground truth is at position

1, i.e., the robot actually is at 1. Throughout this section,

we use green and yellow to denote the ground truth and the

aliasing, respectively.

Consider that the robot starts at 1 (Figure 15(a)); thus

the initial belief has a mean at this position. A forward

action to 2 can be used to propagate the initial belief.

The subsequent prior and the propagated (means at 1 and

2, respectively) covariances are shown in Figure 16(a).

The area of the ellipses equals the actual 2σ covariance.

The laser scan obtained for the belief update is shown in
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Table 6. Evaluating DA-BSP in several steps of planning with horizon L = 2, under different pruning thresholds of σ =

{0.2, 0.05, 10−10}. The time in seconds spent in planning is denoted t, while ξca and m̃ show weight of correct association and averaged

number of modes, respectively. Values shown here are for an average of five random runs, while standard deviation is depicted within

parentheses. Note that a5% threshold is sufficient in this case to perform equivalently with almost unpruned DA-BSP with σ = 10−10.

Algorithm Epoch σ = 0.20 σ = 0.05 σ = 10−10

t (s) ξca m̃ t (s) ξca m̃ t (s) ξca m̃

DA-BSP 1 14.88 (6.80) 0.11 (0.10) 2.60 (0.89) 16.02 (7.74) 0.12 (0.08) 4.70 (2.22) 14.27 (8.79) 0.15 (0.09) 4.40 (2.19)

2 5.21 (4.78) 0.50 (0.34) 1.75 (0.75) 5.26 (4.87) 0.50 (0.34) 1.85 (0.93) 7.60 (5.74) 0.21 (0.10) 2.50 (0.68)

6 0.37 (0.20) 0.20 (0.45) 1.00 (0.00) 0.38 (0.19) 0.20 (0.45) 1.00 (0.00) 0.50 (0.17) 0.60 (0.55) 1.00 (0.00)

13 13.39 (4.02) 0.29 (0.23) 2.13 (0.51) 52.49 (41.63) 0.17 (0.13) 6.86 (1.58) 114.35 (71.18) 0.10 (0.09) 13.91 (6.80)

16 2.43 (4.49) 0.18 (0.26) 1.70 (0.45) 8.58 (9.72) 0.34 (0.20) 3.18 (2.03) 9.49 (8.34) 0.12 (0.06) 3.37 (1.87)

Fig. 15. (a) Two-floor aliased office environment in a Gazebo sim-

ulator: p1 and p2 denote printers, while 1 and 6 are the mean

positions in each floor for the initial four-component Gaussian

mixture model belief. (b–h) Mean positions (modes) of robot for

each step of the DA-BSP path. Green denotes ground truth; yellow

indicates the aliasing position.

Figure 17(b), where the green scan denotes the actual scan

obtained. Note that from a different view point a similar

scan is obtained (shown in yellow). This is due to the alias-

ing nature of the environment; considering this aliasing scan

Fig. 16. Prior belief is propagated according to the motion model.

Within the subsequent propagated belief, perceptually aliased

laser scans are observed. Here, 2σ covariance is depicted with

each ellipse.

Fig. 17. (a) Evolution of weights of the components of the

belief when following the shortest path versus that following the

DA-BSP path. (b) Laser scans at ground truth and aliased position

(green and yellow respectively).

within our planning-inference framework (DA-BSP) gives

rise to two components in the posterior belief, each of which

are weighted according to the corresponding likelihood for

the respective scans to be obtained. See Figure 16(b).

Starting from positions 1 or 6, there are many possi-

ble paths to reach the goal (cabin c1 (Figure 15(a)). We

would like to show two such paths. The shortest path is

6 → 14 → 16 → 12 (Figure 15(a)). However, it leads to

an increase in the number of modes; on reaching the goal,

the robot is uncertain of the floor it is in. As seen previ-

ously (e.g., Figure 16), the modes increase, owing to the

highly aliasing environment. Now consider a longer path,

1→ 2→ 3→ 4→ 5→ 13→ 12→ 15 (Figure 15(a)).

Let us call this the DA-BSP path. While following 1 → 2

and 2 → 3, owing to the aliased cubicles, the number of
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components increases from four to eight. See Figure 15(a)

to (c) for the corresponding mean positions of the robot.

Intrafloor disambiguation occurs along the paths 3→ 4 and

8→ 9. This is because of unique features present, viz. the

sofa and the printer, for these respective paths. Similarly,

along 4 → 5, the components are reduced to two (in Fig-

ure 15(e)) and then increase again to four along the paths

5 → 13 and 13 → 12 (in Figures Figure 15(f) and (g),

respectively). Full disambiguation ,resulting in a unimodal

belief, occurs at 15, owing to the presence of the unique

printer, p1 (Figure 15(a)). Figure 17 depicts the evolution of

weights along both paths.

In Figure 18, we see how the different components of

the belief and the respective weights evolve when following

the DA-BSP path. When planning with horizon L = 2, the

components increase in number and retain similar weights

(E = 2), while subsequent discrimination (E = 3) and

reduction within the components (e.g. E = 5) leads eventu-

ally to full disambiguation (E = 8). Figure 18(b) shows the

cardinality of components in the Gaussian mixture model

during planning with different horizons viz., L = {1, 3, 5}.

It can be seen that the graph gets steeper with increasing L.

