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Abstract

One of the most complex tasks of decision making and planning is to gather information. This

task becomes even more complex when the state is high-dimensional and its belief cannot

be expressed with a parametric distribution. Although the state is high-dimensional, in many

problems only a small fraction of it might be involved in transitioning the state and generating

observations. We exploit this fact to calculate an information-theoretic expected reward, mutual

information (MI), over a much lower-dimensional subset of the state, to improve efficiency and

without sacrificing accuracy. A similar approach was used in previous works, yet specifically

for Gaussian distributions, and we here extend it for general distributions. Moreover, we apply

the dimensionality reduction for cases in which the new states are augmented to the previous,

yet again without sacrificing accuracy. We then continue by developing an estimator for the

MI which works in a Sequential Monte Carlo (SMC) manner, and avoids the reconstruction of

future belief’s surfaces. Finally, we show how this work is applied to the informative planning

optimization problem. This work is then evaluated in a simulation of an active SLAM problem,

where the improvement in both accuracy and timing is demonstrated.
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Abbreviations and Notations

POMDP : Partially Observable Markov Decision Process

SLAM : Simultaneous Localization and Mapping

SMC : Sequential Monte Carlo

IG : Information Gain

MI : Mutual Information

X0 : prior state vector (when planning starts); also referred to as X

Xt : state vector at future time t; also referred to as X′

xt : new state augmented to Xt at time t

Xin : subset of X0 with variables involved in future factors

X¬in : subset of X0 with variables not involved in future factors

Xnew : subset of Xt representing new augmented variables

z1:t : realization of future observation sequence up to time t

Z1:t : future observation sequence up to time t as a random variable

a0:t−1 : candidate future action sequence up to time t

ht : history up to time t

PT : probabilistic transition model

PZ : probabilistic observation model

PT : sequential transition model

PZ : sequential observation model

η−1 : sequential normalizer

b [X] : belief of state vector X, its probability density function

J (·) : objective function

ρt : belief-based reward at time t

H [·] : differential entropy

IG [·] : information gain

IGaug [·] : augmented information gain

I [·] : mutual information

Iaug [·] : augmented mutual information
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Chapter 1

Introduction

Planning under uncertainty is of most importance for many applications. Our world is stochastic

in nature, thus for every inference and planning task this stochasticity needs to be taken into

account, or catastrophes may occur.

Addressing stochasticity can be done in many levels. At the simplest level, the stochasticity

is only being considered at the inference phase, while at planning the state is treated as if it

is completely deterministic. In one of the next levels, stochasticity is also being considered

within planning, however the planner is considered to reach the goal without caring about the

uncertainty of the state. In one of the top levels, the uncertainty of the state also needs to be

measured. For example, if the plan is to reach a goal state with some minimum probability or if

the plan is to purely gain as much information as possible about the state. Such an approach,

where we select a sequence of actions based also (or only) upon the certainty of the state, is

known as informative planning. For instance, a task which is considered as informative planning

is search and rescue, where in the ”search” phase an exploration of unknown terrains might be

done.

There are a few measures for the uncertainty of a state, which we will refer to as information-

theoretic costs or rewards. A very common such cost is entropy. Yet, for many applications we

wouldn’t be interested in the absolute value of the uncertainty, but rather by how much we expect

it to be reduced, or in other words how much information is to be gained. Such a reward is called

Information Gain (IG). Also, since the state is not always directly observable, observations

are used. But when evaluating the future, observations themselves are also unknown, thus

the uncertainty of these should also be taken into account. Consequently, we consider Mutual

Information (MI), which is the expected IG over the observations. We note that the reader might

find that some parts of the literature refer to MI also as IG, but as in the artificial intelligence

literature, we distinct between the two terms in this thesis.

Naturally, by increasing the dimension of the problem, the complexity of evaluating

information-theoretic terms is increased as well. This relation is exponential (known as the

Curse of Dimensionality), making the solution intractable.
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(a) (b)

Figure 1.1: A toy example of an active SLAM problem, where a drone has to choose between two actions. (a) As a 2D map:
stars represent drone’s poses; dots represent landmarks; big circles are drone’s eye of sight from future poses. (b) As a factor
graph: circles represent variable nodes; dots represent factors (probabilistic constraints); the unity of all solid-circled variable nodes
represent the prior state X0. In both figures, colors partition between involved, uninvolved and new (future) variables.

1.1 Related Work

Reviewing state-of-the-art approaches for planning with non-Gaussian (non-parametric) beliefs,

most do not attempt to address the problem of evaluating the uncertainty of a state (e.g. [8,

9, 14–16, 20, 21]). These works consider the POMDP framework, which does not support

belief-dependent rewards. The recent approaches presented in e.g. [24] and [7], do support

belief-dependent rewards, by using the more general ρ-POMDP framework and simulating

particle sets in a MCTS fashion to construct a search tree. [17] uses GMMs to represent non-

Gaussian beliefs and relaxes assumptions regarding data association. Yet, while these are

concerned with improving the search over a tree or relax assumptions, the calculation of the

information-theoretic terms when the state is high-dimensional remains a problem.

Many estimators exist for information-theoretic rewards. A brief overview of the most

common estimators for entropy can be found in [1]. Another approach to estimate entropy, a

particle-filter based approach, is presented in [2]. Furthermore, [19] suggests to use a piece-wise

linear approximation of the beliefs’ surface. Yet, all will face the Curse of Dimensionality.

The work presented in [23] claims to support high-dimensional spaces, however it requires a

minimum number of samples dependent on the dimension. Also, simulations show this approach

isn’t superior in terms of accuracy for any arbitrary belief compared to other approaches.

When changing the context a bit, and looking at an expected reward, mutual information, [3]

and [25] both state that the MI over a multi-dimensional variable can be calculated over a lower

dimensional subset of this variable. Yet their statements are applied specifically for the problems

of feature matching and active mapping, respectively. Also, these do not address problems in

which quantifying the information should also take into account the state might change.

There are two works which, at some level, construct planners with an information-gathering

task and which support high-dimensional non-Gaussian beliefs with complexity not exponential

with the dimension of the state, yet do not support the more general setting we are addressing in

this thesis. One of which is [22], addressing the very specific active SLAM problem. It exploits
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the unique structure of SLAM to use Rao-Blackwellization, which might not be useful for more

general problems. Also, it approximates the joint entropy by averaging the individual entropies

of the state variables, thus breaks up the correlations between them.

The second work is [18], which uses a slightly different and more specific formulation than

the general POMDP, where the objective is to minimize the expected cost. In its formulation, the

objective is to reach a desired region of the state space with a guaranteed minimum probability of

success. This, in turn, means that it wouldn’t necessarily choose the most informative path. Also,

it does not support, at least directly, information-theoretic rewards. And, lastly, this approach

was eventually tested only on problems with up to four dimensions.

Assuming Gaussian distributions, [11] discovered that there are cases in which the corre-

lations between some of the state variables could be discarded for the calculation of entropy

without sacrificing accuracy. This, in turn, means that efficiency is improved. This idea was

extended to more general cases by [4] and [13].

To the best of our knowledge, there are no existing approaches which deal with the painful

and critical issue of calculating information-theoretic terms in general ρ-POMDPs with high-

dimensional non-Gaussian beliefs. Our approach aims to extend the works of [4] and [13] to

general non-Gaussian distributions in order to fill this void.

1.2 Contributions

In this thesis we propose a novel approach to fill the above gap. By exploiting structure inherent

in many planning problems, we break the relation between the dimension of the problem and

the complexity of calculating the information-theoretic terms. Fig. 1.1a shows a toy example of

a 2D active SLAM problem to illustrate the structure our approach exploits. An aerial drone

observes landmarks from above with a certain sensing range. At current time it needs to choose

between two actions. While the state is high-dimensional because it contains many landmarks,

we observe that only a few landmarks might be observed at future time, and we will denote these

landmarks as the involved variables. The key idea of our approach is to discard the uninvolved

landmarks at planning time for the calculation of the expected reward, MI, although these are

impacted as well. We prove that by discarding these variables, the solution is still exact, yet the

dimension (and thus the complexity) of the problem is reduced dramatically. Furthermore, a

naive approach entails also explicit estimation of future beliefs’ surfaces, which adds yet another

level of errors. Another key contribution of our approach is that it allows skipping this step by

having access to the problem’s models. We finalize by showing how these contributions can be

used together with existing belief tree solvers.

1.3 Organization

This thesis is organized as follows.

1. Chapter 2 introduces the informative planning problem, and gives a formal statement of

it.
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2. Chapter 3 describes our approaches involve-MI and MI-SMC and their relation to the

informative planning problem.

3. Chapter 4 presents experimental results, evaluating the proposed approach and comparing

it against current approaches.

4. Conclusions are drawn in Chapter 5.

5. For purpose of simplicity, proofs are given in the Appendix in Chapter 6.
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Chapter 2

Notations and Problem Formulation

2.1 POMDPs

A Partially Observable Markov Decision Process (POMDP) is modeled as a tuple

⟨X,A,Z, b [X0] ,PT ,PZ , r⟩, where X is the state space, A is the action space, and Z is the

observation space; b [X0] ≜ P(X0) is the prior belief over the state, PT is the probabilistic

transition model, and PZ is the probabilistic observation model; r (Xt, at) is an immediate reward

function.

The prior belief and probabilistic models are used in the inference layer for determining

future posterior beliefs. The belief over the state Xt at time t is defined by

b [Xt] ≜ P(Xt | ht), (2.1)

where ht = {a0:t−1, z1:t} is the history, containing all actions a0:t−1 and observations z1:t acquired

up to time t. The transition model PT ≜ P(xt | Xtr
t−1, at−1) defines the distribution of the successor

state xt, given a subset of its previous state Xtr
t−1 ⊆ Xt−1 participating in the transition, and the

chosen action at−1. In this paper, we use the smoothing formulation, where the successor state

is augmented to the previous, thus constructing the joint successor state Xt = {Xt−1, xt}. This

formulation means that the state’s dimension increases in time.

