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Abstract— In this paper we develop a new approach
for decentralized multi-robot belief space planning in high-
dimensional state spaces while operating in unknown envi-
ronments. State of the art approaches often address related
problems within a sampling based motion planning paradigm,
where robots generate candidate paths and are to choose the
best paths according to a given objective function. As exhaustive
evaluation of all candidate path combinations from different
robots is computationally intractable, a commonly used (sub-
optimal) framework is for each robot, at each time epoch, to
evaluate its own candidate paths while only considering the
best paths announced by other robots. Yet, even this approach
can become computationally expensive, especially for high-
dimensional state spaces and for numerous candidate paths
that need to be evaluated. In particular, upon an update in
the announced path from one of the robots, state of the art
approaches re-evaluate belief evolution for all candidate paths
and do so from scratch. In this work we develop a framework to
identify and efficiently update only those paths that are actually
impacted as a result of an update in the announced path. Our
approach is based on appropriately propagating belief evolution
along impacted paths while employing insights from factor
graph and incremental smoothing for efficient inference that
is required for evaluating the utility of each impacted path. We
demonstrate our approach in a synthetic simulation.

I. INTRODUCTION

Collaboration between multiple robots pursuing common
or individual tasks is important in numerous problem do-
mains, including cooperative navigation, mapping, track-
ing and active sensing. A key required capability is to
autonomously determine robot actions while taking into
account different sources of uncertainty.

The corresponding problem can be formulated within
a partially observable Markov decision process (POMDP)
framework, which is known to be computationally intractable
[20]. Thus, the research community has been extensively
investigating approximate approaches to provide better scal-
ability to support real world problems. These approaches can
be roughly classified into four categories, some of which are
further discussed below: point-based value iteration meth-
ods (e.g. [16]), simulation based approaches (e.g. [24]) in
the context of active SLAM, sampling based approaches
(e.g. [14], [15], [17]) and direct trajectory optimization
approaches (e.g. [12], [22], [25]).
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Fig. 1: Illustration of the proposed concept. The figure shows belief evolution over
a few candidate paths of robot r given an announced path Pr′ from robot r′

and the corresponding multi-robot constraints that can represent, e.g., future mutual
observations of environments unknown at planning time [10]. Upon an update in
an announced path from Pr′ to Pr′

new , a new set of such constraints will be
generated (shown in purple), requiring to re-calculate belief evolution for candidate
paths. Covariance ellipses are shown for illustration.

In particular, sampling based approaches (e.g. [1], [5],
[9], [23]) discretize the state space using randomized ex-
ploration strategies to explore the belief space in search of
an optimal plan. While many of these approaches, including
probabilistic roadmap (PRM) [15], rapidly exploring random
trees (RRT) [17], and RRT* and Rapidly-exploring Random
Graph (RRG) [14], assume perfect knowledge of the state,
deterministic control and a known environment, efforts have
been devoted in recent years to alleviate these restricting
assumptions. The corresponding approaches include, for
example, the belief roadmap (BRM) [23] and the rapidly-
exploring random belief trees (RRBT) [5], where planning
is performed in the belief space, thereby incorporating the
predicted uncertainties of future position estimates. Similar
strategies are used to address also informative planning
problems (see, e.g., [9]).

While typically the environment is assumed to be known,
recent research focused on facilitating autonomous operation
also in the presence of uncertainty in the environment and
when the environment is a priori unknown and instead is
mapped on the fly, see e.g. [6], [12], [24]. The problem is
tightly related to active SLAM and can be formulated within
POMDP framework.

A multi-robot belief space framework has been also in-
vestigated in different contexts in recent years, including
multi-robot tracking, active SLAM and autonomous nav-
igation in unknown environments, planning for coverage



tasks, and informative planning (see, e.g. [3], [10], [11],
[18]). In particular, in a recent work [10] we considered the
problem of multi-robot active collaborative estimation while
operating in unknown environments and introduced within
the belief reasoning regarding future mutual observations of
environments that are unknown at planning time. Here, we
build upon that work considering a decentralized framework.

Unfortunately, solving exactly the corresponding decen-
tralized POMDP problem is computationally intractable and
has been shown to be nondeterministic exponential (NEXP)
complete [4], and thus has been typically addressed using
approximate approaches. Also, despite the intractable worse
case complexity of decentralized POMDP, there has been
impressive progress in recent years in solving interesting
instances of the problem (e.g. [2]).

A common approach to reduce computational complexity
is for each robot, at each time epoch, to solve the belief
space planning problem considering its own candidate paths
(generated, e.g., by some sampling method) and the best
solutions found and announced by other robots (e.g. [3],
[18]). The robot then announces its best path, according to
a user-defined objective function, to other robots which then
proceed with the same procedure. Such an approach avoids
solving the problem jointly over all robots and reduces the
exponential complexity in the number of robots to linear
complexity, with performance guarantees analyzed in [3].

Yet, existing methods calculate the belief evolution over
all candidate paths from scratch each time a new announced
plan from another robot is received, which by itself can be
computationally extensive operation.