For a specific path and depending on the configuration of

the environment, a longer planning horizon might help us

disambiguate faster, as can be seen from Figure 18(b). Note

that full disambiguation occurs at E = 8 for myopic plan-

ning (L = 1). Thus, for L = 5, which can project five steps

in the future, such as disambiguation occurs from E = 4

onwards. L = 3 lies somewhere in between where the full

disambiguation occurs, from E = 6 onwards.

Table 7 compares DA-BSP with BSP-uni at different

epochs of planning and inferences for planning horizons of

L = {2, 4}. Here, the DA-BSP path is considered. Recall

that ξca stands for the weight of the component correspond-

ing to the ground truth. For example, for E = 2, DA-BSP
inference results in eight modes arising from seven other

observations that alias the ground truth. Subsequently, ξca =

0.12. In the case of BSP-uni, the metric ξca measures

how many times the correct association was made. Thus,

the table shows that for all random runs there are instances

where BSP-uni fails, owing to catastrophically bad data

association. For example, at E = 7, where ξca = 0, the

robot always infers itself to be at a wrong place.

Table 8 shows how BSP-uni copes with uncertain data

association. As expected, for a randomization value of ε =

0.3, the overall correctness of the association is very low;

e.g., at the epoch E = 7, ξca = 0.2, meaning that wrong

and possibly catastrophic inference will be made with 80%

probability.

7. Conclusions and future work

7.1. Conclusions

We presented a unified framework for robust perception in

planning as well as inference. State-of-the-art belief space

planning approaches typically consider data association to

Fig. 18. (a) Evolution of weights of the components in the Gaus-

sian mixture model after inference for L = 2. (b) Average number

of components in belief mixtures for different planning horizons.

be given and perfect. However, such an assumption is less

appropriate in the presence of localization uncertainty while

operating in ambiguous environments, where two scenes

could be similar in appearance when observed from appro-

priate viewpoints. In contrast with such state of the art,

here we developed a DA-BSP approach that relaxes the data

association assumption. In the context of a passive approach

with the observations provided, the DA-BSP results in more

robust inference. Conversely, in the context of an active

approach, where planning needs to consider all possible

future observations, this provides better action selection,

such that catastrophically bad inferences and (if possible)

actions leading to ambiguities are avoided. DA-BSP con-

siders data association in a principled rigorous way with

belief space planning. It is a more faithful representation

of an aliased environment, since the number of components

can increase as well as decrease. Although this increases

the computational burden of planning, it is both necessary

for ambiguous environments and still practically applicable,

as shown through numerous experiments in both a realistic
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Table 7. Evaluating DA-BSP in several steps of planning and inference, for L = 2 and L = 4. The times in seconds spent in planning

and in inference are denoted t, while m̃ denotes average modes. ξca measures the level of aliasing, whereas data association is a binary

variable denoting correct or wrong association.

Algorithm Epoch L = 2 L = 4 Inference

t (s) (ξca,m̃) t (s) (ξca,m̃) t (s) (ξca,m̃)

DA-BSP 2 293.45 (0.13,8) 733.67 (0.49,2) 29.40 (0.12,8)

3 262.37 (0.25,4) 557.57 (0.25,4) 26.80 (0.12,8)

5 10.05 (0.25,4) 115.95 (1,1) 2.40 (0.26,4)

7 2.47 (1,1) 2.57 (1,1) 1.46 (1,1)

t(s) η t (s) η t (s) η

BSP-uni 2 7.04 1 18.96 1 4.17 1

3 1.23 1 2.20 0 0.77 0

5 1.04 0 1.90 0 0.56 1

7 0.47 0 0.50 0 0.46 0

Gazebo simulation and real experiments with the Pioneer

robot platform. Moreover, DA-BSP degenerates to usual

approaches in the presence of helpful assumptions, such as

under very small localization uncertainty and under lack of

perceptual ambiguities in the environment. In other words,

DA-BSP is a rigorous holistic approach to consider data

association in the context of belief space planning.

7.2. Future work

When DA-BSP is applied in the context of non-myopic

planning, parametric solutions, such as incorporating all

the associations explicitly, suffer from a scalability prob-

lem, owing to exponential blow up of the components of

the beliefs. It was argued in Section 5.4 that components

in DA-BSP arise out of data association ambiguities, where

the observations that are not aliased drastically get increas-

ingly smaller weights. As shown in the experiments, a short

planning horizon is therefore often sufficient to collapse a

highly multimodal belief into one with a very small num-

ber of components. It is interesting to note that this very

same reasoning could also be harnessed to represent the

resulting multimodal belief in a non-parametric fashion,

such as through a Gibbs sampling approach, or a more effi-

cient approximate method, harnessing Dirichlet processes.

It was shown recently by Fourie et al. (2016), albeit in

a passive setting, that such a non-parametric representa-

tion can tackle realistic data association issues in the con-

text of SLAM. Thus, comparison of the proposed DA-BSP
with those passive non-parametric approaches is a lucrative

research direction, while another worthy pursuit is to obtain

a non-parametric version of the proposed DA-BSP.
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Table 8. BSP-uni in five different runs. BSP-uni can be seen

as a very drastic pruning, where data association may or may not

be correct. Randomization is ε = 0.3. This is seen from the ξca

values (for five random runs). Standard deviations are given within

the parentheses.

Algorithm Epoch Inference t (s) ξca

BSP-uni 2 4.10 (0.42) 0.60 (0.54)

3 0.80 (0.12) 0.60 (0.54)

5 0.53 (0.14) 0.80 (0.44)

7 0.42 (0.09) 0.20 (0.44)
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