The observation model PZ ≜ P(zt | Xobs
t ) defines the conditional distribution of receiving

an observation zt, given a subset of the state Xobs
t ⊆ Xt which participates in generating the

observation.

For example, in the case of active (full) SLAM, the state is defined as the union of all poses

and landmarks. The transition model can be formulated between two consecutive poses, and the

observation model can be formulated such that an observation is generated given the last pose

and a specific landmark. This example is illustrated in the factor graph in Figure 1.1b, where

p refers to poses, l to landmarks and the factor nodes represent the probabilistic constraints

between the variables, given with the motion and observation models.
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Using Bayes’ rule and the chain rule, the belief can be defined recursively as

b [Xt] =
P(xt | Xtr

t−1, at−1)P(zt | Xobs
t )

P(zt | ht)
b [Xt−1] , (2.2)

and, more generally, for 0 ≤ l < t the belief can be formulated as

b [Xt] =

∏t
i=l+1 P(xi | Xtr

i−1, ai−1)
∏t

j=l+1 P(z j | Xobs
j )∏t

k=l+1 P(zk | hk)
b [Xl] . (2.3)

Denoting the sequential transition model, observation model and normalizer, respectively, as

PT ≜
t∏

i=l+1

P(xi | Xtr
i−1, ai−1)

PZ ≜
t∏

j=l+1

P(z j | Xobs
j )

η−1 ≜
t∏

k=l+1

P(zk | h−k ),

(2.4)

where h−k ≜ hk \ zk. The belief is then formulated, in short, as

b [Xt] = ηPTPZb [Xl] . (2.5)

The tasks of the planning scheme are represented with the immediate reward function r (Xt, at).

Obviously, each planning task might involve multiple different (and sometimes contradicting)

tasks, such as energy consumption and time to reach a goal, thus the reward functions might be

shaped with multiple different terms. As will further be explained, the reward in our formulation

must also express information-gathering tasks, which in turn means that the reward has to be

belief-dependent. Thus, we use ρ-POMDP, an extension of POMDP, whose reward at each time

t is ρt ≜ ρ (b [Xt] , at).

Planning T steps into the future, the objective is then to find an action sequence a0:T−1 which

maximizes the expected sum of rewards, denoted as the objective function

J (b [X0] , a0:T−1) = E
Z1:T

[
T−1∑
t=0

ρt + ρT

]
, (2.6)

where Z1:T is the sequential space of future observations and ρT ≜ ρ (b [XT ]) is a terminal

reward. As will further be explained, our approach is based upon evaluation of the expected

rewards rather than the rewards themselves. Due to commutativity, the objective function can

also be defined as the sum of expected rewards

J (b [X0] , a0:T−1) =
T−1∑
t=0

ï
E
Z1:t

[
ρt
]ò
+ E
Z1:T

[
ρT

]
. (2.7)
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We note that while the problem is formulated with an open loop formulation, our approach

is not limited to it alone. Since the approach focuses on evaluating the (expected) rewards in

the objective function, it also supports a close loop formulation, in which the objective is to

find a policy π rather than an action sequence. This, in turn, means that each action at becomes

a function of the belief b [Xt], thus is not determined beforehand. Focusing on the objective

function evaluation also means that other building blocks of the planning task, such as the

inference engine and the optimization solver, can be chosen independently.

We now return to explain that the reason we have formulated our problem as ρ-POMDP

is that we focus on planners which contain information-gathering tasks (among other tasks).

Arguably, evaluating the information-theoretic terms involves the heaviest calculations of the

objective function.

2.2 Information-gathering tasks

We start by introducing some known information-theoretic terms for the simple case in which

the state is static, i.e. Xt = X̃, ∀t. A commonly used information-theoretic reward is negative

(differential) entropy. The entropy of the state X̃ ∈ X, distributed with P(X̃), is defined as

H
[
X̃
]
≜ −

∫
X

P(X̃) logP(X̃)dX̃. (2.8)

Getting an observation z̃ ∈ Z, without transitioning the state, yields

H
[
X̃ | Z̃ = z̃

]
≜ −

∫
X

P(X̃ | Z̃ = z̃) logP(X̃ | Z̃ = z̃)dX, (2.9)

where Z1:t = Z̃ represents the observation sequence as a random variable. The expected reward,

referred to as conditional entropy, is then defined as

H
[
X̃ | Z̃

]
= E
Z

î
H

[
X̃ | Z̃ = z̃

] ó
= −

"
X,Z
P(X̃, Z̃) logP(X̃ | Z̃)dX̃dZ̃. (2.10)

Another commonly used information-theoretic reward is information gain (IG), which quantifies

the amount of information gained for a certain variable by knowing the value of another variable.

It is defined as the difference between the entropy prior to this additional knowledge and the

entropy afterwards

IG
[
X̃; Z̃ = z̃

]
≜ H

[
X̃
]
−H

[
X̃ | Z̃ = z̃

]
. (2.11)

Similarly to the entropy case, we introduce the expected reward of IG, which is referred to

as the mutual information (MI). It can also be defined as the difference between the entropy of

the state and the expected entropy of the state given the new observation

I
[
X̃; Z̃

]
≜ E
Z

î
IG

[
X̃; Z̃ = z̃

] ó
= H

[
X̃
]
−H

[
X̃ | Z̃

]
. (2.12)

For the case where the state changes between time steps, as presented in the previous section,
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the original definitions of IG and MI are insufficient, since these do not account for the additional

uncertainty obtained by changes in the state. Thus, we define the reward more generally as the

difference between the entropies of the prior state X0 and the successor state Xt. We remind that

in our formulation the posterior state is augmented, i.e. Xt = {X0, x1:t}, thus we will refer to this

reward as augmented IG, defined at each time t as

IGaug [X0 ⊞ x1:t; Z1:t = z1:t | a0:t−1] ≜ H [X0] −H [Xt | Z1:t = z1:t, a0:t−1]

= H [X0] −H [X0, x1:t | Z1:t = z1:t, a0:t−1] ,
(2.13)

where Z1:t represents the observation sequence as a random variable, and the symbol ⊞ provides

a distinction between the prior state X0 and the new, augmented subset x1:t of the successor state

Xt. This distinction is necessary since x1:t only appears in the posterior entropy term, while X0

appears in both terms. The corresponding expected reward, augmented MI, is then defined at

each time t as

Iaug [X0 ⊞ x1:t; Z1:t | a0:t−1] ≜ E
Z1:t

î
IGaug [X0 ⊞ x1:t; Z1:t = z1:t, a0:t−1]

ó
= H [X0] −H [Xt | Z1:t, a0:t−1] .

(2.14)

Note that augmented IG and augmented MI converge to IG and MI, respectively, when there is

no change in the state, i.e. x1:t = ∅ and Xt = X0. Thus, augmented IG and augmented MI can be

considered as generalizations of IG and MI.

For the purposes of planning, since negative entropy and augmented IG differ only by the

value H [X0], which is constant for each action, using any of these as rewards is equivalent.

We further continue to present our approach by choosing augmented IG as the reward, ρt =

IGaug [X0 ⊞ x1:t; Z1:t = z1:t | a0:t−1] (for the terminal reward as well), which dictates that the

expected reward is augmented MI. The basis of our approach focuses on ion of the augmented

MI, thus we will present it over the augmented MI at time t alone. Naturally, it will apply

for the entire horizon. For readability, we denote the prior state as X = X0, the state at time

t as X′ = Xt = {X0, x1:t} and the augmented part of the state as Xnew = {x1:t}. Also, the future

observations sequence up to time t is denoted as Z = {Z1:t} and its space is denoted asZ = {Z1:t}.

Lastly, we omit the conditioning over future actions. The augmented MI definition (2.14) then

becomes
Iaug [X ⊞ Xnew; Z] ≜ H [X] −H

[
X′ | Z

]
= H [X] −H [X, Xnew | Z] .

(2.15)

The evaluation of any of the presented information-theoretic terms involves integration

over the state-space, thus we might face the Curse of Dimensionality when the state is high-

dimensional.
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2.3 Non-parametric entropy estimation

For any of the presented information-theoretic terms, one possible calculation scheme is to

go through calculation of entropy. Having a non-parametric belief over a state X ∈ RD, it is

usually approximated by a weighted particle set {(X(i),w(i))}Ni=1 with normalized weights, where

X(i) is the i-th particle, w(i) is the weight of the i-th particle, and N is the number of particles.

The Curse of Dimensionality in this case means that in order to have sufficient resolution to

represent the belief, the number of particles N needs to be exponential in the dimension D, i.e.

N ∝ αD where α ≥ 1. The entropy in this case is approximated as well using this particle set,

and thus will suffer from the Curse of Dimensionality as well, as will further be shown. Several

entropy estimators exist in literature, each has its own advantages and disadvantages compared

to the others. The most well-known estimators can be found in [1]. One of these estimators, for

example, is the re-substitution estimator, for which the entropy is estimated as

Ĥ [X] ≜
N∑

i=1

w(i) log b̂
[
X(i)] , (2.16)

where b̂ [X] is an approximation of the belief obtained by a probability distribution estimator

such as Kernel Density Estimator (KDE). The computational complexity of calculating entropy

with the re-substitution estimator with KDE is O
(
N2D

)
. Another estimator, presented in [23],

performs k-d partitioning of the state-space, and thus achieves a complexity of O
(
N log N

)
.

There are many more estimators, such as estimators which are based on nearest-neighbor or

mn-spacings, however analyzing these is outside the scope of this work.

