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Abstract

In this thesis we develop a new approach for decentralized multi-robot belief space

planning in high-dimensional state spaces while operating in unknown environments.

State of the art approaches often address related problems within a sampling based

motion planning paradigm, where robots generate candidate paths and are to choose

the best paths according to a given objective function. As exhaustive evaluation of

all candidate path combinations from different robots is computationally intractable,

a commonly used (sub-optimal) framework is for each robot, at each time epoch, to

evaluate its own candidate paths while only considering the best paths announced by

other robots. Yet, even this approach can become computationally expensive, especially

for high-dimensional state spaces and for numerous candidate paths that need to be

evaluated. In particular, upon an update in the announced path from one of the robots,

state of the art approaches re-evaluate belief evolution for all candidate paths and do

so from scratch. In this work we develop a framework to identify and efficiently update

only those paths that are actually impacted as a result of an update in the announced

path. Our approach is based on appropriately propagating belief evolution along

impacted paths while employing insights from factor graph and incremental smoothing

for efficient inference that is required for evaluating the utility of each impacted path.

We demonstrate our approach in a synthetic simulation.
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Abbreviations and Notations

BSP : Belief space planning

iSAM : Incremental smoothing and mapping

SLAM : Simultaneous localization and mapping

SFM : Structure from motion

PRM : Probabilistic roadmap
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POMDP : Partially observable Markov decision process
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EKF : Extended Kalman filter
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Chapter 1

Introduction

Collaboration between multiple robots pursuing common or individual tasks is impor-

tant in numerous problem domains, including cooperative navigation, collaborative

mapping and 3D reconstruction in indoor, underwater and urban environments, as

well as in various space applications and in the context of autonomous cars. A key

required capability is to autonomously determine robot actions while taking into account

different sources of uncertainty and to operate autonomously in unknown, uncertain or

dynamically changing environments.

The passive instance of the problem (i.e. inference), considering a single-robot setting

for now, involves localizing the robot while at the same time constructing or refining

a model of the environment. The corresponding problem is known as simultaneous

localization and mapping (SLAM), which requires reliable perception, i.e. sensing and

correctly interpreting the environment through on-board sensors (e.g. camera, range

sensor), and computationally efficient inference. The two processes are commonly known

in SLAM community as front-end and back-end, respectively.

The latter stage, involves inference over a high-dimensional state that comprises the

robot (past and) current pose and the observed environment thus far represented, for

example, by landmarks. In the last decade, much progress has been made in efficiently

solving this problem. In particular, state of the art approaches represent the problem

via a factor graph graphical model, which naturally encodes the inherent sparsity of the

problem (see e.g. [15, 23]). The factor graph will be also used in this work, however, in

the context of (belief space) planning.

However, autonomous operation requires not only inference, but also involves a

second key-ingredient - determining the best future action(s) while accounting for

different sources of uncertainty and given some user-defined high-level objective. The

corresponding problem can be formulated within a partially observable Markov decision

process (POMDP) framework, which is known to be computationally intractable [33].

Thus, the research community has been extensively investigating approximate approaches

to provide better scalability to support real world problems. These methods are

commonly referred to as belief space planning (BSP) approaches, as they reason about
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belief evolution due to different candidate actions. Here, the belief corresponds to the

probability density function (pdf) over the state. As in the passive case (SLAM), the

latter can be high-dimensional if the environment is uncertain or unknown.

Collaboration between multiple robots can significantly improve performance of

both inference and planning phases. In particular, by sharing relevant information

between robots, estimation quality can substantially improve, while by appropriately

coordinating actions the robots can often finish a task in a shorter time. However, these

advantages come with a price of more complicated inference and planning approaches.

In particular, multi-robot belief space planning involves reasoning about all permu-

tations of different candidate actions for different robots, which scales exponentially

and thus quickly becomes intractable. This is especially true while operating over

high-dimensional state spaces, as we consider here, as each such permutation involves

inference, calculating belief evolution given candidate actions, which by itself is compu-

tational expensive.

Contribution

In this work we contribute a multi-robot belief space planning approach which further

reduces computational complexity, considering the problem of multi-robot autonomous

navigation in unknown environments. Instead of re-evaluating from scratch each

candidate path, the key observation is that often, belief evolution changes only for part

of the candidate paths as a result of an update in the announced path from another

robot(s). We show how to identify and efficiently recalculate only those candidate paths

that are impacted as a result of an update in the announced paths from another robot.

See illustration in Figure 1.1. Our approach is based on appropriately propagating belief

evolution along impacted paths while employing insights from factor graph for efficient

inference that is required for evaluating the utility of each impacted path.
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Figure 1.1: Illustration of the proposed concept. The figure shows belief evolution
over a few candidate paths of robot r given an announced path Pr′ from robot r′

and the corresponding multi-robot constraints that can represent, e.g., future mutual
observations of environments unknown at planning time [18]. Upon an update in an
announced path from Pr′ to Pr′

new, a new set of such constraints will be generated (shown
in purple), requiring to re-calculate belief evolution for candidate paths. Covariance
ellipses are shown for illustration.
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Chapter 2

Literature Review

As already mentioned, the partially observable Markov decision process (POMDP)

framework is computationally intractable [33] for all but the smallest problems. Thus,

the research community has been extensively investigating approaches that trade-off

computational complexity with sub-optimal performance. These approaches can be

roughly classified into four categories, some of which are further discussed below: point-

based value iteration methods (e.g. [29]), simulation based approaches (e.g. [37]) in

the context of active SLAM, sampling based approaches (e.g. [25, 26, 30]) and direct

trajectory optimization approaches (e.g. [20, 35,38]).

In particular, sampling based approaches (e.g. [5,10,17,36]) discretize the state space

using randomized exploration strategies to explore the belief space in search of an optimal

plan. While many of these approaches, including probabilistic roadmap (PRM) [26],

rapidly exploring random trees (RRT) [30], and RRT* and Rapidly-exploring Random

Graph (RRG) [25], assume perfect knowledge of the state, deterministic control and a

known environment, efforts have been devoted in recent years to alleviate these restricting

assumptions. The corresponding approaches include, for example, the belief roadmap

(BRM) [36] and the rapidly-exploring random belief trees (RRBT) [10], where planning

is performed in the belief space, thereby incorporating the predicted uncertainties

of future position estimates. Similar strategies are used to address also informative

planning problems (see, e.g., [17]).

While typically the environment is assumed to be known, recent research focused on

facilitating autonomous operation also in the presence of uncertainty in the environment

and when the environment is a priori unknown and instead is mapped on the fly, see

e.g. [11, 20,37].

The passive instance of this problem is called simultaneous localization and mapping

(SLAM), and has been extensively investigated in the last two decades. As the name

suggests, the objective is to solve two problems at once - estimating robot poses and

infer the observed environment thus far on the fly. Numerous approaches have been

developed over the years, ranging from Davison’s EKF-SLAM [13] that considered for

the first time real-time performance aspects in a monocular setting, to Eustice’s sparse
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extended information filter (SEIF) [16] and Dellaert’s smoothing and mapping (SAM) [15]

paradigms. The latter led to the development of incremental SAM approaches [23, 24],

most notably iSAM2, which are considered by many as the state of the art in (back-end)

SLAM. In this work we utilize these approaches for solving multi-robot SLAM.

The active instance of the problem, i.e. belief space planning in high-dimensional

state spaces due to unknown or uncertain environments, is also known as active SLAM.

Recent approaches that addressed this problem considering a single robot setting

include [20,28,37].

A multi-robot belief space framework has been also investigated in different contexts

in recent years, including multi-robot tracking, active SLAM and autonomous navigation

in unknown environments, planning for coverage tasks, and informative planning (see,

e.g. [8,18,19,31]). In particular, recent work [18,19] considered the problem of multi-robot

active collaborative estimation while operating in unknown environments and introduced

within the belief reasoning regarding future mutual observations of environments that are

unknown at planning time. Here, we build upon that work considering a decentralized

framework.

Unfortunately, solving exactly the corresponding decentralized POMDP problem is

computationally intractable and has been shown to be nondeterministic exponential

(NEXP) complete [9], and thus has been typically addressed using approximate ap-

proaches. Also, despite the intractable worse case complexity of decentralized POMDP,

there has been impressive progress in recent years in solving interesting instances of the

problem (e.g. [6]).

A common approach to reduce computational complexity is for each robot, at each

time epoch, to solve the belief space planning problem considering its own candidate

paths (generated, e.g., by some sampling method) and the best solutions found and

announced by other robots (e.g. [8, 31]). The robot then announces its best path,

according to a user-defined objective function, to other robots which then proceed with

the same procedure. Such an approach avoids solving the problem jointly over all robots

and reduces the exponential complexity in the number of robots to linear complexity,

with performance guarantees analyzed in [8].

Yet, existing methods calculate the belief evolution over all candidate paths from

scratch each time a new announced plan from another robot is received, which by

itself can be computationally extensive operation. In contrast, in this work we develop

an approach to identify and efficiently recalculate belief evolution, while re-using

calculations, only of impacted paths. As will be seen, our approach yields identical

results to the above-mentioned announced path approach, while significantly reducing

running time.
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Chapter 3

Background

3.1 Factor Graph

Factor graphs are graphical models that are well suited to modeling complex estimation

problems, such as Simultaneous Localization and Mapping (SLAM) or Structure from

Motion (SFM). A factor graph is a bipartite graph consisting of factors connected

to variables. [15]. Variables nodes represent the unknown random variables, while

edges represent constrains between appropriate variables, constraints that correspond

to motion and measurement models and to prior knowledge. Each such constraint is

called a factor.

A toy example for a factor graph is shown in Figure 3.1. As seen, the factor graph

has three variable nodes, x1, x2, and x3, that could for example represent robot poses

at different time instances. The shown factors include unary and pairwise factors. For

example, the variable node x1 has two unary factors attached to it (factors that only

involve a single variable node), that could correspond to prior knowledge and GPS

measurements. Pairwise factors, such as the factor that connects x1 and x2, could

represent a motion model or odometry, for example.