Contribution: In this work we contribute a multi-robot
belief space planning approach which further reduces compu-
tational complexity, considering the problem of multi-robot
autonomous navigation in unknown environments. Instead
of re-evaluating from scratch each candidate path, the key
observation is that often, belief evolution changes only for
part of the candidate paths as a result of an update in the
announced path from another robot(s). We show how to
identify and efficiently recalculate only those candidate paths
that are impacted as a result of an update in the announced
paths from another robot. See illustration in Figure 1. Our ap-
proach is based on appropriately propagating belief evolution
along impacted paths while employing insights from factor
graph for efficient inference that is required for evaluating
the utility of each impacted path.

II. PROBABILISTIC FORMULATION AND NOTATIONS

We consider a group of R robots operating in unknown
or uncertain environments, aiming to autonomously decide
their future actions based on information accumulated thus
far and a given objective function J , which is a function of
robots’ beliefs at different future time instances.

Let P(Xr
k |Zr

0:k,Ur
0:k−1) represent the posterior probability

distribution function (pdf) at planning time tk over states of
interest Xr

k of robot r (e.g. current and past poses). Here,
Zr

0:k and Ur
0:k−1 denote, respectively, all observations and
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Fig. 2: (left) Graph G = (V,E) along which different candidate paths Pr of robot r
can be defined. Announced paths Pr′ and Pr′

new from robot r′ facilitate multi-robot
factors f1, f2, f3 and f4. (right) An example of a factor graph representing the joint
belief b[Pr,Pr′ ] for some candidate path Pr . Different factor graphs are obtained
for each path Pr considering either Pr′ or Pr′

new .

controls by time tk. Consider conventional state transition
and observation models

xi+1 = f(xi, ui, wi) , zi,j = h(xi, xj , vi,j) (1)

with zero-mean Gaussian process and measurement noise
wi ∼ N(0,Ωw) and vi,j ∼ N(0,Ωvij), and with known
information matrices Ωw and Ωvij . Denoting the correspond-
ing probabilistic terms to Eq. (1) by P(xi|xi−1, ui−1) and
P(zi,j |xi, xj), the pdf P(Xr

k |Zr
0:k,Ur

0:k−1) can be written as

P(Xr
k |Hr

k)∝P(xr0)

k∏
i=1

P(xri |xri−1, u
r
i−1)p(Zr

i |Xr
i ) (2)

where the history Hr
k is defined as Hr

k
.
= {Zr

0:k,Ur
0:k−1}.

The measurement likelihood term P(Zr
i |Xr

i ) can be ex-
panded in terms of individual observations, P(Zr

i |Xr
i ) =∏ni

j=1 P(zri,j |Xr
i,j). Here, Zr

i
.
= {zri,j}ni

j=1 and ni denotes the
number of observations acquired at time ti and Xr

i,j ⊆ Xr
i

represents involved variables in the jth observation model.
Note this formulation assumes known data association and
does not consider outliers. Robust perception approaches do
exist, however, both in inference (e.g. [19]) and, recently, in
belief space planning [21].

We now consider all the R robots in the group, and let
P(Xk|Hk) represent the pdf over the joint state Xk at time
tk, where Xk

.
= {Xr

k}Rr=1 and Hk
.
= {Z0:k,U0:k−1}, with

Z0:k
.
= {Zr

0:k}Rr=1 and U0:k−1
.
= {Ur

0:k}Rr=1.
Let J denote a user-defined objective function J(U) =

E
[∑L

l=1 cl(b[Xk+l], uk+l)
]
, where uk+l

.
= {urk+l} and the

expectation is taken with respect to future observations of all
robots, and where cl represents an immediate cost function
at the lth look ahead step, which can be a function of the
joint belief b[Xk+l] (to be defined) and of the controls. For
simplicity, we use the same planning horizon L for all robots.

In this paper we consider a special case of the objective
function J and assume the latter is of the following form:

J(U) = E

[
L∑

l=1

R∑
r=1

crl (b[Xr
k+l], u

r
k+l)

]
, (3)

where b[Xr
k+l] =

∫
¬Xr

k+l
b[Xk+l] and thus depends on the

multi-robot belief b[Xk+l]. Such a form naturally supports
collaborative active state estimation, where each robot aims



to improve its estimation accuracy while considering addi-
tional terms in cl, if exist (see e.g. [11]).

In this paper, our objective is to find the optimal controls
U? = arg minU J(U) for all robots in the group, considering
a multi-robot decentralized framework discussed below.

III. DECENTRALIZED SAMPLING-BASED PLANNING

We consider a decentralized framework, where each robot
calculates candidate paths using one of the existing sampling-
based motion planning approaches (e.g. RRT, RRG, PRM).
Adopting typical notations in literature, let Gr = (V r, Er)
be a graph maintained by robot r, with vertices V r repre-
senting sampled robot states and edges Er denoting feasible
paths between corresponding vertices. Each vertex v ∈ V r is
associated with a set of belief nodes, with each belief node
representing a path Pr .