Although the complexity of the presented estimators might not seem to have an exponential

relation to the state’s dimension D, or any relation at all, we remind that N should be exponential

with D in order to get an accurate enough estimation, thus the complexity of any estimator is

exponential with the dimension D, even if not explicitly.
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Chapter 3

Approach

Our work includes multiple contributions when approaching the problem of informative planning

with high-dimensional non-Gaussian beliefs. These will be presented in different sections. Our

first contribution is an exact mathematical derivation which shows that the dimension of the

belief-space can be reduced for the calculation of MI by only exploiting the structure of the

problem. We then generalize this conclusion for augmented MI. It thus provides a solution to

the curse of dimensionality. We refer to this part of the approach as involve-MI. As our second

contribution, we derive a method that allows to avoid the explicit reconstruction of the beliefs’

surfaces usually required for the augmented MI calculation. We then use this to construct an

estimator, which we refer to as MI-SMC. In the last section, we show how involve-MI and

MI-SMC can be used together with existing solvers of the informative planning problem, more

specifically tree-based solvers.

3.1 Dimensionality reduction for MI calculation

We aim at reducing the complexity of calculating the MI over a high-dimensional state X ∈ RD,

where D ≫ 1, distributed with a non-Gaussian belief. As the dimension increases, the number of

samples required to get the same accuracy, and thus the complexity, exponentially increases. So,

more specifically, the key idea of our approach is to reduce the dimensionality of the problem

by exploiting its structure. As in the works [4, 13], it starts by dividing the high-dimensional

prior state into two subsets, such that X =
{

Xin, X¬in
}

. We remind that only subsets of the state

participate in the probabilistic transition and observation models, PT and PZ , respectively. The

same also applies for the sequential counterparts, PT and PZ , defined in (2.4). Thus, Xin ∈ Rd,

which we will refer to as the involved subset of the state, is defined as a union of all variables

in the prior state X = X0 which participate in generating future state transitions and future

observations

Xin =

[
t⋃

i=1

î
Xtr

i−1 ∪ Xobs
i

ó]
∩ X. (3.1)

where the intersection with the prior state X is to emphasize that while the subsets Xtr
i−1 and Xobs

i

might also include new augmented variables Xnew, which are inherently involved, our definition
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of Xin is that it is a subset of the prior alone.

To make this definition clearer, we will explain with a specific example. Consider a multi-

dimentional prior state of a robot X = {x0, x1, x2, l1, l2}, where x and l resemble poses and

landmarks, respectively. A specific action leads to generating a new pose x3, and observing two

landmarks, one of them is a previously observed landmark l1 and the second is a new landmark

l3. The successive state then becomes X′ = {x0, x1, x2, x3, l1, l2, l3}. The involved subset of the

state, on the other hand, is Xin = {x2, l1}. This is since x2 directly participates in generating x3

(motion), and l1 directly participates in generating an observation. Both are states in the prior.

Although x3 and l3 also directly participate in generating the new factors, these are considered

as new variables, thus are not a part of the involved subset, as we have defined it.

The involved subset is usually very small compared to the dimension of the entire state, i.e.

d ≪ D, a fact which is of key importance in our approach. Determining the involved subset is

done heuristically, as is naturally done when transitioning and generating future measurements.

This idea is also illustrated in a SLAM example in Figure 1.1a. In this example, the involved

variables are the prior pose and observed landmarks.

We note that working with the expected reward (MI) rather than the reward itself (IG)

entails two underlying assumptions for our approach. The first is that data association for future

observation sequences is known and perfect. The second is that all realizations of the future

observation sequence share the same structure (per action), or in other words, we assume we

have only one future factor graph structure per action. We conjecture these assumptions can be

relaxed, yet this is outside the scope of this research.

Phase 1: MI

We will start by analyzing a degenerate problem, for which the state X̃ is static or already

transitioned, and we only wish to quantify the expected amount of information the future

observations Z̃ will add. We then define X̃in as just the union of all variables in the state which

participate in generating future observations. In this case, we get back to the original MI

definition in eq. (2.12).

Theorem 3.1. Let X̃ be some state and Z̃ be an observation sequence (multivariate random

variable) over a subset of this state, X̃in ⊆ X̃, such that the observation model is P(Z̃ | X̃) ≡

P(Z̃ | X̃in). Then,

I
[
X̃; Z̃

]
= I

[
X̃in; Z̃

]
. (3.2)

The proof of this theorem, as well as the following theorems, lemmas and propositions, is given

in the appendix.

In words, Theorem 3.1 states that the expected information the observations entail over the

state X is exactly the expected information they entail over the involved variables Xin alone.

The result of Theorem 3.1 is also illustrated as an information diagram in Figure 3.1. Note

that discarding (marginalizing out) the subset X̃¬in ≜ X̃ \ X̃in (blue circle) does not affect the

calculation since the shaded area we are calculating remains the same.
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Figure 3.1: Illustration of the static (non-augmented) problem as an information diagram. The area of each circle represents the
entropy value of a subset of variables. The mutual areas represent the MI values between these subsets. The key idea, obtained
by Theorem 3.1, is that there is no mutual area between X̃¬in and Z̃ given X̃in. The gray area is the MI value we are calculating,
I
[
X̃in; Z̃

]
.

While this conclusion might remind the one in [13], which considered only the Gaussian

case, it can be viewed as a non-trivial extension to an arbitrary distribution. Specifically,

Theorem 3.2 states that in expectation the IG and its involved counterpart are exactly equal,

no matter how the belief is distributed. Although the most general motivation is to reduce the

complexity of calculating the reward itself, going further in this thesis, we will also show that

for ρ-POMDP this issue is immaterial.

Remark: We would like to note that [3], for the more specific case of feature selection, has

come to an analogous conclusion. In that work, the variables were features. The probability

distribution was then approximated as a tree, in which the nodes are the features and the vertices

are dependencies between these features. Then, the authors concluded that the MI a node in

this tree is predicted to provide to the rest of the nodes in this tree is equivalent to the MI it is

predicted to give to its neighbors alone. This conclusion can of course be generalized to any tree.

Our problem can be formulated as well as a tree, in which the nodes are X̃¬in, X̃in and Z̃, since

there is no dependence between X̃¬in and Z̃, thus we could have used the above conclusion to

prove Theorem 3.1. The works [12] and [25] has also come to an analogous conclusion, yet

again the context of these works, active mapping, is very specific. We also note none of these

works deal with the more general case of augmentation, about which we discuss next.

Phase 2: augmented MI

Continuing with our initial problem formulation, in which the state is transitioned (augmented,

more specifically) and we wish to also take into account the uncertainty this transitioning has

introduced, we return to the augmented MI definition in eq. (2.15).

Lemma 3.1.1. Let X be some prior state, and X′ = {X, Xnew} be a successor state, where Xnew

is the augmented subset of the successor state. Let Z be an observation sequence (multivariate
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(a) (b)

Figure 3.2: Illustration of the augmented problem as an information diagram. The area of each circle represents the entropy value
of a subset of variables. The mutual areas represent the MI values between these subsets. The key idea, obtained by Theorem 3.2,
is that there is no mutual area between X¬in and both Xnew, Z given Xin. The dark gray area in (a) is I

[
Xin, Xnew; Z

]
, the light gray

area in (b) isH
[
Xnew | Xin]. Subtraction of the dark gray area by the light gray area yields the augmented MI.

random variable) over this successor state. Then, the relation between MI and augmented MI is

Iaug [X ⊞ Xnew; Z] = I [X, Xnew; Z] −H [Xnew | X] . (3.3)

In words, the difference between the two MI variants is the expected uncertainty obtained directly

from transitioning the state. Using this Lemma, we then get a generalization to Theorem 3.1.

Theorem 3.2. Let X be some prior state, and X′ = {X, Xnew} be a successor state, where

Xnew is the augmented subset of the successor state. Let Z be an observation sequence (mul-

tivariate random variable) over a subset of the successor state,
{

Xin, Xnew
}
⊆ X′, such that

P(Z | X, Xnew) ≡ P(Z | Xin, Xnew). Then,

Iaug [X ⊞ Xnew; Z] = Iaug
[
Xin ⊞ Xnew; Z

]
. (3.4)

Meaning that the same conclusion we have got for the unaugmented case applies also for the

case of augmentation. As in the static case, the result of Theorem 3.2 is also illustrated as an

information diagram in Figure 3.2. Also here, when discarding (marginalizing out) the subset

X¬in ≜ X \ Xin (blue circle) it does not affect the calculation since the shaded areas we are

calculating remain the same.

The involved variables depend on the specific action and its observations. Reasoning about

the exact involved variables of each action and marginalizing out the uninvolved variables

for each action might be costly operations which will eventually make this whole approach

worthless. It is easy to show that if we choose a subset Xin+ which contains the involved

variables but might also contain some other uninvolved variables, so that Xin ⊆ Xin+ ⊆ X, then

Theorem 3.2 can be written more generally as

Iaug [X ⊞ Xnew; Z] = Iaug
[
Xin+ ⊞ Xnew; Z

]
, (3.5)

meaning that it is sufficient to choose a subset containing the involved rather than only the
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involved. This subset has larger dimensions, yet it might still be much smaller in dimensions

compared to the whole state. This result will be helpful in case we have an easy way to calculate

marginalized beliefs of subsets which are not exactly the involved but contain them. Also,

if we have n candidate actions, denoting the involved subset for the j-th action as Xin( j) and

choosing Xin+ = Xin(1)∪Xin(2)∪ · · · ∪Xin(n), will result in a one-time marginalization rather then

marginalizing for each action separately. This concept is similar to the one suggested in [13].

We will continue to refer to Xin rather than Xin+ for readability reasons, yet we emphasize that

the following is true for Xin+ as well.

Using the result of Theorem 3.2, we propose an approach which we will refer to as

involve-MI, and is concluded in Algorithm 3.1. Given the prior belief, the probabilistic

models and an action sequence, this algorithm first determines the involved variables using

some heuristic. Then, it calculates the marginalized prior belief over the involved variables.