Mathematically, a joint pdf P (x1, x2, x3|Z,U) over the variables x1, x2, and x3 can

be factorized as

P (x1, x2, x3|Z,U) = P(x1)P(ZGPS
1 |x1)

3∏
i=2

P(xi|xi−1, ui−1)P(ZGPS
i |xi). (3.1)

where the motion and observation models (in this case, P(xi|xi−1, ui−1) and P(ZGPS
i |xi))

will be formally defined in the sequel.

The factor graph from Figure 3.1 is merely a graphical representation of this

factorization, which abstracts away and encapsulates information. Mathematically, it

can be written as
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Figure 3.1: An example of a factor graph that the variables Xi can represent the location
of the robots and the edges and dot represent the constraints between them. Image
taken from [15]

Figure 3.2: An example of a factor graph representing the joint belief b[Pr,Pr′ ] for some
candidate path Pr. Different factor graphs are obtained for each path Pr considering
either Pr′ or Pr′

new.

f(x1, x2, x3) =
∏
i

fi(Xi) (3.2)

where Xi ⊆ X
.
= {x1, x2, x3} is an appropriate subset of variables for each factor fi.

In this work we will also use factor graphs to represent the joint pdf - in our context,

this joint pdf will represent a future belief over states of multiple robots given specific

candidate actions. See illustration in Figure 3.2.
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Figure 3.3: Candidate paths shown on PRM. Robot starting positions are denoted by ?.

3.2 Probabilistic Roadmap Planners

The Probabilistic RoadMap (PRM) planner [7, 27] is a sampling based method that for

given environment (known or unknown) takes a random sample from all over the open

space and creates verticies that represent possible future robot locations. Vertices are

connected by edges if there is a feasible control action, or robot motion, that brings the

robot from one vertex to another.

From a given starting point of the robot, goal and PRM, we can generate multiple

candidate paths and reason which path is the best for a given objective function. See

illustration for two robots in Figure 3.3.

Until recently, all such approaches considered a Markov Decision Process (MDP)

framework, i.e. the state to be fully observable and thus accurately known regardless

of the action (which can be stochastic in nature). The seminal work of Prentice and

Roy [36] extended the PRM to a partially observable setting, yielding an approach

called Belief Roadmap (BRM). The overall idea was to track the evolution of the belief

for paths over a PRM, and choose the one that, e.g., minimizes uncertainty at the goal.

Yet, the BRM assumes the environment map is given and relies on known beacons

to update the state. In contrast, in this work we consider unknown environments and a

multi-robot setting.
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Chapter 4

Probabilistic Formulation and

Notations

We consider a group of R robots operating in unknown or uncertain environments,

aiming to autonomously decide their future actions based on information accumulated

thus far and a given objective function J , which is a function of robots’ beliefs at

different future time instances.

Let P(Xr
k |Zr

0:k,Ur
0:k−1) represent the posterior probability distribution function (pdf)

at planning time tk over states of interest Xr
k of robot r (e.g. current and past poses).

Here, Zr
0:k and Ur

0:k−1 denote, respectively, all observations and controls by time tk.

Consider conventional state transition and observation models

xi+1 = f(xi, ui, wi) , zi,j = h(xi, xj , vi,j) (4.1)

with zero-mean Gaussian process and measurement noise wi ∼ N(0,Ωw) and vi,j ∼
N(0,Ωvij), and with known information matrices Ωw and Ωvij . Denoting the corre-

sponding probabilistic terms to Eq. (4.1) by P(xi|xi−1, ui−1) and P(zi,j |xi, xj), the pdf

P(Xr
k |Zr

0:k,Ur
0:k−1) can be written as

P(Xr
k |Hr

k)∝P(xr0)

k∏
i=1

P(xri |xri−1, u
r
i−1)p(Zr

i |Xr
i ) (4.2)

where the history Hr
k is defined as Hr

k
.
= {Zr

0:k,Ur
0:k−1}.

The measurement likelihood term P(Zr
i |Xr

i ) can be expanded in terms of individual

observations, P(Zr
i |Xr

i ) =
∏ni

j=1 P(zri,j |Xr
i,j). Here, Zr

i
.
= {zri,j}

ni
j=1 and ni denotes the

number of observations acquired at time ti and Xr
i,j ⊆ Xr

i represents involved variables

in the jth observation model. Note this formulation assumes known data association

and does not consider outliers. Robust perception approaches do exist, however, both

in inference (e.g. [32]) and, recently, in belief space planning [34].

We now consider all the R robots in the group, and let P(Xk|Hk) represent the pdf
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over the joint state Xk at time tk, where Xk
.
= {Xr

k}Rr=1 and Hk
.
= {Z0:k,U0:k−1}, with

Z0:k
.
= {Zr

0:k}Rr=1 and U0:k−1
.
= {Ur

0:k}Rr=1.

Let J denote a user-defined objective function J(U) = E
[∑L

l=1 cl(b[Xk+l], uk+l)
]
,

where uk+l
.
= {urk+l} and the expectation is taken with respect to future observations

of all robots, and where cl represents an immediate cost function at the lth look ahead

step, which can be a function of the joint belief b[Xk+l] (to be defined) and of the

controls. For simplicity, we use the same planning horizon L for all robots.

In this thesis we consider a special case of the objective function J and assume the

latter is of the following form:

J(U) = E

[
L∑
l=1

R∑
r=1

crl (b[X
r
k+l], u

r
k+l)

]
, (4.3)

where b[Xr
k+l] =

∫
¬Xr

k+l
b[Xk+l] and thus depends on the multi-robot belief b[Xk+l].

Such a form naturally supports collaborative active state estimation, where each robot

aims to improve its estimation accuracy while considering additional terms in cl, if

exist (see e.g. [19]). For example in our simulation, cl includes two terms: robot pose

uncertainty upon reaching the goal and the corresponding path length.

We assume all robots are capable of communicating with each other. Partial

communication, or failure in communication, is likely to negatively impact overall

performance of the algorithm. However, further analysis of such a scenario is left to

future research endeavors.

In this thesis, our objective is to find the optimal controls U? = arg minU J(U) for

all robots in the group, considering a multi-robot decentralized framework discussed

below.
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Chapter 5

Decentralized Sampling-Based

Planning

We consider a decentralized framework, where each robot calculates candidate paths

using one of the existing sampling-based motion planning approaches (e.g. RRT, RRG,

PRM). Adopting typical notations in literature, let Gr = (V r, Er) be a graph maintained

by robot r, with vertices V r representing sampled robot states and edges Er denoting

feasible paths between corresponding vertices. Each vertex v ∈ V r is associated with a

set of belief nodes, with each belief node representing a path Pr .
= {v0, . . . , v} from the

initial vertex v0 that could be followed to reach the vertex v.

In this thesis we interchangeably use Pr to represent a path and, when clear from

context, also the corresponding robot states along that path. Denoting the state at

each vertex v by xv, the corresponding joint belief over the entire path Pr, considering

for now only a single robot r, is

b[Pr]
.
= P(Xr

k , x
r
v0 , . . . , x

r
v|Hr

k, U(Pr), Z(Pr)), (5.1)

where U r(Pr) and Zr(Pr) represent, respectively, the corresponding controls and

(unknown) observations to be acquired by following the path Pr. This pdf can be

explicitely written in terms of the belief at planning time and the corresponding state

transition and observation models as (see Eq. (4.2))

b[Pr] = P(Xr
k |Hr

k)P(Pr|U r(Pr), Zr(Pr)), (5.2)

where, for convenience, the local information (factors) along path Pr is defined as

FGlocal(Pr)
.
=

L(Pr)∏
l=1

P(xrvl |x
r
vl−1

, urvl−1
)P(Zr

vl
|Xr

k+l). (5.3)

Throughout the thesis we will often use the factor graph graphical model to represent a

pdf. The factor graph for the pdf from Eq. (5.3) is denoted by FGlocal(Pr).
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The measurement likelihood term P(Zr
vl
|Xr

k+l) can be further expanded, similarly

to Eq. (4.2). Here, Xr
k+l is the joint state up to the lth vertex along the path Pr, i.e.:

Xr
k+l = Xr

k+l(Pr) ≡ Pr
k+l

.
= {Xr

k , x
r
v0 , . . . , x

r
vl
}. (5.4)

We now proceed to the multi-robot case and consider different paths Pr for each robot

r ∈ {1, . . . , R}. Letting P .
= {Pr}Rr=1, the multi-robot belief is given by

b[P] = P(Xk|Hk)
R∏

r=1

L(Pr)∏
l=1

P(xrvl |x
r
vl−1

, urvl−1
)

·P(Zr
vl
|Xr

k+l)
∏
{i,j}

P(zr,r
′

i,j |x
r
vi , x

r′
vj )

 , (5.5)

where the last product corresponds to multi-robot constraints that can involve different

time instances, representing mutual observations of a scene. With a slight abuse of

notation, we use xrvi and xr
′

vj in the measurement likelihood term P(zr,r
′

i,j |xrvi , x
r′
vj ) to

represent both a robot state before planning time, i.e. xrvi ⊂ X
r
k ⊆ Xr(Pr) (likewise for

xr
′

vj ), and a future state along the path Pr. The latter case corresponds to a mutual

observation of an area that is unknown at planning time, as introduced in our previous

work [18].

The index set {i, j} in Eq. (5.5) represents the time indices that facilitate multi-robot

constraints. We assume a given criteria function crMR(vi, vj) that determines if there

should be a multi-robot constraint between the two vertices vi and vj . This function

is conceptually similar to the indicator function used in [31], while in our previous

work [18] we used a simpler criteria (relative distance between poses). The joint belief

(5.5) can be represented by a factor graph graphical model, as illustrated in Figure 6.1.

Different candidate paths P typically yield different factor graphs.