= {v0, . . . , v} from the initial vertex
v0 that could be followed to reach the vertex v.

In this paper we interchangeably use Pr to represent a
path and, when clear from context, also the corresponding
robot states along that path. Denoting the state at each vertex
v by xv , the corresponding joint belief over the entire path
Pr, considering for now only a single robot r, is

b[Pr]
.
= P(Xr

k , x
r
v0 , . . . , x

r
v|Hr

k, U(Pr), Z(Pr)), (4)

where Ur(Pr) and Zr(Pr) represent, respectively, the corre-
sponding controls and (unknown) observations to be acquired
by following the path Pr. This pdf can be explicitely written
in terms of the belief at planning time and the corresponding
state transition and observation models as (see Eq. (2))

b[Pr] = P(Xr
k |Hr

k)P(Pr|Ur(Pr), Zr(Pr)), (5)

where, for convenience, the local information (factors) along
path Pr is defined as

FGlocal(Pr)
.
=

L(Pr)∏
l=1

P(xrvl |xrvl−1
, urvl−1

)P(Zr
vl
|Xr

k+l). (6)

Throughout the paper we will often use the factor graph
graphical model to represent a pdf. The factor graph for the
pdf from Eq. (6) is denoted by FGlocal(Pr).

The measurement likelihood term P(Zr
vl
|Xr

k+l) can be
further expanded, similarly to Eq. (2). Here, Xr

k+l is the
joint state up to the lth vertex along the path Pr, i.e.:

Xr
k+l = Xr

k+l(Pr) ≡ Pr
k+l

.
= {Xr

k , x
r
v0 , . . . , x

r
vl
}. (7)

We now proceed to the multi-robot case and consider dif-
ferent paths Pr for each robot r ∈ {1, . . . , R}. Letting
P .

= {Pr}Rr=1, the multi-robot belief is given by

b[P] = P(Xk|Hk)

R∏
r=1

L(Pr)∏
l=1

P(xrvl |xrvl−1
, urvl−1

)

·P(Zr
vl
|Xr

k+l)
∏
{i,j}

P(zr,r
′

i,j |xrvi , xr
′

vj )

 , (8)

where the last product corresponds to multi-robot constraints
that can involve different time instances, representing mutual

observations of a scene. With a slight abuse of notation,
we use xrvi and xr

′
vj in the measurement likelihood term

P(zr,r
′

i,j |xrvi , xr
′

vj ) to represent both a robot state before plan-
ning time, i.e. xrvi ⊂ Xr

k ⊆ Xr(Pr) (likewise for xr
′

vj
), and a

future state along the path Pr. The latter case corresponds to
a mutual observation of an area that is unknown at planning
time, as introduced in our previous work [10].

The index set {i, j} in Eq. (8) represents the time indices
that facilitate multi-robot constraints. We assume a given
criteria function crMR(vi, vj) that determines if there should
be a multi-robot constraint between the two vertices vi and
vj . This function is conceptually similar to the indicator
function used in [18], while in our previous work [10] we
used a simpler criteria (relative distance between poses). The
joint belief (8) can be represented by a factor graph graphical
model, as illustrated in Figure 2. Different candidate paths
P typically yield different factor graphs.

In a decentralized multi-robot framework, each robot
maintains the joint belief (8) on its own while communicating
to each other relevant pieces of information. We assume, for
simplicity, each robot is capable of calculating the joint pdf at
planning time P(Xk|Hk) using one of the recently developed
approaches (e.g. [7], [13]). We note that given transition and
observation models (1), it is sufficient for each robot r′ to
only transmit (in addition to what is required by multi-robot
inference) the corresponding controls to path Pr′ . Any robot
r that receives this information can then formulate the multi-
robot belief (8) [18].

Evaluating the objective function (3) for the considered
paths P involves performing inference over the multi-robot
belief (8). As shown in prior work (e.g. [6], [12]), this
inference can be performed in the information space:

Λ(P) = Λk +

R∑
r=1

L(Pr)∑
l=1

Λr,local
l +

∑
{i,j}

Λr,r′

i,j

 (9)

where Λr,local
l = (F r

l )T Ωr
wF

r
l +

∑
m(Hr

l,m)T Ωr
vlmH

r
l,m

and Λr,r′

i,j represents the information from the multi-robot
constraint term P(zr,r

′

i,j |xrvi , xr
′

vj ) in Eq. (8). Here, the ma-
trices F and H represent appropriate Jacobians of the state
transition and observation models (1), linearized about the
considered candidate path and the MAP estimate of the joint
state at planning (current) time. Observe that the matrices in
Eq. (9) are assumed to be appropriately augmented (e.g. zero-
padded) as the dimensionality of the state increases with l;
see similar treatment e.g. in [6], [12].

Recalling that each robot r has numerous candidate paths
over the graph Gr, determining the optimal controls involves
considering all path combinations between different robots,
which is computationally intractable. Optimality here refers
to choosing the best path from the set of candidate paths.