And, finally, it calculates the (augmented) MI value using the marginalized prior belief (while

propagating future beliefs). This is instead of naively using the entire prior belief. We remind

that either or both the complexity and the accuracy of any calculation scheme of the MI depend

on the dimension of the entire state, D. The main contribution of our approach is that it cancels

this dependence. Instead, the dependence is over the dimension of a smaller subset of the state,

d, which improves either or both the complexity and the accuracy. In order to make the overall

marginalization process more efficient, we can instead work with Xin+, and the algorithm is then

slightly changed depending on how it is defined, yet the key idea remains the same.

Algorithm 3.1 involve-MI
Input: b [X], PT , PZ , a
Output: Iaug [X ⊞ Xnew; Z]

1: Xin ← DetermineInvolved(b [X] ,PT ,PZ , a)
2: b

[
Xin

]
←Marginalize(b [X] , Xin)

3: Iaug
[
Xin ⊞ Xnew; Z

]
← CalcMI(b

[
Xin

]
,PT ,PZ , a) ▷ any calculation scheme

4: Iaug [X ⊞ Xnew; Z]← Iaug
[
Xin ⊞ Xnew; Z

]
Note also this approach is not limited to any specific calculation scheme of the MI. The

calculation, for example, might go through its relation to entropy, by calculating the entropy

terms or estimating them using entropy estimators, such as the common re-substitution estimator

with KDE we have briefly introduced in Section 2.3. We shall use it now to demonstrate the

complexity reduction we get from using our approach. It is easy to first see that for the same

number of samples, our approach reduces the complexity of estimating the entropy terms from

O
(
N2D

)
to O

(
N2d

)
. However, as we have already mentioned, the Curse of Dimensionality

suggests that the number of samples required to get the same accuracy is exponential in the

dimension. Thus, if we wish to preserve the accuracy, using our approach, only n ∝ αd samples

are required, compared to N ∝ αD samples which were required without our approach. Since

d ≪ D, it means that n ≪ N. This reduces the complexity even further to O
(
n2d

)
. To generalize

and simplify our conclusion, we consider the complexity of any estimator is at least linear in the

number of samples, thus the complexity is reduced, at least, from O
(
αD

)
to O

(
αd

)
, where we
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remind that d ≪ D and α ≥ 1.

3.2 Avoiding the reconstruction of future beliefs’ surfaces

The estimation scheme of the involved MI might require reconstructing the surfaces of future

beliefs, which adds to the estimation error or perhaps entails another level of complexity in the

form of new hyperparameters. In this section, we present a theoretical derivation that allows to

avoid this reconstruction step for the augmented MI calculation. We then use this derivation to

construct an estimator. This estimator, however, as will shortly be explained, can only be used

in cases in which the probabilistic models are explicitly given.

Theorem 3.3. Let X be some prior state, and X′ = {X, Xnew} be a successor state, where

Xnew is the augmented subset of the successor state. Let Z be an observation sequence (mul-

tivariate random variable) over a subset of the successor state,
{

Xin, Xnew
}
⊆ X′, such that

P(Z | X, Xnew) ≡ P(Z | Xin, Xnew). Then, the augmented MI can be factorized as

Iaug [X ⊞ Xnew; Z] = −H
[
Xnew | Xin] −H [

Z | Xin, Xnew
]
+H [Z] . (3.6)

This result suggests that the augmented MI can be expressed as a superposition of the expected

entropies of the sequential transition model, observation model and normalizer. This means that

the objective function can be calculated without the need to reconstruct future beliefs’ surfaces,

which is a key result.

Using the definition of entropy and the notations of the sequential models from (2.4), the

first term on the right hand side of eq. (3.6) becomes

H
[
Xnew | Xin] = −∫

Xin
b
[
Xin] ï∫

Xnew

PT logPT dXnew

ò
dXin. (3.7)

Doing the same for the second term of eq. (3.6) yields

H
[
Z | Xin, Xnew

]
= −

∫
Xin

b
[
Xin] ï∫

Xnew

PT

ï∫
Z

PZ logPZdZ
ò

dXnew

ò
dXin. (3.8)

And, lastly, the third term in eq. (3.6) is defined by

H [Z] = −
∫
Z

η−1 log η−1dZ, (3.9)

where we can use the law of total probability to get

η−1 =

∫
Xin

b
[
Xin] ï∫

Xnew

PTPZdXnew

ò
dXin. (3.10)

Plugging this back into eq. (3.9) and changing integration order yields

H [Z] =
∫
Xin

b
[
Xin] ï∫

Xnew

PT

ï∫
Z

PZ log η−1dZ
ò

dXnew

ò
dXin. (3.11)
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The above analysis provides an exact formulation for the calculation of the augmented MI over

a high-dimensional state that only involves integration over the involved variables, for any of

the terms, including η−1. Also, any of these terms can be expressed by only using the prior

belief and the probabilistic models, assuming these are explicitly given. Thus, without explicitly

requiring the posterior belief, the reconstruction step can be avoided. Plugging these terms back

into eq. (3.6) and using sampling, i.e.(
xin(i),w(i)) ∼ b

[
Xin]

x(i, j)
new ∼ PT

(
Xnew | xin(i))

z(i, j,k) ∼ PZ

Ä
Z | xin(i), x(i, j)

new

ä
,

(3.12)

the augmented MI is approximated as

Iaug [X ⊞ Xnew; Z] ≈
n1∑
i=1

w(i)

 1
n2

n2∑
j=1

logP(i, j)
T


+

n1∑
i=1

w(i)

 1
n2

n2∑
j=1

[
1
n3

n3∑
k=1

logP(i, j,k)
Z

]
−

n1∑
i=1

w(i)

 1
n2

n2∑
j=1

[
1
n3

n3∑
k=1

log η−1(i, j,k)
] ,

(3.13)

where
P

(i, j)
T = PT

Ä
xin(i), x(i, j)

new

ä
P

(i, j,k)
Z = PZ

Ä
xin(i), x(i, j)

new, z
(i, j,k)
ä

η−1(i, j,k)
= η−1

Ä
xin(i), x(i, j)

new, z
(i, j,k)
ä
,

(3.14)

and the normalizer, for each sampled instance, is then also approximated as

η−1(i, j,k)
≈

n4∑
l=1

w(l)

[
1
n5

n5∑
m=1

P
(l,m,k)
Z

]
. (3.15)

As in a particle filter, P(l,m,k)
Z can be considered an update for the particle’s weight. Thus,

the approximation of η−1(i, j,k) can be viewed as an average of the updated weights.

This estimation scheme is concluded in Algorithm 3.2. Since it uses particles from the

prior and propagates them as in Sequential Monte Carlo (SMC) methods, we will refer to it

as MI-SMC. Note that this formulation allows the algorithm to be an anytime algorithm. Given

that we have a limited time for each planning step, we can start with a small set of particles and

incrementally refine the calculation by increasing the number of particles until the time is up,

without the need to calculate from scratch whenever more samples are added. This might not

always be possible using other estimation schemes.

The presented estimator might seem at a first glance very similar to the estimator in [2],

although MI-SMC calculates MI and [2] calculates entropy. Both use samples from the prior
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belief, propagates them and calculate entropy/MI without the reconstruction of future belief’s

surfaces. However, the key difference is the problem formulation these two address. Whereas

in our work we treat a smoothing formulation, [2] treats a filtering formulation. A filtering

formulation means marginalizing out past states, which eventually makes the entire state

involved, thus [2] cannot be scaled to high-dimensional problems compared to our approach.

Also note that although this estimator is formulated by already exploiting the dimensionality

reduction, it is not vital. The estimator can get as an input the full prior belief b [X] instead of

the involved prior belief b
[
Xin

]
. The particles would then be high-dimensional, yet since these

are used only for the evaluation of the probabilistic models, marginalization would automatically

be done in the context of these particles. This attribute makes this estimator closely related to

the involve-MI approach, without explicitly using it beforehand. However, to avoid the Curse

of Dimensionality, it is preferred to maintain and sample from a lower-dimensional belief to

begin with, which is exactly the result of using involve-MI.

Algorithm 3.2 MI-SMC

Input: b
[
Xin

]
, PT , PZ , a

Output: Iaug
[
Xin ⊞ Xnew; Z

]
1: sum1 ← 0
2: sum2 ← 0
3: sum3 ← 0
4: for i = 1 to n1 do
5:

(
xin(i),w(i)

)
∼ b

[
Xin

]
6: for j = 1 to n2 do
7: x(i, j)

new ∼ PT (Xnew | xin(i), a)
8: value1 ← w(i) 1

n2
logP(i, j)

T
9: sum1 ← sum1 + value1

10: for k = 1 to n3 do
11: z(i, j,k) ∼ PZ(Z | xin(i), x(i, j)

new)
12: value2 ← w(i) 1

n2

1
n3

logP(i, j,k)
Z

13: sum2 ← sum2 + value2
14: η−1 ← 0
15: for l = 1 to n4 do
16:

(
xin(l),w(l)

)
∼ b

[
Xin

]
17: for m = 1 to n5 do
18: x(l,m)

new ∼ PT (Xnew | xin(l), a)
19: value← w(l) 1

n5
P

(l,m,k)
Z

20: η−1 ← η−1 + value
21: end for
22: end for
23: value3 ← w(i) 1

n2

1
n3

log η−1

24: sum3 ← sum3 + value3
25: end for
26: end for
27: end for
28: Iaug

[
Xin ⊞ Xnew; Z

]
← sum1 + sum2 − sum3
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In terms of complexity, the most expensive step of this approach is the estimation ofH [Z],

thus its complexity is the complexity of the entire estimator. Estimating each η−1(i, j,k) has a

complexity of O (n4n5d). In turn, the complexity of estimating H [Z] is of O (n1n2n3n4n5d).