In a decentralized multi-robot framework, each robot maintains the joint belief

(5.5) on its own while communicating to each other relevant pieces of information. We

assume, for simplicity, each robot is capable of calculating the joint pdf at planning time

P(Xk|Hk) using one of the recently developed approaches (e.g. [12,21]). We note that

given transition and observation models (4.1), it is sufficient for each robot r′ to only

transmit (in addition to what is required by multi-robot inference) the corresponding

controls to path Pr′ . Any robot r that receives this information can then formulate the

multi-robot belief (5.5) [31].

Evaluating the objective function (4.3) for the considered paths P involves performing

inference over the multi-robot belief (5.5). As shown in prior work (e.g. [11,20]), this

inference can be performed in the information space:

Λ(P) = Λk +
R∑

r=1

L(Pr)∑
l=1

Λr,local
l +

∑
{i,j}

Λr,r′

i,j

 (5.6)
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where Λr,local
l = (F r

l )TΩr
wF

r
l +
∑

m(Hr
l,m)TΩr

vlmH
r
l,m and Λr,r′

i,j represents the information

from the multi-robot constraint term P(zr,r
′

i,j |xrvi , x
r′
vj ) in Eq. (5.5). Here, the matrices F

and H represent appropriate Jacobians of the state transition and observation models

(4.1), linearized about the considered candidate path and the MAP estimate of the joint

state at planning (current) time. Observe that the matrices in Eq. (5.6) are assumed

to be appropriately augmented (e.g. zero-padded) as the dimensionality of the state

increases with l; see similar treatment e.g. in [11,20].

Recalling that each robot r has numerous candidate paths over the graph Gr,

determining the optimal controls involves considering all path combinations between

different robots, which is computationally intractable. Optimality here refers to choosing

the best path from the set of candidate paths.

Instead, a common (sub-optimal) approach for decentralized belief space planning is

for each robot r to consider only its own candidate paths and the announced paths of

other robots, see e.g. [8, 31]. The robot can then select the best path, according to the

objective function (4.3), and announce this path to other robots, which then repeat the

same procedure on their end. Such an approach reduces the exponential complexity

in number of robots to a linear complexity, and can be viewed as a decentralized

coordindated descent [8,31], i.e. where robots either repeat this process until convergence

[8] or at some frequency [31]. Performance guarantees of such an approach are analyzed

in [8].

In particular, when an announced path of some robot r′ is updated (e.g. from Pr′

to Pr′
new), robot r has to recalculate the best path by re-evaluating its candidate paths

given Pr′
new. Existing approaches perform this re-evaluation for all candidate paths from

scratch. In contrast, in the following section we develop an approach to identify and

efficiently re-evaluate, while re-using calculations, only impacted candidate paths due

to an update in the announced path.

19





Chapter 6

Approach and Algorithm

Development

Although our approach applies for any number of robots, for simplicity we consider

the case of two robots r and r′ and re-write the objective function J from Eq. (4.3)

as J(Pr,Pr′) = E
[∑L

l=1[crl (b[X
r
k+l], u

r
k+l(Pr)) + cr

′
l (b[Xr′

k+l], u
r′
k+l(Pr′)]

]
. In Section 6.4

we then generalize back to a general number of robots.

Consider robot r has already calculated belief evolution over all candidate paths

while accounting for the announced path Pr′ , and the latter is now updated to Pr′
new.

The corresponding multi-robot beliefs for some candidate path Pr of robot r are:

b[Pr,Pr′ ] = P(Xk|Hk)P(Pr|U r(Pr), Zr(Pr)) (6.1)

P(Pr′ |U r′(Pr′), Zr′(Pr′))
∏
{i,j}

P(zr,r
′

i,j |x
r
vi , x

r′
vj )

b[Pr,Pr′
new] = P(Xk|Hk)P(Pr|U r(Pr), Zr(Pr)) (6.2)

P(Pr′
new|U r′(Pr′

new), Zr′(Pr′
new))

∏
{i,j}

P(zr,r
′

i,j |x
r
vi , x

r′
vj ),

where the changed terms are underlined and denoted in red.

One can consider the joint beliefs b[Pr,Pr′ ] and b[Pr,Pr′
new] to be represented by

appropriate two different factor graphs (see Figures 1.1 and 6.1). Re-evaluating the

objective function for a candidate path Pr involves performing MAP inference over the

updated factor graph b[Pr,Pr′
new]. In the general case, the factor graphs will be different

for each candidate path Pr.

The general concept of our approach is to track the multi-robot factors and local

information change between the two pdfs b[Pr,Pr′ ] and b[Pr,Pr′
new]. This information

is then used to efficiently perform inference over the updated belief, which is required

for re-evaluating the objective function.

Our approach first identifies which candidate paths Pr of robot r are impacted as a

result of the update in the announced plan, and consequently operates only over these
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paths instead of always re-calculating belief evolution over all candidate paths. Second,

our approach efficiently calculates the belief evolution over these impacted paths, while

re-using calculations where possible.

The main steps of the proposed approach are summarized below and described in

detail in the following sections:

1. Section 6.1 calculates the change in local information between Pr′ and Pr′
new.

2. Section 6.2 identifies the impacted candidate paths Pr and collects appropriate

multi-robot factors to be later used for efficient belief inference.

3. Section 6.3 re-evaluates the objective function for (only) the impacted candidate

paths, based on the output of Sections 6.1 and 6.2.

6.1 Change in Local Information between Pr′ and Pr′new
We first calculate the change in local information between Pr′ and Pr′

new. This calculation

is used later in Alg. 6.2 for consistent inference over appropriate beliefs while avoiding

double counting information that is shared by Pr′ and Pr′
new. Specifically, recalling the

definition (5.3) of a factor graph FGlocal(Pr′) that represents only the local information

along path Pr′ we identify which factors only appear in FGlocal(Pr′) or in FGlocal(Pr′
new).

These factors will then be either added or removed upon re-evaluating belief evolution

along impacted candidate paths Pr. We therefore collect these factors into two separate

factor graphs:

FGrmv
local

.
= {f | f ∈ FGlocal(Pr′) ∧ f /∈ FGlocal(Pr′

new)}

FGadd
local

.
= {f | f /∈ FGlocal(Pr′) ∧ f ∈ FGlocal(Pr′

new)}

Additionally, we calculate belief evolution b[Pr′
new] along path Pr′

new taking into

account only local information of robot r′, and use it to calculate the change in the

immediate cost functions cr
′

l between b[Pr′
new] and b[Pr′

new]. Denoting this change by ∆cr
′

l

we let ∆Jr′ .= E
[∑L

l=1 ∆cr
′

l

]
. This quantity will be used to very efficiently re-evaluate

the objective function for candidate paths Pr that are not impacted, as discussed in

Section 6.3.

6.2 Impacted Paths and Change in Multi-Robot Factors

Next, we identify, among all the candidate paths of robot r, those paths Pr that

are impacted as a result of the update in the announced path from Pr′ to Pr′
new. In

other words, recalling Eqs. (6.1)-(6.2), we are interested in finding paths Pr such that

b[Pr] 6= b′[Pr], with

b[Pr]=

∫
b[Pr,Pr′ ]dPr′ , b′[Pr]=

∫
b[Pr,Pr′

new]dPr′
new (6.3)
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Such paths Pr are marked, indicating that the objective function should be re-evaluated,

a process that involves re-calculating belief evolution. On the other hand, belief evolution

re-calculation is not required for candidate paths that are not impacted. In the latter

case, the objective function J(Pr,Pr′) is only updated due to the change in immediate

cost functions cr
′

l of robot r′, as discussed in Section 6.3.

We now describe our approach to identify the impacted paths, as well as collecting

the required information that will be used in Section 6.3 (Alg. 6.2) for efficient inference.

The key observation is that the belief over path Pr is impacted due to an announced

path Pr′ only if there exist multi-robot factors P(zr,r
′

i,j |xrvi , x
r′
vj ) or, in certain cases, if

the states of robots r and r′ are already correlated at planning time, i.e.

P(Xk|Hk) 6= P(Xr
k |Hk)P(Xr′

k |Hk) (6.4)

This is the case if, by planning time tk, the robots have already performed some

multi-robot update, e.g. by mutually observing a common scene.

Clearly, in absence of multi-robot factors and prior correlation, the belief over a

candidate path Pr is not impacted by neither Pr′ nor Pr′
new. However, it is also interesting

to note that also when there is prior correlation, but no changes in multi-robot factors

between b[Pr,Pr′ ] and b[Pr,Pr′
new], the belief over path Pr typically remains the same.

In what follows we treat prior correlation just as a multi-robot factor, see Figure

6.1. However, this observation can be used to switch to a more efficient version of

the algorithm that approximately recovers the pdf b[Pr,Pr′
new]. Investigation of this

direction is left to future research.

As mentioned in Chapter 6, our approach tracks the changed multi-robot factors

and the local factors of robot r′ between the beliefs b[Pr,Pr′ ] and b[Pr,Pr′
new]. This

information is then used in Section 6.3 to efficiently re-evaluate the belief over path

Pr. However, such a procedure is required for each candidate path Pr that has some

multi-robot factors, even if several paths are identical up to some point. This would

lead to the same work (i.e. computational effort) done multiple times.

To address this issue, rather than reasoning about robot r’s candidate paths, we

reason in terms of the corresponding vertices in the graph Gr, that define the paths.

Our approach, summarized in Alg. 6.1, considers the corresponding graph vertices and

identifies the vertices Vinv ⊆ V r that are involved in at least one multi-robot factor due

to either Pr′ or Pr′
new. See illustration in Figure 6.1. We then associate to each such

vertex vi ∈ Vinv the changed multi-robot factors that involve vi, i.e. any such factor

f should either appear in b[Pr,Pr′ ] or in b[Pr,Pr′
new]. In the former case, f should be

removed from the corresponding factor graph, and as such is added to vi.FG
rmv
MR (line

20); in the latter case, f should be added and is thus added to vi.FG
add
MR (line 22).