Instead, a common (sub-optimal) approach for decentral-
ized belief space planning is for each robot r to consider
only its own candidate paths and the announced paths of
other robots, see e.g. [3], [18]. The robot can then select
the best path, according to the objective function (3), and



announce this path to other robots, which then repeat the
same procedure on their end. Such an approach reduces the
exponential complexity in number of robots to a linear com-
plexity, and can be viewed as a decentralized coordindated
descent [3], [18], i.e. where robots either repeat this process
until convergence [3] or at some frequency [18]. Performance
guarantees of such an approach are analyzed in [3].

In particular, when an announced path of some robot r′ is
updated (e.g. from Pr′ to Pr′

new), robot r has to recalculate
the best path by re-evaluating its candidate paths given
Pr′
new. Existing approaches perform this re-evaluation for all

candidate paths from scratch. In contrast, in the following
section we develop an approach to identify and efficiently
re-evaluate, while re-using calculations, only impacted can-
didate paths due to an update in the announced path.

IV. APPROACH

Although our approach applies for any number
of robots, for simplicity we consider the case of
two robots r and r′ and re-write the objective
function J from Eq. (3) as J(Pr,Pr′) =

E
[∑L

l=1[crl (b[Xr
k+l], u

r
k+l(Pr)) + cr

′
l (b[Xr′

k+l], u
r′
k+l(Pr′)]

]
.

In Section IV-D we then generalize back to a general number
of robots.

Consider robot r has already calculated belief evolution
over all candidate paths while accounting for the announced
path Pr′ , and the latter is now updated to Pr′

new. The
corresponding multi-robot beliefs for some candidate path
Pr of robot r are:

b[Pr,Pr′ ] = P(Xk|Hk)P(Pr|Ur(Pr), Zr(Pr)) (10)

P(Pr′ |Ur′(Pr′), Zr′(Pr′))
∏
{i,j}

P(zr,r
′

i,j |xrvi , xr
′

vj )

b[Pr,Pr′
new] = P(Xk|Hk)P(Pr|Ur(Pr), Zr(Pr)) (11)

P(Pr′
new|Ur′(Pr′

new), Zr′(Pr′
new))

∏
{i,j}

P(zr,r
′

i,j |xrvi , xr
′

vj ),

where the changed terms are underlined and denoted in red.
One can consider the joint beliefs b[Pr,Pr′ ] and

b[Pr,Pr′
new] to be represented by appropriate two different

factor graphs (see Figures 1 and 2). Re-evaluating the ob-
jective function for a candidate path Pr involves performing
MAP inference over the updated factor graph b[Pr,Pr′

new].
In the general case, the factor graphs will be different for
each candidate path Pr.

The general concept of our approach is to track the multi-
robot factors and local information change between the two
pdfs b[Pr,Pr′ ] and b[Pr,Pr′

new]. This information is then
used to efficiently perform inference over the updated belief,
which is required for re-evaluating the objective function.

Our approach first identifies which candidate paths Pr

of robot r are impacted as a result of the update in the
announced plan, and consequently operates only over these
paths instead of always re-calculating belief evolution over
all candidate paths. Second, our approach efficiently calcu-
lates the belief evolution over these impacted paths, while
re-using calculations where possible.

The main steps of the proposed approach are summarized
below and described in detail in the following sections:

1) Section IV-A calculates the change in local information
between Pr′ and Pr′

new.
2) Section IV-B identifies the impacted candidate paths
Pr and collects appropriate multi-robot factors to be
later used for efficient belief inference.

3) Section IV-C re-evaluates the objective function for
(only) the impacted candidate paths, based on the
output of Sections IV-A and IV-B.

A. Change in Local Information between Pr′ and Pr′
new

We first calculate the change in local information between
Pr′ and Pr′

new. This calculation is used later in Alg. 2 for
consistent inference over appropriate beliefs while avoiding
double counting information that is shared by Pr′ and
Pr′
new. Specifically, recalling the definition (6) of a factor

graph FGlocal(Pr′) that represents only the local informa-
tion along path Pr′ we identify which factors only appear
in FGlocal(Pr′) or in FGlocal(Pr′

new). These factors will
then be either added or removed upon re-evaluating belief
evolution along impacted candidate paths Pr. We therefore
collect these factors into two separate factor graphs:

FGrmv
local

.
= {f | f ∈ FGlocal(Pr′) ∧ f /∈ FGlocal(Pr′

new)}
FGadd

local
.
= {f | f /∈ FGlocal(Pr′) ∧ f ∈ FGlocal(Pr′

new)}
Additionally, we calculate belief evolution b[Pr′

new] along
path Pr′

new taking into account only local information of robot
r′, and use it to calculate the change in the immediate cost
functions cr

′
l between b[Pr′

new] and b[Pr′
new]. Denoting this

change by ∆cr
′

l we let ∆Jr′ .= E
[∑L

l=1 ∆cr
′

l

]
. This quan-

tity will be used to very efficiently re-evaluate the objective
function for candidate paths Pr that are not impacted, as
discussed in Section IV-C.