Considering that we have a total number of m observations instances, i.e. n1n2n3 = m, and

also that the total number of particles is n, i.e. n4n5 = n, the complexity becomes O (mnd). In

comparison, the complexity of using a re-substitution estimator with KDE is O
(
mn2d

)
when

using involve-MI, which makes our estimator favorable in terms of complexity. We also again

emphasize that our estimator avoids the intermediate step of belief surface reconstruction, and

hence we conjecture it is expected to be more accurate. Many other entropy estimators exist

in the literature, such as the nearest neighbor estimator, which can be found in [1], and the k-d

partitioning estimator, presented in [23]. When estimating the MI value with these estimators,

the complexity of both can get to O
(
mn log n

)
, which is comparable to the complexity of

MI-SMC when reminding again that n should be exponential in the dimension d. We leave further

comparison to these additional estimators for future research.

3.3 Applicability to belief trees

In this section we wish to relate the above approaches to the informative planning optimization

problem. We remind that although the following analysis considers an open-loop formulation, for

which we seek an optimal action sequence, a0:T−1, it also applies for a close-loop formulation, for

which we seek for a policy, π0:T−1. The solution to the ρ-POMDP is obtained by maximization

of the objective function, given in eq. (2.6), and denoted shortly as J0 ≜ J (b [X0] , a0:T−1)

J⋆0 = max
a0:T−1

{
E
Z1:T

[
T−1∑
t=0

ρt + ρT

]}
. (3.16)

Formulating it recursively yields the Bellman optimality equation

J⋆t = max
at

ß
ρt + E

Zt+1

[
J⋆t+1

]™
. (3.17)

where Jt ≜ J (b [Xt] , at:T−1).

A common solver to this optimization problem is to construct a search over a tree. More

specifically, for ρ-POMDP, which is the case of belief-dependent rewards, a belief tree is used. In

a belief tree, the beliefs b [Xt] are propagated using instances of future actions and observations,

then the rewards ρt are calculated, and the action sequence providing the maximum value for

the objective function is eventually chosen. Since, in general, the action and observation spaces

can be large, in order to be able to solve this optimization problem in reasonable time, it is

approximated with a belief tree which propagates only a few sampled instances of future actions

and observations. Dealing with continuous such spaces, a belief tree is an approximation of the

problem to begin with. The planning literature contains lots of tree-based solvers (e.g. [24], [7]).

However, since our analysis so far was done considering an expected reward, augmented MI, it
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is not trivial to prove that our approach, involve-MI, and our estimator, MI-SMC, are able to

cope with such solvers. This is the purpose of this section.

We denote the augmented IG, the augmented MI and their involved counterparts shortly as

IGt
0 ≜ IGaug [X0 ⊞ x1:t; Z1:t = z1:t | a0:t−1]

It
0 ≜ Iaug [X0 ⊞ x1:t; Z1:t | a0:t−1]

IGt
0

in
≜ IGaug

[
Xin

0 ⊞ x1:t; Z1:t = z1:t | a0:t−1
]

It
0

in
≜ Iaug

[
Xin

0 ⊞ x1:t; Z1:t | a0:t−1
]
.

We will also from now omit the term ”augmented” while still referring to the more general case

of augmentation. For readability, our analysis is done for IG as the only term of the reward,

meaning ρt = IGt
0, ∀ t ∈ [1,T ]. Yet, the conclusions will also apply when there are additional

terms for the reward, state-based terms for example. Eq. (3.16) then becomes

J⋆0 = max
a0:T−1

{
T∑

t=0

E
Z1:T

[
IGt

0

]}
= max

a0:T−1

{
T∑

t=0

It
0

}
. (3.18)

Using Theorem 3.2 over this equation yields

J⋆0 = max
a0:T−1

{
T∑

t=0

It
0

in

}
. (3.19)

Theorem 3.4. Let us define a new reward, ρin
t = IGt

0
in. Solving the ρ-POMDP optimization

problem with this reward is equivalent to solving it with the original reward, ρt = IGt
0, such that

J⋆t = max
at

ß
ρin

t + E
Zt+1

[
J⋆t+1

]™
. (3.20)

This, in turn, means that any optimization solver suitable for the original problem, with

the reward ρt, is also suitable when changing it to ρin
t . This is a key result, since in general

these rewards are only equal in expectation, however it is much more efficient to calculate

ρin
t , as already discussed for the MI case. The belief tree which resembles this new equivalent

optimization problem is shown in Figure 3.3a. We can then use the IG definition given in

eq. (2.13) and calculate it through the entropy terms. This result is again general, but non-

Gaussian distributions might be non-parametric, which then necessitate the usage of entropy

estimators, plenty of which exist in the literature, as already discussed.

Proposition 3.3.1. Naively calculating the values It
0 yields a degenerate belief tree, in which

there are only action nodes, without observation nodes.

This type of a tree can be seen in Figure 3.3c. We do not here analyze whether this formulation

is good or bad compared to the standard formulation nor whether it would even suit a policy

formulation or not. We leave it for future research. We cling to the fact that none of the

state-of-the-art tree-based solvers work this way, and suggest another approach.
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(a) (b)

(c)

Figure 3.3: Belief trees over the involved variables only, which resemble optimization problems equivalent to the original
optimization problem. Circles are observation nodes, squares are action nodes. (a) shows a belief tree where the rewards are
sequential involved IGs; (b) shows a belief tree where the rewards are updated incrementally with consecutive involved MIs; (c)
shows the resultant degenerate belief tree when trying to directly go through the calculation of the sequential involved MIs. It is
degenerate in the sense that there are only action nodes, without observation nodes.

Lemma 3.3.2. Let It
0 denote a sequential MI between times 0 and t, and Ii

i−1 =

Iaug
[
Xi−1 ⊞ xi; Zi | h−i

]
denote a consecutive MI between times i − 1 and i, where h−i =

{z1:i−1, a0:i−1} is the history up to time i, without the last observation zi. The sequential MI

can be decomposed into multiple consecutive MI values, such that

It
0 ≜

t∑
i=1

ï
E
Z1:i−1

î
Ii
i−1

óò
. (3.21)

The main result of Theorem 3.2 can be applied on both the sequential and the consecutive

MI values by assigning the notations in a slightly different manner, such that the result of

Lemma 3.3.2 is transformed into

It
0

in
=

t∑
i=1

ï
E
Z1:i−1

î
Ii

i−1
inóò
, (3.22)

where Ii
i−1

in
= Iaug

[
Xin

i−1 ⊞ xi; Zi | h−i
]

is the consecutive MI over the involved subset of the state

Xi−1.

Theorem 3.5. Let us define a new reward, ρ′t =
∑t+1

i=1 Ii
i−1

in. Solving the ρ-POMDP optimization

problem with this reward is equivalent to solving it with the original reward, ρt = IGt
0, such that

J⋆t = max
at

ß
ρ′t + E

Zt+1

[
J⋆t+1

]™
. (3.23)
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This allows the usage of estimators which directly estimate MI, as our suggested estima-

tor MI-SMC does, together with the usage of tree-based solvers of ρ-POMDP. However, we

emphasize that instead of sequential MI values, we will calculate consecutive MI values.

We note that Ii
i−1

in
= E
Zi

[
IGi

i−1

]
. This means that the calculation of the MI values is not

limited only to the observations that are used for constructing the tree, thus the calculation can

be more accurate, which is another added value of this formulation.

And, lastly, we note that ρ′t =
∑t+1

i=1

î
Ii

i−1
inó
= ρ′t−1 + It+1

t
in. Meaning that for each node,

we can calculate the reward based on the previous reward and just update the new information

incrementally, without having to calculate the entire reward from scratch. The belief tree which

resembles this optimization problem is shown in Figure 3.3b.

The above analysis suggests that the entire tree can be constructed considering only the

marginalized beliefs rather than the entire-state beliefs. This, in turn, reduces also the complexity

of constructing this tree, since we avoid maintaining and propagating the beliefs over unnecessary

states. This is done by determining ahead all the involved variables, together with variables

which are required for other reward functions, and marginalizing out the rest of the variables

(the formulation of one-time marginalization we have introduced in section 3.1). Care should be

taken when using this approach, since marginalizing out a variable which would in retrospect be

found to be involved would mean that the tree should be updated from the root. Also note that

this approach might prevent the usage of calculation re-use approaches (e.g. [5], [6]) since we

only consider a subset of the state for the whole planning process.
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Chapter 4

Results

Our approach was tested on an instance of active Simultaneous Localization and Mapping

(SLAM) problem, which is a classical choice for high-dimensional problems, since the state

contains past trajectory and the map. As in Figure 1.1a, an autonomous drone is flying around,

observing landmarks which construct a 2D map. At each time step, it needs to decide where

to move next in order to reduce its state uncertainty, i.e. the drone’s trajectory and the map. In

order to make a decision, the drone estimates the MI value of the different possible actions at

that time. The MI value of states which are distributed with Gaussians has an analytical solution,

which makes it a perfect choice as a first validation of our approach. Although Gaussian, we

emphasize that the different algorithms only get samples as an input, thus work as if it is a

purely non-parametric scenario. Using this simulation, we have tested (i) the impact of the

dimensionality on choosing an action; and (ii) the impact of increasing the dimensionality on

accuracy and timing.