Finally, the algorithm marks all paths Pr that include at least one vertex in V r
inv as

impacted paths (line 25), to indicate belief re-evaluation is required.
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1 Inputs:
2 Gr = (V r, Er): graph of robot r

3 P r′ , P r′

new: prev. and updated announced path of robot r′

4 crMR(vi, vj): multi-robot factor criteria function

5 Outputs:
6 V r

inv: involved vertices in multi-robot factors

7 ∀v ∈ Vinv : v.FGadd
MR, v.FG

add
MR

8 V r
inv = φ /* Initialization */

9 foreach vr
′ ∈ Pr′ ∪ Pr′

new do

10 Find all nearby vertices {v} ⊆ V r to vr
′

such that
11 - at least one candidate path Pr goes through v

12 - multi-robot criteria crMR(v, vr
′
) is satisfied

13 V r
inv = V r

inv ∪ {v}
14 foreach vi ∈ {v} do
15 Generate multi-robot factor f(xrvi , x

r′

v )

16 if vi ∈ Pr′ and vi ∈ Pr′

new then
17 continue
18 end

19 if vi ∈ Pr′ then

20 Add f(xrvi , x
r′

v ) to vi.FG
rmv
MR

21 else

22 Add f(xrvi , x
r′

v ) to vi.FG
add
MR

23 end

24 end
25 Mark all candidate paths Pr that go through vertex vi
26 end
27 return V r

inv

Algorithm 6.1: identifyInvolvedPaths. Identify vertices V r
inv ⊆ V involving

multi-robot factors considering announced paths Pr′ and Pr′
new, and the corresponding

multi-robot factors. Each vertex v ∈ Vinv is associated with appropriate multi-robot
factors to be later used in Alg. 6.2.
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Figure 6.1: Graph G = (V,E) along which different candidate paths Pr of robot r can
be defined. Announced paths Pr′ and Pr′

new from robot r′ facilitate multi-robot factors
f1, f2, f3 and f4.
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6.3 Objective Function Re-Evaluation for Candidate Paths

As mentioned in Chapter 5, each robot r evaluates the objective function by considering

its candidate paths and the announced paths of different robots. Such a process requires

performing inference over the belief b[Xk+l], for each look ahead step l, to recover its

first two moments

b[Pr
k+l,Pr′

k+l] = N (µk+l,Λ
−1
k+l), (6.5)

where the general form for the information matrix Λk+l is given by Eq. (5.6). Observe

that if the objective function J(Pr,Pr′) only includes immediate cost functions for

some of the look ahead steps l, then the above inference is only required for these time

instances. For example, one may be interested only in the uncertainty at the final

step (e.g. upon reaching a goal), in which case inference should be performed only for

l = L. On the other hand, in chance-constrained motion-planning (see e.g. [10]), belief

evolution is typically needed for many (or all) look ahead steps l.

Since the objective function J(Pr,Pr′) has been already calculated for different

candidate paths Pr and the announced path Pr′ , a process that also involves inference

over the corresponding beliefs b[Pr,Pr′ ], our objective now is to efficiently evaluate the

objective function considering the updated announced path Pr′
new.

Our approach for re-evaluating the objective function J(Pr,Pr′
new) for each candidate

path Pr, while exploiting results from the previous inference b[Pr,Pr′ ], is summarized

in Alg. 6.2 and further discussed below.

The algorithm calculates the maximum a posteriori (MAP) information matrix that

corresponds to the belief b[Pr,Pr′
new] for each of the future time instances, which is

then used for evaluating the objective function J(Pr,Pr′
new). Let Λ

.
= Λ(Pr,Pr′) and

Λ′
.
= Λ(Pr,Pr′

new) represent the corresponding MAP information matrices to the beliefs

b[Pr,Pr′ ] and b[Pr,Pr′
new], respectively. Denote also by Λk+l the information matrix

that corresponds to the belief over the first l steps, b[Pr
k+l,Pr′

k+l], and likewise for Λ′k+l.

Since inference over b[Pr,Pr′ ] has been already performed, the matrices Λk+l for all

steps l are known. We now focus on calculating Λ′k+l, for each candidate path Pr.

If a candidate path Pr has been determined in the previous section not to be

impacted as a result of the update in the announced path (from Pr′ to Pr′
new), there is

no need to recalculate the immediate functions crl of robot r. We note this holds true

due to the considered form of J , where crl only involves b[Pr
k+l] and not also b[Pr′

k+l].

The latter can still change due to new local information between Pr′ and Pr′
new, but

that change does not affect crl (since b[Pr] = b′[Pr]). Therefore, to get J(Pr,Pr′
new) from

J(Pr,Pr′) we only have to update the terms cr
′

l (lines 8-11 in Alg. 6.2). This update

is the same for all non-impacted paths Pr and is given by ∆Jr′ from Section 6.1. We

note, however, that often, ∆Jr′ is negligible.

For each marked (impacted) path Pr and for each l ∈ L(Pr), we start with the
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1 Inputs:
2 V r

inv: involved vertices in multi-robot factors

3 For each candidate path Pr: J(Pr,Pr′); ∀l ∈ L(Pr) : Λk+l from Eq. (6.5)

4 ∆Jr′ from Sec. 6.1

5 Outputs:

6 For each impacted candidate path Pr: J(Pr,Pr′

new); ∀l ∈ L(Pr) : Λ′
k+l

7 foreach candidate path Pr do
8 if ¬Pr.isMarked then

9 J(Pr,Pr′

new) = J(Pr,Pr′) + ∆Jr′

10 continue

11 end
/* re-evaluate belief over Pr

*/

12 J(Pr,Pr′

new) = 0
13 for l = 1 : L(Pr) do

14 if Λ
′

k+l is not required in Eq. (4.3) then
15 continue
16 end

/* Get previous belief b[Pr
k+l,Pr′

k+l] */

17 Λk+l
.
= Λk+l(Pr,Pr′) from Eq. (6.5)

/* Initialize Λ′
k+l

.
= Λk+l(Pr,Pr′

new) */
18 Λ′

k+l = Λk+l

19 foreach v ∈ Pr and v ∈ V r
inv do

/* MR factors involving v ∈ V r
inv */

20 Λ′
k+l = updInfo(Λ′

k+l, v.FG
rmv
MR , l, rmv)

21 Λ′
k+l = updInfo(Λ′

k+l, v.FG
add
MR, l, add)

22 end

/* Changed local info. of robot r′ */
23 Λ′

k+l = updInfo(Λ′
k+l, FG

add
local, l, add)

24 Λ′
k+l = updInfo(Λ′

k+l, FG
rmv
local, l, rmv)

25 Evaluate crl and cr
′

l from Eq. (4.3)
26 end

27 end

Algorithm 6.2: evalObjFunc. Re-evaluate objective function for candidate paths
Pr upon update in an announced path from another robot r′. Notations: MR=Multi-
Robot; rmv = remove.

27



1 Inputs:
2 FG, l: factor graph and time index

3 Linearlization point = graph vertices V and X̂k

4 toAddflag: indicates if to add or subtract information
5 Λ: input information matrix to be updated

6 Outputs:
7 Λ: updated information matrix

8 {f} = getFactorsCausal(FG, l)

9 foreach f ∈ {f} do
10 Linearize f about linearization point and calculate Λ(f)
11 Adjust size of Λ, if needed
12 if toAddflag then
13 Λ = Λ + Λ(f)
14 else
15 Λ = Λ− Λ(f)
16 end

17 end

Algorithm 6.3: updInfo. Update information matrix by adding or subtracting
information from factors.

previously calculated information matrix Λk+l and update it by adding and subtracting

the multi-robot and local factors that were collected as explained in Sections 6.1 and

6.2. See lines 16-24 in Alg. 6.2.

Specifically, referring to Eq. (5.6), and resorting to factor graph notation FG
.
=

b[Pr,Pr′ ] and FG′
.
= b[Pr,Pr′

new] , the updated information matrix Λ′k+l can be written

as

Λ′k+l = Λk+l −
∑

f ∈ FG
f /∈ FG′

f.t ≤ tk+l

Λ(f) +
∑

f ∈ FG′

f /∈ FG
f.t ≤ tk+l

Λ(f). (6.6)

The operator f.t extracts the time instances involved with the factor f , such that the

condition f.t ≤ tk+l enforces causality, i.e. we do not consider factors involving states at

times greater than k + l. The corresponding steps are summarized in Alg. 6.3 that is

invoked by Alg. 6.2. We assume existence of the function getFactorsCausal that

takes as input a factor graph and time t, and outputs only factors involving variables

up to that time. Given these factors, Alg. 6.3 extracts the corresponding information

matrices and adds or substracts these matrices as in Eq. (6.6). This process involves

linearizing the corresponding nonlinear functions, where the linearization point is either

the graph vertices V or, in case states from Xk are involved, the corresponding MAP

estimate X̂k of P(Xk|Hk), which is known at time k.

We note that, similar to Eq. (5.6), the information matrices in Eq. (6.6) should

be appropriately augmented: for example, the matrices Λk+l and Λ′k+l represent

uncertainty over two partially overlapping joint states {Xr
k+l(Pr), Xr′

k+l(Pr′)} and
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{Xr
k+l(Pr), Xr′

k+l(Pr′
new)}, respectively.

One can go further, and perform the calculation in Eq. (6.6) incrementally, by updat-

ing Λ′k+l+1 based on Λ′k+l while adding and subtracting information from appropriate

factors that involve time k+ l+1. This would provide an efficient mechanism to evaluate

the belief for each look ahead step, if that is required by the objective function J . We

leave further investigation of this direction to future research and formulate Alg. 6.2

according to ’batch’ version (Eq. (6.6)).

Illustrative Example Figure 6.1 illustrates key aspects of our approach. The figure

indicates the set Vinv of involved vertices in multi-robot factors in either Pr′ and Pr′
new

by bold circle marks. As seen there are three such vertices (vi, vi+1 and vi+2) and four

multi-robot factors (f1, f2, f3 and f4). As detailed in Alg. 6.1, each vertex v ∈ Vinv
includes the changed multi-robot factors that have to be either added or removed. In this

example, for vi there are no changed factors, since although originating from different

paths, f1 and f2 are actually identical factors. On the other hand, vi+1 includes the

factor f3 to be removed, while vi+2 includes the factor f4 to be added. All the candidate

paths Pr that go through some vertex v ∈ Vinv should be updated with the multi-robot

factors included in v.