B. Impacted Paths and Change in Multi-Robot Factors

Next, we identify, among all the candidate paths of robot
r, those paths Pr that are impacted as a result of the update
in the announced path from Pr′ to Pr′

new. In other words,
recalling Eqs. (10)-(11), we are interested in finding paths
Pr such that b[Pr] 6= b′[Pr], with

b[Pr]=

∫
b[Pr,Pr′ ]dPr′ , b′[Pr]=

∫
b[Pr,Pr′

new]dPr′
new

Such paths Pr are marked, indicating that the objective
function should be re-evaluated, a process that involves
re-calculating belief evolution. On the other hand, belief
evolution re-calculation is not required for candidate paths
that are not impacted. In the latter case, the objective function
J(Pr,Pr′) is only updated due to the change in immediate
cost functions cr

′
l of robot r′, as discussed in Section IV-C.

We now describe our approach to identify the impacted
paths, as well as collecting the required information that will
be used in Section IV-C (Alg. 2) for efficient inference.

The key observation is that the belief over path Pr is
impacted due to an announced path Pr′ only if there exist
multi-robot factors P(zr,r

′

i,j |xrvi , xr
′

vj ) or, in certain cases, if the



states of robots r and r′ are already correlated at planning
time, i.e. P(Xk|Hk) 6= P(Xr

k |Hk)P(Xr′
k |Hk). This is the

case if, by planning time tk, the robots have already per-
formed some multi-robot update, e.g. by mutually observing
a common scene.

Clearly, in absence of multi-robot factors and prior corre-
lation, the belief over a candidate path Pr is not impacted
by neither Pr′ nor Pr′

new. However, it is also interesting to
note that also when there is prior correlation, but no changes
in multi-robot factors between b[Pr,Pr′ ] and b[Pr,Pr′

new],
the belief over path Pr typically remains the same. In what
follows we treat prior correlation just as a multi-robot factor,
see Figure 2. However, this observation can be used to
switch to a more efficient version of the algorithm that
approximately recovers the pdf b[Pr,Pr′

new]. Investigation of
this direction is left to future research.

1 Inputs:
2 Gr = (V r, Er): graph of robot r
3 P r′ , P r′

new: prev. and updated announced path of robot r′

4 crMR(vi, vj): multi-robot factor criteria function
5 Outputs:
6 V r

inv: involved vertices in multi-robot factors
7 ∀v ∈ Vinv : v.FGadd

MR, v.FG
add
MR

8 V r
inv = φ /* Initialization */

9 foreach vr
′
∈ Pr′ ∪ Pr′

new do
10 Find all nearby vertices {v} ⊆ V r to vr

′
such that

11 - at least one candidate path Pr goes through v
12 - multi-robot criteria crMR(v, vr

′
) is satisfied

13 V r
inv = V r

inv ∪ {v}
14 foreach vi ∈ {v} do
15 Generate multi-robot factor f(xrvi , x

r′
v )

16 if vi ∈ Pr′ and vi ∈ Pr′
new then

17 continue
18 end
19 if vi ∈ Pr′ then
20 Add f(xrvi , x

r′
v ) to vi.FGrmv

MR

21 else
22 Add f(xrvi , x

r′
v ) to vi.FGadd

MR

23 end
24 end
25 Mark all candidate paths Pr that go through vertex vi
26 end
27 return V r

inv

Algorithm 1: identifyInvolvedPaths. Identify
vertices V r

inv ⊆ V involving multi-robot factors considering
announced paths Pr′ and Pr′

new, and the corresponding
multi-robot factors. Each vertex v ∈ Vinv is associated with
appropriate multi-robot factors to be later used in Alg. 2.

As mentioned in Section IV, our approach tracks the
changed multi-robot factors and the local factors of robot
r′ between the beliefs b[Pr,Pr′ ] and b[Pr,Pr′

new]. This
information is then used in Section IV-C to efficiently re-
evaluate the belief over path Pr. However, such a procedure
is required for each candidate path Pr that has some multi-
robot factors, even if several paths are identical up to some
point. This would lead to the same work (i.e. computational
effort) done multiple times.

To address this issue, rather than reasoning about robot

r’s candidate paths, we reason in terms of the corresponding
vertices in the graph Gr, that define the paths. Our approach,
summarized in Alg. 1, considers the corresponding graph
vertices and identifies the vertices Vinv ⊆ V r that are
involved in at least one multi-robot factor due to either Pr′

or Pr′
new. See illustration in Figure 2. We then associate to

each such vertex vi ∈ Vinv the changed multi-robot factors
that involve vi, i.e. any such factor f should either appear in
b[Pr,Pr′ ] or in b[Pr,Pr′

new]. In the former case, f should be
removed from the corresponding factor graph, and as such
is added to vi.FGrmv

MR (line 20); in the latter case, f should
be added and is thus added to vi.FGadd

MR (line 22).
Finally, the algorithm marks all paths Pr that include

at least one vertex in V r
inv as impacted paths (line 25), to

indicate belief re-evaluation is required.