We note that since we chose to deal with Gaussian noise and linear factors, the values of the

states and observations do not matter for the MI calculation, but only the noise values and the

graph structure. This allowed an implementation simplicity, in which the graph of the problem

was created synthetically rather than by creating a specific scenario which includes landmark

locations and a trajectory. It means that motion and measurements were randomly generated, yet

the graph resembled a graph of a SLAM problem. More specifically, the graph was generated

using the following process:

1. It was initialized with a prior over the first pose

2. A new pose was then added by applying motion

3. An observation was made such that a new first landmark was created

4. It then continued by randomly adding 100 factors to the graph (motion and observation),

using the following approach:

• At each time a number was sampled uniformly between 0 and 1

• An observation factor of the last previously observed landmark was generated if the

previous factor was motion and the number was between 0.6 and 1
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• An observation factor of a new landmark was generated if the previous factor was

motion and the number was between 0.3 and 0.6

• A motion factor was generated otherwise

4.1 Impact of the dimensionality on choosing an action

At time t, the drone needs to choose between four different actions, each involving an observation

of a different landmark. In this section, we compare between the analytical solution and

the estimation results obtained by three different methods, which we will refer to as Naive

KDE, involve-MI-KDE and involve-MI-SMC. Naive KDE is the naive approach, which uses

a re-substitution estimator with KDE over the entire state; involve-MI-KDE first uses the

involve-MI approach and only then the re-substitution estimator with KDE, i.e. the estimation

is only over the involved subset of the state; involve-MI-SMC is our suggested estimation

scheme, MI-SMC, where we just emphasize that involve-MI is inherent in it. We note that for

these specific tests, the methods which included KDE were implemented as if the inference

engine is perfect, i.e. the posterior samples were generated from the true posterior, whereas

MI-SMC, as shown in Algorithm 3.2, uses samples from the prior belief and propagates them in

a SMC manner. This gives a slight advantage to the methods with KDE over involve-MI-SMC.

The simulations were done in Python, where we used Scipy’s KDE for the two KDE methods.

Using the graph generation discussed above, the prior state has ∼ 150 dimensions, whereas

each action currently involves a subset of the state with only 4 dimensions. Each method was

provided with 300 particles (for involve-MI-SMC, n1 = n4 = 300, n2 = n3 = n5 = 1), and the

MI was calculated 100 times to evaluate its standard deviation. The mean values and standard

deviations of each method and for each action are shown in Figure 4.1. As expected, Naive

KDE has big mean errors and big variances. These errors are big enough to make the drone

choose an action which isn’t optimal. involve-MI-KDE and involve-MI-SMC, on the other

hand, both present pretty similar and better results compared with Naive KDE, with the former

being slightly better in terms of the mean value, probably due to the prior advantage we have

provided it with. We note that also for the case of the involve-MI estimators, the drone might

choose an action which isn’t optimal due to the similarity between the MI values of this specific

test, however an increase in the number of samples will solve this (a smaller increase compared

with the one needed for the naive approach).

4.2 Impact of increasing the dimensionality on accuracy and timing

We have also tested the impact of increasing state dimensionality on the standard deviation of

each estimator, where the action now stays the same. The original motivation is to show that

as the dimension grows, an exponential number of samples would be required in order to get

the same accuracy for the naive approach. However, it is not feasible with the dimensions we

chose for this simulation. Instead, we approach it in a different manner, and show that as the
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Figure 4.1: A comparison between the mean MI values of the different actions and calculation methods. The standard deviation
of the calculation methods are shown as error bars. While the mean values, even if not close to the analytical values, maintain
action consistency, the real problem is the standard deviation. For a specific trial, the actions ordering might be changed due to the
overlaps between MI’s possible values. The naive approach suffers the most from this problem.

Figure 4.2: Impact of dimensionality on MSE (standard deviation) for the three methods. Naive KDE’s error linearly increases
with the state’s dimension. Using involve-MI keeps it roughly constant, independent of the state’s dimension.

29



Figure 4.3: Impact of dimensionality on calculation time for the three methods. Naive KDE’s calculation time linearly increases
with the state’s dimension. Using involve-MI keeps it roughly constant, independent of the state’s dimension.

dimension grows, for a constant number of samples, the accuracy is harmed. To achieve the

increasing dimensionality, we exploited the fact that in full SLAM the graph’s dimension is

increased in time. During the creation of the big synthetic graph generation, at each time just

before applying motion, the MI value of the current graph was calculated. Each estimator, again,

was provided with 300 particles and the MI was calculated 100 times to evaluate its standard

deviation and the average calculation time. The results can be seen in Figures 4.2 and 4.3.

Both the standard deviation and calculation time of the MI using Naive KDE increase with the

state’s dimension, an increase which seems linear. On the other hand, for involve-MI-KDE and

involve-MI-SMC both the standard deviation and calculation time are roughly constant. This is

thanks to the fact that the involved subset is of the same dimension during this simulation (only

one landmark is observed for each action). This demonstrates our main contribution, for which

involve-MI is better both in terms of accuracy and time complexity, for the same number of

samples. The standard deviation and timing of both involve-MI-KDE and involve-MI-SMC

are comparable, with a slight advantage to involve-MI-SMC. We remind that involve-MI-KDE

has a complexity of O(mn2d) whereas involve-MI-SMC has a complexity of O(mnd), which

suggests that a better performance should have been obtained for involve-MI-SMC. However,

it is very likely that the Scipy’s KDE implementation is optimized, whereas the implementation

of involve-MI-SMC is currently very simple and straightforward. We thus conjecture that the

timing could be further improved. We also conjecture that providing the KDE methods with a

practical inference engine, rather than the current perfect inference it was provided with, and

using more complex distributions, will increase the gap in terms of accuracy.
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Chapter 5

Conclusions and Future Work

To conclude, we have identified a void in the informative planning subject. For the case of

high-dimensional non-parametric beliefs, the complexity becomes too high for solving (not

to mention online solutions), thus current state-of-the-art approaches either avoid the high-

dimensionality, assume very specific settings or apply rough approximations which impact the

accuracy.

In this work, we have filled this void, mainly by reducing the dimensionality of the state

for the expected reward’s (MI) calculation, while relaxing many of the former assumptions and

approximations. We have then shown the same conclusion applies also for the more general and

complex augmented scenario, in which the dimensionality is inherently increased at each time

step. We refer to the approach of dimensionality reduction for MI calculation as involve-MI.

Next, we have introduced an estimator, MI-SMC, which avoids the reconstruction of future

belief’s surfaces in case that we have access to the probabilistic models of the problem, which

we conjecture might reduce the estimation error and timing, compared to KDE-based approaches,

for example. This, in turn, also makes it an anytime algorithm. Lastly, for the completeness

of this work, we have related back to the planning optimization problem and shown how both

involve-MI and MI-SMC can be applied in it. We emphasize again that this work contributes

specifically to the objective function calculation, and thus can be used as a black box together

with many other state-of-the-art algorithms which contribute to other building blocks of the

planning task.

Our work was tested on an active SLAM problem, and was compared to a naive approach.

The results show that involve-MI is superior to the naive approach of going through the entire

state, in terms of both accuracy and timing. MI-SMC is shown to be only slightly better than the

KDE estimator, however we conjecture that code optimization for MI-SMC will increase the gap.

5.1 Future Work

In future work, we believe our approach can be extended in the following directions.

1. Working with the more complex focused case, for which we are only interested in
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quantifying the uncertainty over a subset of the entire state, as it was done in [13] for

Gaussian distributions

2. Given the latest novelties in non-parametric inference, such as the work of [10], we

believe it would be very relevant for efficient and accurate non-parametric marginalization

3. Relaxation of the underlying assumptions regarding data-association and single factor

graph structure per action

4. Transferring our approach to other uncertainty measures. We conjecture that, at least

approximately, the behavior will remain

5. Simplification via removing the correlations between the involved variables, i.e. calculat-

ing the uncertainty of each involved variable individually
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Chapter 6

Appendix

Proof of Theorem 3.1

Using the chain rule for MI, where the state is arbitrarily partitioned as X̃ = {X̃A, X̃B} yields

I
[
X̃; Z̃

]
= I

[
X̃A, X̃B; Z̃

]
= I

[
X̃A; Z̃

]
+ I

[
X̃B; Z̃ | X̃A] . (6.1)

Given that X̃A = X̃in, we denote X̃B = X̃¬in, such that the conditional MI becomes

I
[
X̃B; Z̃ | X̃A

]
= I

[
X̃¬in; Z̃ | X̃in

]
. By definition, the conditional MI is

I
[
X̃¬in; Z̃ | X̃in] ≜ ∫

Z̃

∫
X̃in

∫
X̃¬in
P(Z̃, X̃in, X̃¬in)·

· log
ï

P(X̃¬in, Z̃ | X̃in)
P(X̃¬in | X̃in)P(Z̃ | X̃in)

ò
dX̃¬indX̃indZ̃.

(6.2)

Using the chain rule over the numerator inside the log term, we get

P(X̃¬in, Z̃ | X̃in) = P(Z̃ | X̃in, X̃¬in)P(X̃¬in | X̃in). (6.3)

Since X̃in is defined such that it contains all the variables involved in generating the observations

Z̃, we can state that P(Z̃ | X̃in, X̃¬in) = P(Z̃ | X̃in), so eq. (6.3) becomes

P(X̃¬in, Z̃ | X̃in) = P(Z̃ | X̃in)P(X̃¬in | X̃in). (6.4)

Plugging this term back into eq. (6.2) yields

I
[
X̃¬in; Z̃ | X̃in] ≜ ∫

Z̃

∫
X̃in

∫
X̃¬in
P(Z̃, X̃in, X̃¬in) log (1) dX̃¬indX̃indZ̃ = 0. (6.5)

Using the above result, eq. (6.1) then transforms into

I
[
X̃; Z̃

]
= I

[
X̃in; Z̃

]
. (6.6)
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Proof of Lemma 3.1.1

We remind the augmented MI definition in eq. (2.15) is

Iaug [X ⊞ Xnew; Z] ≜ H [X] −H [X, Xnew | Z] . (6.7)

Using the following known identities

H [X] ≜ H [X, Xnew] −H [Xnew | X] (6.8)

I [X, Xnew; Z] ≜ H [X, Xnew] −H [X, Xnew | Z] , (6.9)

we get the relation between MI and the augmented MI

Iaug [X ⊞ Xnew; Z] = I [X, Xnew; Z] −H [Xnew | X] . (6.10)

Proof of Theorem 3.2

By defining X̃ = X′ and X̃in = {Xin, Xnew}, we can use the result from Theorem 3.1 to get