6.4 More than 2 Robots

The presented approach is not limited to 2 robots and naturally supports any number

R of robots, with the objective function specified in Eq. (4.3). In this section we briefly

specify the changes in each of the algorithmic steps to accommodate this general setting.

Section 6.1: Change in local information (Section 6.1), should be calculated with

respect to all R robots, excluding current robot r. One can go further and also

incorporate within ∆Jr′ and ∆Jr′′ the impact of changed multi-robot factors between

any two robots r′ and r′′. This direction is left to future research. Section 6.2: No

modification is needed. Section 6.3: Algorithm 6.2 remains the same, however the input

to the algorithm is now J(Pr, {Pr′}r′∈{1,...,r−1,r+1,...,R}) instead of J(Pr,Pr′).
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(a) (b)

Figure 6.2: (a) Illustration of the proposed concept without correlation as show before
in Figure 1.1 compare with (b) Illustration of the proposed concept with correlation
between robot states at planning time k (referred also as prior correlation in the text)
due to mutual past landmark observations.

6.5 Prior Correlation

In this section we revisit the case where at planning time k, robot states are already

correlated, e.g. due to observation of a common scene, see illustration in Figure 6.2. In

other words Eq. (6.4) holds:

P(Xk|Hk) 6= P(Xr
k |Hk)P(Xr′

k |Hk). (6.7)

As will be seen, our approach is applicable also in such a case with minor changes.

Thus, the proposed approach also supports more realistic, unrolling scenarios where

robot states become correlated at some point and the candidate paths can go through

unknown or previously mapped areas, or a combination of both.

Prior correlation at planning time k can be expressed as

P(xrk, x
r′
k |Hk) =

∫
¬xr

k,x
r′
k

P(Xk|Hk)
.
= N (×,Σ(xrk, x

r′
k )), (6.8)

where × denotes some entry that is not of interest in the current context, and

Σ(xrk, x
r′
k )

.
=

 Σxr
k,x

r
k

Σ
xr
k,x

r′
k

Σ
xr′
k ,xr

k
Σ
xr′
k ,xr′

k

 . (6.9)

The correlation (or cross-covariance) term Σ
xr
k,x

r′
k

will be non-zero because of Eq. (6.7).

30



(a) (b)

Figure 6.3: Prior correlation: (a) with and (b) without multi-robot factors.

Conceptually, marginalizing past robot poses and observed landmarks, the pdf (6.8)

induces a multi-robot factor between the variables xrk and xr
′

k , as depicted in Figure 6.3.

Now, considering some candidate path Pr of robot r and previous and new announced

paths Pr and Pr′
new from robot r′, there are two possible cases (see Figure 6.3): (a) there

are some multi-robot factors between Pr and Pr′ , and/or between Pr and Pr′
new; or (b)

there are no multi-robot factors between Pr and Pr′ and also no multi-robot factors

between Pr and Pr′
new.

In the first case, prior correlation can be considered just as an additional multi-robot

factor that is treated similarly to other multi-robot factors by our approach (see Chapter

6).

The second case (no multi-robot factors but with prior correlation) deserves further

analysis. Figure 6.3b shows a diagram of such a scenario. Since there are no multi-robot

factors, the posterior beliefs from Eqs. (6.1) and (6.2) turn into

b[Pr,Pr′ ] = P(Xk|Hk)P(Pr|U r(Pr), Zr(Pr))P(Pr′ |U r′(Pr′), Zr′(Pr′))

b[Pr,Pr′
new] = P(Xk|Hk)P(Pr|U r(Pr), Zr(Pr))P(Pr′

new|U r′(Pr′
new), Zr′(Pr′

new)),

where the changed entries are underlined and shown in red color.

In the above case, if at planning time there was no prior correlation (i.e. xrk and xr
′

k

are not correlated), as considered in Section 6.2, then Pr would not be impacted by the

change in the announced path from Pr′ to Pr′
new. In other words (see also Eq. (6.3)):

b[Pr]
.
=

∫
b[Pr,Pr′ ]dPr′ ≡ b′[Pr]

.
=

∫
b[Pr,Pr′

new]dPr′
new, (6.10)

and thus, Pr would not be marked. However, this does not hold in general in the

presence of prior correlation.
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Interestingly, however, despite having prior correlation, we observe that as long as

the paths Pr, Pr′ and Pr′
new go through unknown areas with no sources of absolute

information (such as GPS or known landmarks), any such candidate path Pr of robot

r is not impacted due to change in the announced path (from Pr′ to Pr′
new) and thus

should not be marked, thereby saving calculations.

We now illustrate this observation in a simple example, and then discuss in Section

6.7 the more general case, where the above conditions are not met, and discuss a slight

modification to our approach.

6.6 Simple Example

We consider a simple example where paths Pr′ and Pr′
new only include a single look

ahead step. Both paths pass through unknown areas and thus we assume existence

only of visual odometry measurements zV O that provide relative information between

consecutive states. The posterior over xr
′

k and xr
′

k+1, given zV O from either Pr′ or Pr′
new

is

P(xr
′

k , x
r′
k+1|Hk, z

V O) ∝ P(xr
′

k |Hk)P(zV O|xr′k , xr
′

k+1), (6.11)

where P(xr
′

k |Hk) = N (×,Σk) describes the posterior over xr
′

k at planning time k, which

could be obtained e.g. via P(xr
′

k |Hk) =
∫
xr
k
P(xrk, x

r′
k |Hk).

We now show the posterior over xr
′

k is not influenced by the new information

(measurement zV O), e.g. the covariance does not change. Performing standard maximum

a posteriori (MAP) inference yields the following least-squares expression:

xr
′?

k , xr
′?

k+1 = arg min
xr′
k ,xr′

k+1

‖xr′k − x̂r
′

k ‖2Σk
+ ‖zV O − hV O(xr

′
k , x

r′
k+1)‖2ΣV O

, (6.12)

where hV O and ΣV O are the corresponding measurement function and measurement

noise covariance for visual odometry (see e.g. [22]). Linearizing and augmenting the

Jacobians we get

∆xr
′?

k ,∆xr
′?

k+1 = arg min
∆xr′

k ,∆xr′
k+1

‖A

(
∆xr

′
k

∆xr
′

k+1

)
− b‖2, (6.13)

where b is an appropriate right hand side (rhs) vector and

A
.
=

[
Σ
−1/2
k 0

Σ
−1/2
V O HV O −Σ

−1/2
V O

]
. (6.14)

The posterior covariance over xr
′

k and xr
′

k+1 is
(
ATA

)−1
, from which we will now extract

the entry that corresponds to xr
′

k and show it is equal to Σk, despite the new information

(measurement zV O).
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First, the information matrix is calculated as

ATA =

[
Σ−1
k +HT

V OΣ−1
V OHV O HT

V OΣ−1
V O

Σ−1
V OF Σ−1

V O

]
=

[
A B
C D

]
. (6.15)

The covariance entry that corresponds to xr
′

k is the top left block matrix of
(
ATA

)−1
.

Using block matrix inversion this entry can be calculated as

(
ATA

)−1
=

[ (
A− BD−1C

)−1 ×
× ×

]
(6.16)

Substituting matrices A, B, C and D from Eq. (6.15) and performing basic algebraic

manipulation we get

(
A− BD−1C

)−1
=
(
Σ−1
k + F TΣ−1

w F − F TΣ−1
w Σ1

ωΣ−1
w F

)−1
= Σk, (6.17)

as claimed. In other words, adding new relative information does not impact the state

xr
′

k . Hence, it does not matter whether this new information is added due to path Pr′

or Pr′
new - in both cases, the state xrk of robot r is not impacted despite the existence

of prior correlation between xrk and xr
′

k . This means, in turn, that all candidate paths

Pr of robot r that do not have multi-robot factors with Pr′ and Pr′
new, can remain

unmarked and should not be recalculated.

This concludes the simple example; we now proceed to discuss a more general case,

where the covariance over xr
′

k does change as a result of incorporating new information

along a candidate path, and we outline a slight modification of our algorithm to also

handle this case.

6.7 A More General Case

When the conditions mentioned toward the end of Section 6.5 are not met, e.g. at least

one of the paths Pr, Pr′ or Pr′
new go through previously mapped areas, or when along

Pr′ or Pr′
new there are a priori known landmarks or available GPS signal, then Eq. (6.10)

does not necessarily hold. Intuitively, a substantial update along Pr′ (or Pr′
new), e.g. due

to GPS measurement, will impact the posterior over xr
′

k :

P(xr
′

k |Hk, U
r′(Pr′), Zr′(Pr′)) 6= P(xr

′
k |Hk). (6.18)

Due to prior correlation, that couples xrk with xr
′

k , the new information will also pass,

to some degree, onward to robot r, impacting the posterior over xrk. If the information

along the previous and new announced paths Pr′ and Pr′
new is substantially different,
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then the impact on the posterior of xrk can also be different, i.e.:

P(xrk|Hk, U
r′(Pr′), Zr′(Pr′)) =

∫
xr′
k

P(xrk, x
r′
k |Hk, U

r′(Pr′), Zr′(Pr′)) (6.19)

.
= N (×,Σk(U r′(Pr′), Zr′(Pr′)) (6.20)

P(xrk|Hk, U
r′(Pr′

new), Zr′(Pr′
new)) =

∫
xr′
k

P(xrk, x
r′
k |Hk, U

r′(Pr′
new), Zr′(Pr′

new)) (6.21)

.
= N (×,Σk(U r′(Pr′

new), Zr′(Pr′
new)) (6.22)

and

P(xrk|Hk, U
r′(Pr′), Zr′(Pr′)) 6= P(xrk|Hk, U

r′(Pr′
new), Zr′(Pr′

new)). (6.23)

Hence, the posteriors over candidate path Pr, b[Pr] and b′[Pr] will change (Eq. (6.10)

will not hold). It would thus seem that Pr should be necessarily marked, to trigger

belief evolution recalculation.