C. Objective Function Re-Evaluation for Candidate Paths

As mentioned in Section III, each robot r evaluates the
objective function by considering its candidate paths and the
announced paths of different robots. Such a process requires
performing inference over the belief b[Xk+l], for each look
ahead step l, to recover its first two moments

b[Pr
k+l,Pr′

k+l] = N (µk+l,Λ
−1
k+l), (12)

where the general form for the information matrix Λk+l

is given by Eq. (9). Observe that if the objective function
J(Pr,Pr′) only includes immediate cost functions for some
of the look ahead steps l, then the above inference is
only required for these time instances. For example, one
may be interested only in the uncertainty at the final step
(e.g. upon reaching a goal), in which case inference should
be performed only for l = L. On the other hand, in chance-
constrained motion-planning (see e.g. [5]), belief evolution
is typically needed for many (or all) look ahead steps l.

Since the objective function J(Pr,Pr′) has been already
calculated for different candidate paths Pr and the an-
nounced path Pr′ , a process that also involves inference over
the corresponding beliefs b[Pr,Pr′ ], our objective now is
to efficiently evaluate the objective function considering the
updated announced path Pr′

new.
Our approach for re-evaluating the objective function

J(Pr,Pr′
new) for each candidate path Pr, while exploiting

results from the previous inference b[Pr,Pr′ ], is summarized
in Alg. 2 and further discussed below.

The algorithm calculates the maximum a posteriori (MAP)
information matrix that corresponds to the belief b[Pr,Pr′

new]
for each of the future time instances, which is then used
for evaluating the objective function J(Pr,Pr′

new). Let Λ
.
=

Λ(Pr,Pr′) and Λ′
.
= Λ(Pr,Pr′

new) represent the corre-
sponding MAP information matrices to the beliefs b[Pr,Pr′ ]
and b[Pr,Pr′

new], respectively. Denote also by Λk+l the
information matrix that corresponds to the belief over the
first l steps, b[Pr

k+l,Pr′
k+l], and likewise for Λ′k+l. Since

inference over b[Pr,Pr′ ] has been already performed, the
matrices Λk+l for all steps l are known. We now focus on
calculating Λ′k+l, for each candidate path Pr.



1 Inputs:
2 V r

inv: involved vertices in multi-robot factors
3 For each candidate path Pr: J(Pr,Pr′);

∀l ∈ L(Pr) : Λk+l from Eq. (12)
4 ∆Jr′ from Sec. IV-A
5 Outputs:
6 For each impacted candidate path Pr: J(Pr,Pr′

new);
∀l ∈ L(Pr) : Λ′

k+l

7 foreach candidate path Pr do
8 if ¬Pr.isMarked then
9 J(Pr,Pr′

new) = J(Pr,Pr′) + ∆Jr′

10 continue
11 end

/* re-evaluate belief over Pr
*/

12 J(Pr,Pr′
new) = 0

13 for l = 1 : L(Pr) do
14 if Λ

′
k+l is not required in Eq. (3) then

15 continue
16 end

/* Get previous belief b[Pr
k+l,Pr′

k+l] */

17 Λk+l
.
= Λk+l(Pr,Pr′) from Eq. (12)

/* Initialize Λ′
k+l

.
= Λk+l(Pr,Pr′

new) */
18 Λ′

k+l = Λk+l

19 foreach v ∈ Pr and v ∈ V r
inv do

/* MR factors involving v ∈ V r
inv */

20 Λ′
k+l = updInfo(Λ′

k+l, v.FG
rmv
MR , l, rmv)

21 Λ′
k+l = updInfo(Λ′

k+l, v.FG
add
MR, l, add)

22 end
/* Changed local info. of robot r′ */

23 Λ′
k+l = updInfo(Λ′

k+l, FG
add
local, l, add)

24 Λ′
k+l = updInfo(Λ′

k+l, FG
rmv
local, l, rmv)

25 Evaluate crl and cr
′

l from Eq. (3)
26 end
27 end

Algorithm 2: evalObjFunc. Re-evaluate objective
function for candidate paths Pr upon update in an an-
nounced path from another robot r′. Notations: MR=Multi-
Robot; rmv = remove.

If a candidate path Pr has been determined in the previous
section not to be impacted as a result of the update in the
announced path (from Pr′ to Pr′

new), there is no need to
recalculate the immediate functions crl of robot r. We note
this holds true due to the considered form of J , where crl
only involves b[Pr

k+l] and not also b[Pr′
k+l]. The latter can

still change due to new local information between Pr′ and
Pr′
new, but that change does not affect crl (since b[Pr] =

b′[Pr]). Therefore, to get J(Pr,Pr′
new) from J(Pr,Pr′) we

only have to update the terms cr
′

l (lines 8-11 in Alg. 2).
This update is the same for all non-impacted paths Pr and
is given by ∆Jr′ from Section IV-A. We note, however, that
often, ∆Jr′ is negligible.