I [X, Xnew; Z] = I
[
Xin, Xnew; Z

]
. (6.11)

Looking at the conditional entropy term in the result of Lemma 3.1.1, we can rewrite it as

H [Xnew | X] = H
[
Xnew | Xin, X¬in

]
. By our definition of Xin, Xnew is conditionally independent

of X¬in given Xin, i.e. P(Xnew | Xin, X¬in) = P(Xnew | Xin). Thus, one of the conditional entropy

properties states that

H [Xnew | X] = H
[
Xnew | Xin] (6.12)

Plugging (6.11) and (6.12) back into the result of Lemma 3.1.1 (eq. (6.10)) we get that

Iaug [X ⊞ Xnew; Z] = I
[
Xin, Xnew; Z

]
−H

[
Xnew | Xin] . (6.13)

We then observe that by using the result from eq. (6.10), the right hand side in eq. (6.13) is equal

to Iaug
[
Xin ⊞ Xnew; Z

]
, and so we finally conclude that

Iaug [X ⊞ Xnew; Z] = Iaug
[
Xin ⊞ Xnew; Z

]
. (6.14)

Proof of Theorem 3.3

We begin by using the definition of the augmented MI, given in eq. (2.15), over the involved

subset, which is

Iaug
[
Xin ⊞ Xnew; Z

]
≜ H

[
Xin] −H [

Xin, Xnew | Z
]
. (6.15)
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Using the chain rule for conditional entropy over the second term on the right hand side of

eq. (6.15) yields

H
[
Xin, Xnew | Z

]
= H

[
Xin, Xnew,Z

]
−H [Z] . (6.16)

Using the same principle twice again eventually yields

H
[
Xin, Xnew | Z

]
= H

[
Xin] +H [

Xnew | Xin] +H [
Z | Xin, Xnew

]
−H [Z] . (6.17)

Plugging back into eq. (6.15), we observe that the term H
[
Xin

]
is canceled out. Then, by

using the result of Theorem 3.2, the augmented MI term over the high-dimensional state finally

becomes

Iaug [X ⊞ Xnew; Z] = −H
[
Xnew | Xin] −H [

Z | Xin, Xnew
]
+H [Z] . (6.18)

Proof of Theorem 3.4

We remind eq. (3.19) is

J⋆0 = max
a0:T−1

{
T∑

t=0

It
0

in

}
. (6.19)

The involved MI is by definition an expectation over the involved IG

It
0

in
≜ E
Z1:T

î
IGt

0
in
ó
. (6.20)

Plugging this back into eq. (6.19) yields

J⋆0 = max
a0:T−1

{
T∑

t=0

ï
E
Z1:t

î
IGt

0
in
óò}
. (6.21)

Due to commutativity, we can again switch between the order of expectation and summation,

which yields

J⋆0 = max
a0:T−1

{
E
Z1:T

[
T∑

t=0

î
IGt

0
in
ó]}

. (6.22)

We then separate the first action a0 from the rest of the actions a1:T−1. We also observe that Z1

is not a function of a1:T−1 and that IG0
0

in is not a function of both a1:T−1 and Z1. This yields

J⋆0 = max
a0

{
IG0

0
in
+ E
Z1

[
max
a1:T−1

{
E
Z2:T

[
T∑

t=1

IGt
0

in

]}]}
. (6.23)

We then observe that the term inside the expectation over Z1 is equal to J⋆1 , which yields the

following recursive form

J⋆0 = max
a0

ß
IG0

0
in
+ E
Z1

[
J⋆1

]™
, (6.24)
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and, in general, for each t ∈ [1,T − 1]

J⋆t = max
at

ß
IGt

0
in
+ E
Zt+1

[
J⋆t+1

]™
. (6.25)

We observe that this is the Bellman optimality equation with a new reward, ρin
t ≜ IGt

0
in. This

eventually means that Solving the ρ-POMDP optimization problem with this reward is equivalent

to solving it with the original reward we have started with, ρt = IGt
0.

Proof of Proposition 3.3.1

We remind eq. (3.19) is

J⋆0 = max
a0:T−1

{
T∑

t=0

It
0

in

}
. (6.26)

Since by definition I0
0

in
= 0, we can start the summation from t = 1

J⋆0 = max
a0:T−1

{
T∑

t=1

It
0

in

}
. (6.27)

We then separate the first action a0 from the rest of the actions a1:T−1. We also observe that I1
0

in

is not a function of a1:T−1. This yields

J⋆0 = max
a0

{
I1

0
in
+ max

a1:T−1

{
T−1∑
t=2

It
0

in

}}
. (6.28)

We then observe that the term max
a1:T−1

¶∑T−1
t=2 It

0
in
©

is equal to J⋆1 , which yields the following

recursive form

J⋆0 = max
a0

¶
I1

0
in
+ J⋆1
©
, (6.29)

and, in general, ∀t ∈ [1,T − 1]

J⋆t = max
at

¶
It+1

0
in
+ J⋆t+1

©
. (6.30)

We observe that this recursive form is slightly different than the Bellman optimality equation.

The Bellman optimality equation, as can be seen in eq. (3.17), includes also expectation over

future observations, while in this formulation it is omitted (more specifically, it is considered at

the level of calculating the values It
0). This, in turn, means that a corresponding tree will lack

observation nodes, thus it will be a degenerate belief-tree. We note again that this is the result of

naively going through direct calculations of the values It
0.
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Proof of Lemma 3.3.2

We remind that the sequential augmented MI is defined as

It
0 ≜ Iaug [X0 ⊞ x1:t; Z1:t | a0:t−1] ≜ E

Z1:t

î
IGaug [X0 ⊞ x1:t; Z1:t = z1:t | a0:t−1]

ó
. (6.31)

Detaching the observations Zl+1:t, where 0 < l < t, and expressing the augmented IG with

entropies, we get

Iaug [X0 ⊞ x1:t; Z1:t | a0:t−1] = E
Z1:l

ï
E
Zl+1:t

î
H [X0] −H [Xt | ht]

óò
. (6.32)

Adding and subtracting the termH [Xl | hl], it becomes

Iaug [X0 ⊞ x1:t; Z1:t | a0:t−1] = E
Z1:l

ï
E
Zl+1:t

î{
H [X0] −H [Xl | hl]

}
+

+
{
H [Xl | hl] −H [Xt | ht]

}óò
.

(6.33)

Observing that both new differences are augmented IGs as well, and that the first difference is

not a function of the last observation, we get

Iaug [X0 ⊞ x1:t; Z1:t | a0:t−1] = E
Z1:l

ï
IGaug [X0 ⊞ x1:l; z1:l | a0:l−1]+

+ E
Zl+1:t

î
IGaug [Xl ⊞ xl+1:t; zl+1:t | a0:t−1, z1:l]

óò
,

(6.34)

The expectation over the augmented IG is the augmented MI, and so we get the following

recursive form

Iaug [X0 ⊞ x1:t; Z1:t | a0:t−1] =Iaug [X0 ⊞ x1:l; Z1:l | a0:l−1]+

+ E
Z1:l

î
Iaug [Xl ⊞ xl+1:t; Zl+1:t | a0:t−1, z1:l]

ó
.

(6.35)

The specific case of choosing l = t − 1 yields

Iaug [X0 ⊞ x1:t; Z1:t | a0:t−1] =Iaug [X0 ⊞ x1:t−1; Z1:t−1 | a0:t−2]+

+ E
Z1:t−1

î
Iaug

[
Xt−1 ⊞ xt; Zt | h−t

] ó
,

(6.36)

where h−t = {z1:t−1, a0:t−1} is the history up to time t, without the last observation zt. Opening the

recursive form of the sequential augmented MI in eq. (6.36) yields

Iaug [X0 ⊞ x1:t; Z1:t | a0:t−1] = Iaug
[
X0 ⊞ x1; Z1 | h−1

]
+

+E
Z1

î
Iaug

[
X1 ⊞ x2; Z2 | h−2

] ó
+ · · · + E

Z1:t−1

î
Iaug

[
Xt−1 ⊞ xt; Zt | h−t

] ó
,

(6.37)
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which can more compactly be written as

Iaug [X0 ⊞ x1:t; Z1:t | a0:t−1] =
t∑

i=1

ï
E
Z1:i−1

î
Iaug

[
Xi−1 ⊞ xi; Zi | h−i

] óò
. (6.38)

Returning to the short notations, we finally get

It
0 =

t∑
i=1

ï
E
Z1:i−1

î
Ii
i−1

óò
. (6.39)

Proof of Theorem 3.5

We remind eq. (3.19) is

J⋆0 = max
a0:T−1

{
T∑

t=0

It
0

in

}
. (6.40)

Since by definition I0
0

in
= 0, we can start the summation from t = 1

J⋆0 = max
a0:T−1

{
T∑

t=1

It
0

in

}
. (6.41)

Plugging the result from eq. (3.22) into the above yields

J⋆0 = max
a0:T−1

{
T∑

t=1

[
t∑

i=1

ï
E
Z1:i−1

î
Ii

i−1
inóò]}

. (6.42)

Due to commutativity, we can switch between the order of expectation and summation, which

yields

J⋆0 = max
a0:T−1

{
E

Z1:T−1

[
T∑

t=1

[
t∑

i=1

î
Ii

i−1
inó]]}

. (6.43)

We then denote ρ′t−1 ≜
∑t

i=1

î
Ii

i−1
inó, and get

J⋆0 = max
a0:T−1

{
E

Z1:T−1

[
T∑

t=1

ρ′t−1

]}
= max

a0:T−1

{
E

Z1:T−1

[
T−1∑
t=0

ρ′t

]}
. (6.44)