However, it is often the case that while the posteriors (6.19) and (6.21), and therefore

b[Pr] and b′[Pr], are not identical, in practice the difference is small and can be considered

negligible given some threshold. In such a case, there is no need in recalculating belief

evolution along path Pr, and thus the latter should not be marked.

Based on the above observation, we propose the following slight modification to

our approach. First, we evaluate the posteriors (6.19) and (6.21) - this is a one-time

calculation for given previous and new announced paths Pr′ and Pr′
new, which is valid to

all candidate paths Pr of robot r. Then, we decide if the two posteriors are sufficiently

similar given a user-defined threshold th: different information-theoretic costs can be

used for this purpose (e.g. KL-divergence and relative entropy). A simple alternative,

for example, is to calculate the difference in the determinant (or trace) of the posterior

covariance in each case. More specifically, recalling Eqs. (6.20) and (6.22), the candidate

path Pr is marked only if

det
(

Σk(U r′(Pr′
new), Zr′(Pr′

new)
)
− det

(
Σk(U r′(Pr′

new), Zr′(Pr′
new)

)
>th. (6.24)

In our current implementation we use the above criteria with the threshold th set to 10.
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Chapter 7

Results

We demonstrate our approach in simulation considering scenario involving two and

four robots operating in Largeunknown and GPS-deprived environments that need

to navigate to different goals in minimum time but also with highest accuracy. In

this basic evaluation we use a prototype implementation in Matlab and GTSAM [14]

to investigate key aspects of the proposed approach. The objective function (4.3) is

J =
∑R

r=1

[
κrgoalt

r
goal + κrΣtr

(
Σr
goal

)]
, where Σr

goal and trgoal represent, respectively, the

covariance upon reaching the goal and time of travel (or path length) for robot r. The

parameters κrgoal and κrΣ weight the importance of each term (we use κrpath = 0.1 and

κruncert = 1). A probabilistic roadmap (PRM) [26] is used, to discretize the (partially

unknown) environment and generate candidate paths over the roadmap. Figures 7.1

and 7.2 show the considered scenarios for two and four robots and the generated 25

candidate paths for each robot. In this and all figures to follow, we use the notation ?

to indicate the starting position of each robot.

We compare our approach to a standard approach that re-evaluates from scratch

belief evolution and objective function for each candidate path of each robot r given

announced paths from other robots (e.g. [8, 18,31]). This comparison has two merits:

(a) verify our approach correctly recovers the underlying pdf while identifying and

re-evaluating only the impacted paths; and (b) has computational benefits.

7.1 Basic Scenarios

Figure 7.5 shows, for the two-robot scenario, one of the candidate paths of robot r, an

announced path of robot r′, and the generated multi-robot factors (cyan color); see also

concept illustration in Figure 1.1. The corresponding belief evolution (covariance ellipses)

is displayed in black. Robot r determines its best path, and announces it to other

robots, which do the same; the process is repeated until convergence. Similar to [18], we

use a simple heuristic for the function crMR(vi, vj) (line 4 of Alg. 6.1) to determine if

two poses admit a multi-robot constraint: these constraints, possibly involving different

future time instances, are formulated between any two poses with relative distance closer
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Figure 7.1: Candidate paths shown on PRM. Robot starting positions are denoted by ?.

than d = 300 meters. More advanced methods could be implemented, e.g. considering

also statistical knowledge.

The set of involved vertices in PRM, Vinv, depicted conceptually in Figure 6.1, is

shown for robot r in Figure 7.6 for the two-robot scenario. The figure shows marked

(impacted) candidate paths of robot r, as a result of an update in the announced path of

robot r′ from Pr′ to Pr′
new in one of the iterations. To reduce clutter, only the impacted

(marked) candidate paths of robot r are shown. The corresponding multi-robot factors

are color-coded: cyan indicates unchanged multi-robot factors (associated with both

Pr′ and Pr′
new), and yellow and magenta indicate multi-robot factors that are associated,

respectively, only with Pr′ and Pr′
new. These factors are appropriately then included

with in the corresponding vertices in Vinv and are used for calculating belief evolution,

following Algorithms 6.1 and 6.2.

In the specific situation shown in Figure 7.6, only some of the candidate paths are

impacted. Our approach correctly identifies, marks and consequently re-evaluates the

belief over only these impacted paths. This is in contrast to the Standard approach

that re-evaluates the belief from scratch over all candidate paths and recalculates the

objective function for each. As a consequence, our approach exhibits substantially

reduced running time, compared to the Standard approach, while producing identical

results.
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Figure 7.2: Candidate paths shown on PRM. Robot starting positions are denoted by ?.

Figures 7.3 and 7.4 reports statistical timing results as a function of number of

candidate paths Ncand for each robot, considering the two-robot and four-robot scenarios

from Figures 7.1 and 7.2. These results were obtained by running each approach 50

times, for each considered Ncand. In each such run, the scenario remains the same

(goals, starting locations), while the candidate paths randomly change. As seen, as

Ncand increases the ratio between running time of the two approaches increases, in favor

of our approach. In particular, for 50 candidates and two robots, our approach is 2.5

times faster compared to the standard approach (35 versus 85 seconds); A similar trend

can be seen also for four robots. In all cases, identical results were obtained, compared

with the Standard approach.
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Figure 7.3: (Statistics for running time as a function of number of candidate paths for
each robot, considering groups of 2 robots.
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Figure 7.4: Statistics for running time as a function of number of candidate paths for
each robot, considering groups of 4 robots.
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Figure 7.5: Multi-robot factors (cyan color) and belief evolution (covariance ellipses) for
one of the candidate paths from Figure 7.1, considering an announced path Pr′ .
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(a) (b)

Figure 7.6: Illustration of the proposed approach considering a group of two robots (see
Figure 6.1). Vertices in Vinv for robot r given a (a) previous and (b) new announced
path of robot r′ are shown as circles. Unchanged multi-robot factors are shown in cyan.
Changed multi-robot factors associated with Pr′ and Pr′

new are shown in yellow and
magenta, respectively. Only impacted candidate paths of robot r are shown.
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7.2 Large Scale Scenarios

We also examine our approach in a larger scenario, where each robot has to reach

multiple pre-defined goals while operating in unknown environments. Such a scenario

involves multiple planning sessions and multi-robot SLAM - reaching each goal triggers

a new planning session during which the robots update theirs best paths. These paths

are then translated into commands, in our case, the change in heading angle. In our

simulative framework, the robots execute these commands and acquire new bearing and

range observations of landmarks. Note that the latter can be either previously seen

landmarks, that correspond to already mapped areas, and new landmarks. Considering

perfect association of the landmark observations, the robots then calculate a multi-robot

SLAM solution, i.e. the term P(Xk|Hk) in Eq. (5.5).

Figures 7.7-7.14 show the results of each of the planning and SLAM sessions, while

the running time is reported in Figure 7.15. Goals are indicated in these figures using

both numbers and colors, with the former denoting sequence (i.e. goal 1 should be

visited before goal 2), and colors indicating different robots. As seen, four robots are

considered (red, green, blue and purple), and each robot has a sequence of three goals.

We intentionally scattered the goals in such a way that both planning in unknown and

previously-mapped environments is examined.

We show, for each planning session, the candidate paths for all robots and the

best paths identified by the proposed approach, see Figures 7.7, 7.9, 7.11 and 7.13.

Multi-robot factors involving future poses of different robots (along the chosen paths),

and factors involving a future pose of robot r ∈ [1, . . . , R] and a landmark, previously

observed by robot r or by any other robot in the group, are indicated in cyan color. See,

e.g. Figure 7.9b for combination of both of these factors. As in the basic study (Section

7.1), covariances along the chosen paths are also shown.

At the first planning session (Figure 7.7), the robot start operating with only prior

information on their initial poses (we use 1e−6 [m], meaning robots know their exact

start locations) - in other words, there is no correlation between the robot states. Using

the proposed approach, the best path for each robot in the group is determined and

executed until one of the robots reaches a goal. In particular, the chosen paths of the

red and green robots admit a single multi-robot factor within planning. Figure 7.8a

shows the corresponding SLAM solution, while Figure 7.8b shows position covariance

evolution (from SLAM). While not explicitly shown, the states of red and green robots,

and of blue and purple robots become correlated towards the end of this phase due to

mutual landmark observations.

From this moment onward, thus, the states of these robots are (somewhat) correlated

and the discussion from Section 6.5 regarding prior correlation becomes relevant. In

the second planning session (Figures 7.9 and 7.10), the goals are scattered such that

vast majority of the candidate paths still go through unknown areas (see Figure 7.9a).

Looking at the determined best paths (Figure 7.9b), one can observe the planned
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multi-robot collaboration between two robot pairs (red-green and blue-purple), which is

exhibited either in terms of multi-robot factors or observations of landmarks previously

observed by another robot.

Despite prior correlation, however, our approach is capable of significantly reducing

running time (by a factor of two, see Figure 7.15) while yielding the same results in

terms of the chosen paths. This goes in hand with the observation from Section 6.5

that the belief along path of any robot r is not impacted by change in the announced

path of other robots if these paths go through unknown areas and without sources of

absolute information, which is the case here (recall also the example from Section 6.6).

In the third planning session, the red robot still has not reached its second goal,

while all the other robots already consider their next goals. After the red robot reaches

its second goal, another planning session is triggered. We note that in practice, only

the red robot could actually generate new candidate paths while the rest of the robots

could remain with candidate paths from the previous planning session.