For each marked (impacted) path Pr and for each l ∈
L(Pr), we start with the previously calculated information
matrix Λk+l and update it by adding and subtracting the
multi-robot and local factors that were collected as explained
in Sections IV-A and IV-B. See lines 16-24 in Alg. 2.

Specifically, referring to Eq. (9), and resorting to factor
graph notation FG

.
= b[Pr,Pr′ ] and FG′

.
= b[Pr,Pr′

new] ,

1 Inputs:
2 FG, l: factor graph and time index
3 Linearlization point = graph vertices V and X̂k

4 toAddflag: indicates if to add or subtract information
5 Λ: input information matrix to be updated
6 Outputs:
7 Λ: updated information matrix

8 {f} = getFactorsCausal(FG, l)

9 foreach f ∈ {f} do
10 Linearize f about linearization point and calculate Λ(f)
11 Adjust size of Λ, if needed
12 if toAddflag then
13 Λ = Λ + Λ(f)
14 else
15 Λ = Λ− Λ(f)
16 end
17 end

Algorithm 3: updInfo. Update information matrix by
adding or subtracting information from factors.

the updated information matrix Λ′k+l can be written as

Λ′k+l = Λk+l −
∑

f ∈ FG
f /∈ FG′
f.t ≤ tk+l

Λ(f) +
∑

f ∈ FG′
f /∈ FG
f.t ≤ tk+l

Λ(f). (13)

The operator f.t extracts the time instances involved with
the factor f , such that the condition f.t ≤ tk+l enforces
causality, i.e. we do not consider factors involving states
at times greater than k + l. The corresponding steps are
summarized in Alg. 3 that is invoked by Alg. 2. We assume
existence of the function getFactorsCausal that takes
as input a factor graph and time t, and outputs only factors
involving variables up to that time. Given these factors,
Alg. 3 extracts the corresponding information matrices and
adds or substracts these matrices as in Eq. (13). This process
involves linearizing the corresponding nonlinear functions,
where the linearization point is either the graph vertices V
or, in case states from Xk are involved, the corresponding
MAP estimate X̂k of P(Xk|Hk), which is known at time k.

We note that, similar to Eq. (9), the information matrices
in Eq. (13) should be appropriately augmented: for example,
the matrices Λk+l and Λ′k+l represent uncertainty over two
partially overlapping joint states {Xr

k+l(Pr), Xr′
k+l(Pr′)}

and {Xr
k+l(Pr), Xr′

k+l(Pr′
new)}, respectively.

One can go further, and perform the calculation in Eq. (13)
incrementally, by updating Λ′k+l+1 based on Λ′k+l while
adding and subtracting information from appropriate factors
that involve time k + l + 1. This would provide an efficient
mechanism to evaluate the belief for each look ahead step,
if that is required by the objective function J . We leave
further investigation of this direction to future research and
formulate Alg. 2 according to ’batch’ version (Eq. (13)).

Illustrative Example: Figure 2 illustrates key aspects of
our approach. The figure indicates the set Vinv of involved
vertices in multi-robot factors in either Pr′ and Pr′

new by bold
circle marks. As seen there are three such vertices (vi, vi+1

and vi+2) and four multi-robot factors (f1, f2, f3 and f4).



As detailed in Alg. 1, each vertex v ∈ Vinv includes the
changed multi-robot factors that have to be either added or
removed. In this example, for vi there are no changed factors,
since although originating from different paths, f1 and f2 are
actually identical factors. On the other hand, vi+1 includes
the factor f3 to be removed, while vi+2 includes the factor
f4 to be added. All the candidate paths Pr that go through
some vertex v ∈ Vinv should be updated with the multi-robot
factors included in v.

D. More than 2 Robots

The presented approach is not limited to 2 robots and
naturally supports any number R of robots, with the objective
function specified in Eq. (3). In this section we briefly specify
the changes in each of the algorithmic steps to accommodate
this general setting.

Section IV-A: Change in local information (Section IV-
A), should be calculated with respect to all R robots,
excluding current robot r. One can go further and also
incorporate within ∆Jr′ and ∆Jr′′ the impact of changed
multi-robot factors between any two robots r′ and r′′.
This direction is left to future research. Section IV-B: No
modification is needed. Section IV-C: Algorithm 2 remains
the same, however the input to the algorithm is now
J(Pr, {Pr′}r′∈{1,...,r−1,r+1,...,R}) instead of J(Pr,Pr′).

V. RESULTS

We demonstrate our approach in simulation considering
scenario involving two and four robots operating in unknown
and GPS-deprived environments that need to navigate to dif-
ferent goals in minimum time but also with highest accuracy.
In this basic evaluation we use a prototype implementation
in Matlab and GTSAM [8] to investigate key aspects of
the proposed approach. The objective function (3) is J =∑R

r=1

[
κrgoalt

r
goal + κrΣtr

(
Σr

goal

)]
, where Σr

goal and trgoal
represent, respectively, the covariance upon reaching the goal
and time of travel (or path length) for robot r. The parameters
κrgoal and κrΣ weight the importance of each term (we use
κrpath = 0.1 and κruncert = 1). A probabilistic roadmap
(PRM) [15] is used, to discretize the (partially unknown)
environment and generate candidate paths over the roadmap.
Figure 3 shows the considered scenarios for two and four
robots and the generated 25 candidate paths for each robot.
In this and all figures to follow, we use the notation ? to
indicate the starting position of each robot.