We then separate the first action a0 from the rest of the actions a1:T−1. We also observe that Z1

is not a function of a1:T−1, and that ρ′0 = I1
0

in is not a function of both a1:T−1 and Z1 (since I1
0 is

already an expectation over Z1). This yields

J⋆0 = max
a0

{
ρ′0 + E

Z1

[
max
a1:T−1

{
E

Z2:T−1

[
T−1∑
t=1

ρ′t

]}]}
. (6.45)
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We then observe that the term inside the expectation over Z1 is equal to J⋆1 , which yields the

following recursive form

J⋆0 = max
a0

ß
ρ′0 + E

Z1

[
J⋆1

]™
, (6.46)

and, in general, ∀t ∈ [1,T − 1]

J⋆t = max
at

ß
ρ′t + E

Zt+1

[
J⋆t+1

]™
. (6.47)

We observe that this is the Bellman optimality equation with the new reward, ρ′t . This eventually

means that solving the ρ-POMDP optimization problem with this reward is equivalent to solving

it with the original reward we have started with, ρt = IGt
0. We note another slight difference

between the formulations, for which the latter formulation does not include a terminal reward.
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ii 
 

  משטחי ההתפלגויות העתידיות כל  שיערוך מפורש של    עשויה להצריךישה נאיבית  יתר על כן, ג
לשגיאות שיערוך.    וסיף עוד נדבך למורכבות החישובית ומהווה מקור נוסף, מה שמהאפשריות

נוספת   תרומה  זה  במחקר  מציגים  המאפשרת    –אנו  זה  לפסוחשיטה  שלב  הנחה על  תחת   ,
הבעיה   הרעש  למודלי  גישה  קיימתש החישוב  את    מאפשריםובכך    –  של  מורכבות  הקטנת 
 .'MI-SMC'לשיטה זו אנו קוראים  .שגיאות השיערוךו

בעיית התכנון האינפורמטיבי,  אנו מסיימים  לטובת שלמות השיטות המדוברות,   על  בניתוחן 
  האתגר נובע מכך   . קיימים  ם י עציניחד עם פותרב  בשיטות אלהכיצד ניתן להשתמש    ומציגים

( התגמול  פונקציית  ברמת  עובדים  עצים  ברמת IGשפותרני  נכונות  שלנו  שהשיטות  בעוד   ,)
לשתי    המקורית  מצאנו שניתן להמיר את פונקצית התגמול  .( בלבדMIהציפייה על פונקצייה זו ) 

ואינן  את השיטות היעילות המוצגות במחקר זה,    מאפשרות לנצלפוקנציות תגמול אחרות, אשר  
 המקורית. בעיהה משנות את

( אל  SLAMזמנית' )-ות שפיתחנו על בעיית 'לוקליזציה ומיפוי בואנו מסיימים בבחינת השיט
מול הגישות הנאיביות בהן נעשה שימוש היום. אנו מראים שהשיטות שלנו, עבור כמות דגימות 

 זהה, בעלות יתרון משמעותי הן מבחינת זמן החישוב והן מבחינת דיוק הפתרון.

 



i 
 

 תקציר 
 

ודאות הוא בעל חשיבות רבה עבור יישומים רבים. העולם שלנו הוא סטוכסטי  -תכנון תחת אי
יש לקחת   , בכל מקרה שבו אנחנו נדרשים לבצע פעולות של הסקה או תכנון לעתיד,לכן  ,באופיו

 .קטסטרופותבחשבון את הסטוכסטיות הזו, אחרת עלולות להתרחש 

ה רמותלהיעשות    היכול  בחשבון  סטוכסטיותלקיחת  ביותר, במספר  הפשוטה  ברמה   .
בחשבוןהסטוכסטיות   שב  נלקחת  בעוד  ההסקה,  בשלב  הרק  הבעיה תכנון  שלב  את  מפשטים 

דטרמיניסטית    אליהמתייחסים  ו היא  באחחלוטיןלכאילו  הסטוכסטיות.  הבאות,  הרמות   ת 
ל  הדרישה היאהתכנון, אולם    שלבגם ב  נלקחת בחשבון מבלי  בלבד,    מצב סופי מסויםלהגיע 

- את אי  אנו נדרשים גם לכמת  הגבוהות ביותר,. באחת הרמות  על מצב זההוודאות  -לדאוג לאי
נימלית  עם הסתברות מיכלשהו  להגיע למצב יעד    היא   המטרה. לדוגמה, אם  על המצבהוודאות  

אם   או  איכלשהי  את  )להקטין  כלשהו  נתון  מצב  על  מידע  שיותר  כמה  לצבור  היא  -המטרה 
, מצב כלשהו  ו שלוודאות-אי  על בסיסרצף של פעולות    יש לבחורכזו, שבה    בעיה.  הוודאות עליו(

היא חיפוש   , לדוגמה,תכנון אינפורמטיביניתן לסווגה ככתכנון אינפורמטיבי. משימה ש  מוכרת
 .מוכרים של שטחים לא  סקירהלהתבצע  הוהצלה, כאשר בשלב ה"חיפוש" עשוי

ל מדדים  כמה  לשמש,  תוודאוה-איכימות  ישנם  יכולים  פונקציות   אשר  או  מחיר  כפונקציות 
. עם זאת, ' היא בין המדדים המוכרים ביותראנטרופיה' .בבעיית התכנון האינפורמטיבי תגמול

עקב  בכמה היא תפחתרק הוודאות, אלא -בערך המוחלט של אי ן הכרחאיעבור יישומים רבים 
שתבוצע אחרותהפעולה  במילים  או  מידע    –  ,  זו.כמה  מפעולה  להשיג  נקרא   נוכל  זה  למדד 

, נעשה  צב לא תמיד אובזרבבילי. מכיוון שהמ(information gain – IG'אינפורמציה מושגת' )
-, גם המדידות עצמן אינן ידועות, ולכן גם איבמדידות, אך כאשר מסיקים על העתידשימוש  

בחשבון להילקח  צריכה  עליהן  מציגים  הוודאות  אנו  זה,  עם  להתמודד  כדי  נוסף,    מדד. 
על (mutual information – MI)  ת'הדדי  'אינפורמציה שלנו  הציפייה  למעשה  שהוא   ,

ואיתו אנו עובדים במחקר  מושגת' בהינתן שאיננו יודעים מה יהיו המדידות,  האינפורמציה  ה'
בינה  של  , אך כמו בספרות  כאותו מדד  IG- ו  MI-. נציין כי חלקים מהספרות מתייחסים לזה

 .אלובין שני   מבדיליםמלאכותית, אנו 

. הוודאות-חישוב מדדי איהמורכבות של    גדלהכך גם  ,  המצבמימד    כאשר גדלמטבע הדברים,  
הזה אקספוננציאליה  במקרה  הוא  מכניחס  אנו  כ'.  זה  מצב  המימדיותים   Curse of)  'קללת 

Dimensionality)  ,העוסקות בסוגיה הכואבת והקריטית של    לא קיימות גישות . למיטב ידיעתנו
מימדי והפילוג -כלליות, שהמצב בהן הוא רב  תכנון אינפורמטיבי  מדדים אלו עבור בעיותחישוב  

 הסתברותי שלו אינו בהכרח גאוסי.ה

ניתן  רבות,    תכנוןידי ניצול מבנה הגלום בבעיות  -הזה. על  החללחדשה למילוי    שיטהאנו מציעים  
את חישוב    לשבור  למורכבות  הבעיה  מימד  בין  איהיחס  של הוודאות-מדדי  המרכזי  הרעיון   .

הוא    השיטה "שלנו  התכנון  מעורבים    "להשליךבזמן  הלא  המשתנים  חישוב   עבוראת 
. אנו מוכיחים  על אף שגם משתנים אלו מושפעים,  בין המצב למדידות(האינפורמציה ההדדית' )'

כלומר שמימד המצב קטן, , בזמן חישוב מדד זה משתנים הללוכך שאיננו מתחשבים בשעל ידי 
אנו קוראים  .הפתרון עדיין מדויקתוך שמורכבות החישוב מצמטמצמת גם היא באופן דרמטי, 

 . 'involve-MI' ולשיטה ז



 

- במסגרת התוכנית הבין, ן פרופסור חבר ואדים אינדלמ המחקר בוצע בהנחייתו של 
 יחידתית למערכות אוטונומיות ורובוטיקה. 

כמאמרים מאת המחבר ושותפיו   או הוגשו חלק מן התוצאות בחיבור זה פורסמו
של המחבר, אשר   מאסטרבמהלך תקופת מחקר ה  עת- למחקר בכנסים ובכתבי

 :גרסאותיהם העדכניות ביותר הינן

 

 

 

 

 תודות 
, הן מבחינה מקצועית והן  תקופת התואר השני הייתה מהמאתגרות ביותר בחיי

, בייחוד עם התפרצות מגיפת הקורונה אשר היוותה קושי לכולם  ה אישיתמבחינ 
 ללא יוצא מן הכלל. ולמרות זאת, לא יכולתי להיות בסביבה תומכת יותר. 

ן. קצרה היריעה  ראשית, אני רוצה להודות למנחה שלי, פרופ' חבר ואדים אינדלמ
מלתאר את ההערכה שלי אליו. השילוב בין הידע, המקצועיות, המעורבות,  

התשוקה, האדיבות והסבלנות שלו הופכות אותו למנחה המושלם מנקודת הראייה  
 שלי. 

יחידתית  -לצוות האדמיניסטרטיבי של התוכנית הביןכמו כן, אני רוצה להודות 
 תנו תמיכה ואוזן קשבת לסטודנטים. למערכות אוטונומיות ורובוטיקה, אשר נ

לסיום, אני רוצה להודות למשפחתי, ובפרט לאשתי נויה, אשר איתה התחתנתי  ו
ילדים מתוקים במהלך התקופה הזאת. היא האמינה בי מההתחלה   2והבאתי 

ונתנה לי את ברכת הדרך לצאת למסע הזה, אשר היה מאתגר לה לא פחות מאשר  
 לי. 
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