The third goal of each robot was intentionally chosen to force the robots to re-

visit previously mapped environments (see e.g. Figures 7.13 and 7.14). As in the

previous planning sessions, the states of the two robot pairs red-green and blue-purple

are correlated. However, here, in addition the robots consider impact of loop closure

observations within planning. These are often mutual multi-robot observations, i.e. the

same previously-observed landmarks are planned to be observed by multiple robots -

see the cyan lines in Figure 7.13b. Given the corresponding best paths, which were

determined as such (mainly) due to these multi-robot constraints that allow significant

uncertainty reduction, a multi-robot SLAM session is performed. As evident from

Figure 7.14, the robots indeed reach the goals with small uncertainty, which roughly

corresponds to the prior uncertainty (due to loop closures).

Finally, Figure 7.15 depicts running time for each of the planning sessions, comparing

the proposed approach with the Standard approach (that does not attempt to re-use

calculations). It can be clearly seen that our approach is substantially faster in all

planning sessions. In particular, it is faster by a factor of two and seven in the second

and third planning sessions, respectively. We emphasize this significant reduction in

running time comes with no sacrifice in performance, i.e. the same paths were chosen

by our and Standard approach in all planning sessions.

We also can see the benefit of MR factors compared with Scenario3 without MR

factors. The peak of the covariance in this scenario is much lower as figures 7.14b and

7.16b show.

In addition to the above-described scenario, we examined our approach in two other

related scenarios. Table 7.1 provides a description of these scenarios, while the results

are given in Appendix A, to avoid clutter.
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Figure 7.7: Scenario1. First planning session. States of different robots are not
correlated. (a) Candidate paths to the first goal of each robot; (b) Chosen paths by the
planning approach.
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Scenario Description Big covariance MR factors

Scenario1
All robots have small and identical
covariances at the beginning. MR
factors are used within planning.

no yes

Scenario2

Red and green robots have large
uncertainty covariances at the be-
ginning. All robots use MR factors
within planning.

yes yes

Scenario3

All robots have small and identical
covariances at the beginning. MR
factors are not used within plan-
ning.

no no

Table 7.1: Scenarios description
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Figure 7.8: Scenario1. (a) Multi-robot SLAM given paths determined in the first
planning session. The tiny dots represent a simplified environment in terms of landmarks,
some of which are being observed during SLAM. (b) Corresponding position covariance
evolution.
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Figure 7.9: Scenario1. Second planning session. (a) Candidate paths to the second
goal of each robot; (b) Chosen paths by the planning approach.
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Figure 7.10: Scenario1. (a) Multi-robot SLAM given paths determined in the second
planning session. The tiny dots represent a simplified environment in terms of landmarks,
some of which are being observed during SLAM. (b) Corresponding position covariance
evolution.

46



East [m]

-1500 -1000 -500 0 500 1000 1500

N
o

rt
h

 [
m

]

0

500

1000

1500

2000

2500

3

1

2

3

2

1

3

1

2

3

2

1

(a)

East [m]

-1500 -1000 -500 0 500 1000 1500

N
o

rt
h

 [
m

]

0

500

1000

1500

2000

2500

3

2

1

3

1

2

3

1

2

3

2

1

(b)

Figure 7.11: Scenario1. Third planning session. (a) Candidate paths to the second
goal for the red robot, and to the third goal of each other robot; (b) Chosen paths by
the planning approach.
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Figure 7.12: Scenario1. (a) Multi-robot SLAM given paths determined in the third
planning session. The tiny dots represent a simplified environment in terms of landmarks,
some of which are being observed during SLAM. (b) Corresponding position covariance
evolution.
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Figure 7.13: Scenario1. Fourth planning session. (a) Candidate paths to the third
goal of each robot; (b) Chosen paths by the planning approach.
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Figure 7.14: Scenario1. (a) Multi-robot SLAM given paths determined in the fourth
planning session. The tiny dots represent a simplified environment in terms of landmarks,
some of which are being observed during SLAM. (b) Corresponding position covariance
evolution.
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Figure 7.15: Scenario1. Running time comparison between the proposed and the
Standard approach. (a) running time for each planning session. (b) Time ratio.
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Figure 7.16: Scenario3. (a) Multi-robot SLAM given paths determined in the third
planning session. The tiny dots represent a simplified environment in terms of landmarks,
some of which are being observed during SLAM. (b) Corresponding position covariance
evolution.
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Chapter 8

Conclusion

We addressed the problem of decentralized belief space planning over high-dimensional

state spaces while operating in unknown environments. Since exact solution is computa-

tionally intractable, a common approach is to address this problem within a sampling

based motion planning paradigm, where each robot repeatedly considers its own candi-

date paths given the best paths (announced paths) transmitted by other robots. The

process is typically repeated numerous times by each robot either until convergence or

on a constant basis, with each time involving belief propagation along all candidate

paths. In this thesis we developed an approach that identifies and efficiently re-evaluates

the belief over only those candidate paths that are impacted upon an update in the

announced path transmitted by another robot. Determining the best path can therefore

be performed without re-evaluating the utility function for each candidate path from

scratch. We demonstrated in simulation our approach is capable of correctly identifying

and calculating belief evolution over impacted paths, and significantly reduces computa-

tion time without any degradation in performance. In future work, we are planning to

evaluate the developed approach in real world and realistic synthetic experiments.
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Appendix A

Additional Large Scale Scenarios

In addition to the large scale scenario from Section 7.2, we examined our approach in

two other related scenarios. Table 7.1 provides a description of these scenarios.

A.1 Scenario 2

In Scenario2, red and green robots have large uncertainty covariances at the beginning,

while the other two robots (blue and purple) have a small initial covariance as in

Scenario1. In this scenario all robots use MR factors within planning. Figures

A.1-A.4 provide the results for each planning session, while Figure A.5 shows running

time. As seen, the large uncertainties of the red and green robots are reduced due

to mutual observations with the blue robot, observations that were planned by the

proposed approach. As earlier, running time of the latter is significantly smaller than of

the Standard approach, while in both cases the same results are obtained.
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Figure A.1: Scenario2. First planning session. States of different robots are not
correlated. (a) Candidate paths to the first goal of each robot; (b) Chosen paths by the
planning approach. (c) Multi-robot SLAM given paths determined in the first planning
session. The tiny dots represent a simplified environment in terms of landmarks, some
of which are being observed during SLAM. (d) Corresponding position covariance
evolution.
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Figure A.2: Scenario2. Second planning session. (a) Candidate paths to the second
goal of each robot; (b) Chosen paths by the planning approach. (c) Multi-robot SLAM
given paths determined in the second planning session. The tiny dots represent a
simplified environment in terms of landmarks, some of which are being observed during
SLAM. (d) Corresponding position covariance evolution.
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Figure A.3: Scenario2. Third planning session. (a) Candidate paths to the third
goal for the purple robot, and to the second goal of each other robot; (b) Chosen
paths by the planning approach. (c) Multi-robot SLAM given paths determined in the
third planning session. The tiny dots represent a simplified environment in terms of
landmarks, some of which are being observed during SLAM. (d) Corresponding position
covariance evolution.
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Figure A.4: Scenario2. Fourth planning session. (a) Candidate paths to the third goal
of each robot; (b) Chosen paths by the planning approach. (c) Multi-robot SLAM given
paths determined in the fourth planning session. The tiny dots represent a simplified
environment in terms of landmarks, some of which are being observed during SLAM.
(d) Corresponding position covariance evolution.
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Figure A.5: Scenario2. Running time comparison between the proposed and the
Standard approach. (a) running time for each planning session. (b) Time ratio.
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A.2 Scenario 3

In Scenario3, all robots have small and identical covariances at the beginning, as

in Scenario1. However, in this scenario the robots do not use MR factors within

planning. Figures A.6-A.8 provide the results for each planning session, while Figure

A.9 shows running time.
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Figure A.6: Scenario3. First planning session. States of different robots are not
correlated. (a) Candidate paths to the first goal of each robot; (b) Chosen paths by the
planning approach. (c) Multi-robot SLAM given paths determined in the first planning
session. The tiny dots represent a simplified environment in terms of landmarks, some
of which are being observed during SLAM. (d) Corresponding position covariance
evolution.

58



East [m]

-1500 -1000 -500 0 500 1000 1500

N
o

rt
h

 [
m

]

0

500

1000

1500

2000

2500

3

1

2

3

1

2

3

2

1

3

1

2

(a)

East [m]

-1500 -1000 -500 0 500 1000 1500

N
o

rt
h

 [
m

]

0

500

1000

1500

2000

2500

3

1

2

3

2

1

3

2

1

3

1

2

(b)

East [m]

-2000 -1500 -1000 -500 0 500 1000 1500 2000

N
o

rt
h

 [
m

]

0

500

1000

1500

2000

2500

3

2

1

3

2

1

3

1

2

3

1

2

(c)

Pose index

0 5 10 15 20 25 30 35 40 45 50

P
o
s
it
io

n
 n

o
rm

 e
rr

o
r 

[m
]

0

5

10

15

20

25

30

35

40

45

50
Cov r4

Cov r3

Cov r2

Cov r1

(d)

Figure A.7: Scenario3. Second planning session. (a) Candidate paths to the second
goal of each robot; (b) Chosen paths by the planning approach. (c) Multi-robot SLAM
given paths determined in the second planning session. The tiny dots represent a
simplified environment in terms of landmarks, some of which are being observed during
SLAM. (d) Corresponding position covariance evolution.
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Figure A.8: Scenario3. Third planning session. (a) Candidate paths to the third goal
of each robot; (b) Chosen paths by the planning approach. (c) Multi-robot SLAM given
paths determined in the third planning session. The tiny dots represent a simplified
environment in terms of landmarks, some of which are being observed during SLAM.
(d) Corresponding position covariance evolution.
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Figure A.9: Scenario3. Running time for each planning session.
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planning assuming maximum likelihood observations. In Robotics: Science

and Systems (RSS), pages 587–593, Zaragoza, Spain, 2010.

[36] S. Prentice and N. Roy. The belief roadmap: Efficient planning in belief space

by factoring the covariance. Intl. J. of Robotics Research, 2009.