We compare our approach to a standard approach that re-
evaluates from scratch belief evolution and objective function
for each candidate path of each robot r given announced
paths from other robots (e.g. [3], [10], [18]). This comparison
has two merits: (a) verify our approach correctly recovers the
underlying pdf while identifying and re-evaluating only the
impacted paths; and (b) has computational benefits.

Figure 4b shows, for the two-robot scenario, one of the
candidate paths of robot r, an announced path of robot r′,
and the generated multi-robot factors (cyan color); see also
concept illustration in Figure 1. The corresponding belief
evolution (covariance ellipses) is displayed in black. Robot

(a) 2 robots (b) 4 robots

Fig. 3: Candidate paths shown on PRM. Robot starting positions are denoted by ?.

r determines its best path, and announces it to other robots,
which do the same; the process is repeated until convergence.
Similar to [10], we use a simple heuristic for the function
crMR(vi, vj) (line 4 of Alg. 1) to determine if two poses
admit a multi-robot constraint: these constraints, possibly
involving different future time instances, are formulated
between any two poses with relative distance closer than d =
300 meters. More advanced methods could be implemented,
e.g. considering also statistical knowledge.

The set of involved vertices in PRM, Vinv , depicted
conceptually in Figure 2, is shown for robot r in Figure
5 for the two-robot scenario. The figure shows marked
(impacted) candidate paths of robot r, as a result of an
update in the announced path of robot r′ from Pr′ to
Pr′
new in one of the iterations. To reduce clutter, only the

impacted (marked) candidate paths of robot r are shown.
The corresponding multi-robot factors are color-coded: cyan
indicates unchanged multi-robot factors (associated with both
Pr′ and Pr′

new), and yellow and magenta indicate multi-
robot factors that are associated, respectively, only with Pr′

and Pr′
new. These factors are appropriately then included

with in the corresponding vertices in Vinv and are used for
calculating belief evolution, following Algorithms 1 and 2.

In the specific situation shown in Figure 5, only some
of the candidate paths are impacted. Our approach cor-
rectly identifies, marks and consequently re-evaluates the
belief over only these impacted paths. This is in contrast
to the Standard approach that re-evaluates the belief from
scratch over all candidate paths and recalculates the objective
function for each. As a consequence, our approach exhibits
substantially reduced running time, compared to the Standard
approach, while producing identical results.

Figure 4a reports statistical timing results as a function of
number of candidate paths Ncand for each robot, considering
the two-robot and four-robot scenarios from Figure 3. These
results were obtained by running each approach 50 times,
for each considered Ncand. In each such run, the scenario
remains the same (goals, starting locations), while the candi-
date paths randomly change. As seen, as Ncand increases the
ratio between running time of the two approaches increases,
in favor of our approach. In particular, for 50 candidates and
two robots, our approach is 2.5 times faster compared to the
standard approach (35 versus 85 seconds); A similar trend
can be seen also for four robots. In all cases, identical results



(a) (b)

Fig. 4: (a) Statistics for running time as a function of number of candidate paths for
each robot, considering groups of 2 and 4 robots. (b) Multi-robot factors (cyan color)
and belief evolution (covariance ellipses) for one of the candidate paths from Figure
3, considering an announced path Pr′ .

(a) (b)

Fig. 5: Illustration of the proposed approach considering a group of two robots (see
Figure 2). Vertices in Vinv for robot r given a (a) previous and (b) new announced
path of robot r′ are shown as circles. Unchanged multi-robot factors are shown in cyan.
Changed multi-robot factors associated with Pr′ and Pr′

new are shown in yellow and
magenta, respectively. Only impacted candidate paths of robot r are shown.

were obtained, compared with the Standard approach.
VI. CONCLUSIONS

We addressed the problem of decentralized belief space
planning over high-dimensional state spaces while operating
in unknown environments. Since exact solution is compu-
tationally intractable, a common approach is to address this
problem within a sampling based motion planning paradigm,
where each robot repeatedly considers its own candidate
paths given the best paths (announced paths) transmitted
by other robots. The process is typically repeated numerous
times by each robot either until convergence or on a constant
basis, with each time involving belief propagation along all
candidate paths. In this paper we developed an approach
that identifies and efficiently re-evaluates the belief over
only those candidate paths that are impacted upon an update
in the announced path transmitted by another robot. Deter-
mining the best path can therefore be performed without
re-evaluating the utility function for each candidate path
from scratch. We demonstrated in simulation our approach
is capable of correctly identifying and calculating belief
evolution over impacted paths, and significantly reduces
computation time without any degradation in performance.
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