[37] C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based exploration

using rao-blackwellized particle filters. In Robotics: Science and Systems

(RSS), pages 65–72, 2005.

[38] J. Van Den Berg, S. Patil, and R. Alterovitz. Motion planning under uncer-

tainty using iterative local optimization in belief space. Intl. J. of Robotics

Research, 31(11):1263–1278, 2012.

65





המסלולים עבור מתבצע ההסתברותי המרחב חישוב .(Announced path) הנבחר המסלול נקרא

הממצה, לשיטה בניגוד וזאת הרובוטים, שאר של הנבחרים המסלולים בהינתן הרובוט של המועמדים

הנפוצה שהשיטה למרות הרובוטים. שאר של המועמדים המסלולים כל עבור מתבצעים החישובים בה

מקרים עבור במיוחד חישובית, יקרה להיות יכולה זו שיטה הממצה, מהשיטה חישובית חסכונית יותר

על הסתברותי, המרחב של חישוב מתבצע עבורם מועמדים מסלולים הרבה מייצר רובוט שכל כך

כמו זה מסוג שיטות שלו. הנבחר המסלול את מעדכן הרובוטים שאחד אחרי המטרה, פונקצית פי

מחדש. המועמדים המסלולים את מחשב הרובוט איטרציה כל הנפוצה, השיטה

המסלולים את רק ועדכון זיהוי ידי על הנבחר המסלול שיטת את לייעול שיטה פיתחנו זו בתיזה

נבחר במסלול חדש נבחר מסלול החלפת כלומר הנבחר, המסלול של מההחלפה כתוצאה שמושפעים

צומת, כל עבור והחדש. הישן הנבחרים, המסלולים של הצמתים על רק מסיירים אנו (קודם). ישן

(Vinv) מעורבים צמתים שנקראים לבחירה, במסלולים שנמצאים המושפעים הצמתים את מסמני אנו

רק מחשבים אנו אילוץ כל עבור בהתאמה. ולהוריד להוסיף שצריך האילוצים את עבורם ומחשבים

העדכון את מחשבים אנו מחדש. חישוב ללא הקודמת, מהאיטרציה ולחסר להוסיף שיש העדכון את

ללא המסלולים כלומר מושפעים, שלא למסלולים בנוסף הנבחר. המסלול משינוי כתוצאה שנובע

שלנו השיטה מסלולים. אותם כל בשביל בלבד אחד חישוב מחשבים אנו איטרציה, באותה אילוצים,

המעורבים, הצמתים בעזרת שהושפעו המסלולים של המידע עדכון את לפעפע שניתן כך על מבוססת

חישובית יעילה שהיא לאופטימזציה שיטה לאחרונה פותחה הרובוטיקה בעולם קודם. שהוסבר כפי

מאד יעיל חישוב בשביל גרף פקטור גרפי, מודל של היכולות עם הזאת בשיטה משתמשים אנו .iSam

לחישוב הנדרש כלי הוא גרפי המודל המסלולים. של המחיר פונקצית פי על הסתברותי המרחב של

שהושפע. מסלול לכל העדכון

עושים הם כאשר בניהם, התחלתית קורלציה אין שלרובוטים הנחנו התרחישים, של הראשון בחלק

קורלציה. קיימת בהם מקרים עם מתמודדת עדיין שלנו השיטה אך המסלולים, של וחישוב תכנון

הגישה המסלולים. כל לעדכון קירוב מפעיל האלגוריתם מסויימים, בתנאים קורלציה, יש בהם במקרים

את ולחשב כמושפעים, הנבחרים המסלולים כל את קורלציה יש בו מקרה כל לסמן הייתה הנאיבית

על הקורלציה של חזקה השפעה יש כאשר רק שלנו, בשיטה זאת, לעומת שלהם. הסתברותי מרחב

המרחב את ומחשב כמושפעים, הנבחרים המסלולים כל את מסמן האלגוריתם הנבחרים, המסלולים

הקירוב, ומכאן בחישובים, הקורלציה את יכליל לא האלגוריתם חלשה, ההשפעה כאשר הסתברותי.

הקודמת. בפסקה כמו שינוי ללא הנבחרים המסלולים את ונחשב

רובוטים, 4 ל 2 בין נמצאים בהם תרחישים יצרנו סינטטית. בסימולציה שלנו הגישה את מציגים אנו

בסביבה אליהם. לנווט צריך הוא אשר ומטרות התחלה נקודת הייתה רובוט לכל ידועה. לא בסביבה

נעים היו הרובוטים מסלול תכנון אחרי וכן בהתחלה, לרובוט ידועים היו לא אשר עצמים היו עצמה

.SLAM ביצוע כדי תוך המטרות לעבר

השיטה לבין שלנו השיטה בין זמנים השוונו תרחישים. מספר כלל אשר מעמיק ביצועים חקר ביצענו

ובמקרים שניים, מפי ביותר מהירה יותר שלנו השיטה השונים התרחישים כל עבור הסטנדרתית.

.8 פי עד מסויימים
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תקציר

מבוזרת במערכת אקטיבי לניווט הסתברותי מרחב תכנון של חדשה גישה מפתחים אנחנו זו בתיזה

לפתור צורך יש ידועה, לא בסביבה נמצאים הרובוטים כאשר ידועה. לא בסביבה פלטפורמות מרובת

במקביל הבעיות את לפתור צורך יש ומיפוי. הרובוט של המיקום שיערוך אחת: בבת בעיות שתי

במפה העצמים מיקום את לדעת צורך יש הרובוט, מיקום את לשערך כדי הדדית. תלויות שהן מכיוון

אנו ולכן מדוייק, יותר הרובוט מיקום את לדעת יש במפה העצמים את לשער וכדי מדוייק, יותר

.(SLAM) Simultaneous Localization and Mapping כ ידועה זו בעיה בו־זמנית. אותן פותרים

גרפי במודל הבעיה. את למדל כדי ,(Factor Graph) גרף פקטור הנקרא גרפי במודל משתמשים אנו

בסביבה. העצמים ומיקום הרובוט מיקום למשל בבעיה, האקראיים הנעלמים את מסמלים הצמתים

שני בין מרחק של אילוץ לדוגמא, הללו. אקראיים נעלמים בין האילוצים את מסמלות הקשתות

משתנה עם מרחק חיישן של אילוץ היא נוספת דוגמא אודומטריה). (לדוגמא הרובוט, של מצבים

בסביבה. העצמים של מיקום ומשתנה הרובוט מיקום

מסלול לתכנן צריך הרובוט ולכן ידועה, לא בסביבה אקטיבי מסלולים בתכנון עוסקים אנו זו בתיזה

להפוך רוצים אנו אינסופי. הוא בסביבה לנוע יכול הרובוט בהם המסלולים מספר אוטונומי. באופן

יוכל הרובוט כלומר בסביבה, אפשרויות של סופי במספר לנוע יוכל שהרובוט כך לבדידה הסביבה את

הנקודות את דוגמת אשר ,PRM בשם דגימה בשיטת משתמשים אנו נבחרים. במקומות רק לנוע

צמתים עם מפה נוצרת לשנייה. אחת קרובות נקודות ומחברת רנדומלי באופן ידועה הלא בסביבה

בו המסלול את מסמלות והקשתות בהם, להמצא יכול הרובוט אשר המיקום את מסמלים אשר

לעצמו לייצר יכול הרובוט סיום, ונקודת התחלה נקודת בהינתן לצומת. מצומת לנוע יכול הרובוט

המטרה. פונקצית סמך על ביותר הטוב מסלול לבחור ומתוכם מסלולים מספר

רובסטי, יותר ניווט הוא היתרון כאשר רובוטים, מספר בין פעולה בשיתוף מתמקדים אנו זה במחקר

דגימה שיטת על מבוססת שלנו הגישה מדוייק. יותר בסביבה עצמים ומיקום עצמי מיקום שיערוך

מסלולים נקראים אשר מסלולים, מספר מייצרים רובוטים כאשר הקודמת, בפסקה שמוסברת PRM

המטרה. פונקציית סמך על טוב הכי המסלול את מהם ובוחרים מועמדים,

כל זו, בשיטה .(Exhaustive) הממצה השיטה נקראת אלו מסלולים לבחור האופטימלית השיטה

מאד יקרה זו שיטה השונים. הרובוטים בין בשונים המסלולים בין האפשרויות כל את מחשב רובוט

נקראת אשר הקודמת, לשיטה תת־אופטימלי פתרון היא יותר מקובלת נוספת, שיטה חישובית.

רובוט, כל איטרציה, שבכל כך איטרטיבית, זו שיטה .(Announced path) הנבחר המסלול שיטת

האקראיים הנעלמים עבור הסתברותי הפילוג את כלומר ,(Belief) הסתברותי המרחב את מחשב

המסלול את הרובוט בוחר הנוכחית, באיטרציה החישוב לאחר מטרה. פונקצית פי על הרובוט של

זה מסלול הרובוטים. לשאר זה מסלול ושולח המטרה פונקצית פי על כה עד שמצא ביותר הטוב
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בפקולטה אווירונאוטיקה, להנדסת מפקולטה אינדלמן ואדים פרופ״מ של בהנחייתו בוצע המחקר

לישראל. טכנולוגי מכון ־ בטכניון המחשב למדעי

תודות

כיוונים הציע גם אלא רלוונטיים, נושאים על והסביר הדריך רק שלא שלי, למנחה להודות רוצה אני

לתיזה. בהגעה רבות לי ועזרו הדרך, אורך לכל בי שתמכו אשר ולהורי למשפחתי במחקר. חדשים

אשר והצעות, מעניינים רעיונות לי נתנו קבוע באופן אשר המעבדה, לחברי בנוסף להודות רוצה אני

רוצה אני ולבסוף המצגות. של בתוכן ושיפור בעיצוב במיוחד שלי, החשיבה כיוון את שינו מהם חלק

לימודי. במשך השנים במהלך רכשתי אשר חברים למגוון להודות

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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