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FT-BSP: Focused Topological Belief Space Planning
Moshe Shienman1, Andrej Kitanov2, and Vadim Indelman2

Abstract—At its core, decision making under uncertainty can
be regarded as sorting candidate actions according to a certain
objective. While finding the optimal solution directly is compu-
tationally expensive, other approaches that produce the same
ordering of candidate actions, will result in the same selection.
With this motivation in mind, we present a computationally
efficient approach for the focused belief space planning (BSP)
problem, where reducing the uncertainty of only a predefined
subset of variables is of interest. Our approach uses topological
signatures, defined over the topology induced from factor graph
representations of posterior beliefs, to rank candidate actions.
In particular, we present two such signatures in the context
of information theoretic focused decision making problems. We
derive error bounds, with respect to the optimal solution, and
prove that one of these signatures converges to the true optimal
solution. We also derive a second set of bounds, which is more
conservative, but is only a function of topological aspects and can
be used online. We introduce the Von Neumann graph entropy
for the focused case, which is based on weighted node degrees,
and show that it supports incremental update. We then analyze
our approach under two different settings, measurement selection
and active focused 2D pose SLAM.

Index Terms—Motion and Path Planning, View Planning for
SLAM, Reactive and Sensor-Based Planning.

I. INTRODUCTION

REASONING about uncertainty, as part of the decision
making problem is at the core of robotics and artificial

intelligence. In a partially observable setting, the robot has
to maintain a probability distribution function (belief) over
appropriate random variables that correspond to the robot’s and
environment state. Furthermore, the robot has to autonomously
determine its next actions by solving the corresponding belief
space planning (BSP) problem, while reasoning about future
belief evolution.

For instance, a robot must often autonomously construct a
map of the environment and determine which action to take
given a certain objective. Moreover, in different tasks, specific
landmarks within the map or certain states of the robot, might
be more important than others.

These types of problems are commonly referred to as active
focused inference, in which the objective function prioritizes
or only considers a predefined subset of focused variables. e.g.
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Fig. 1: Chosen candidate paths, in active 2D pose SLAM scenario, with
respect to different objectives. The red path considers reducing uncertainty
with respect to the entire trajectory while the green path considers reducing
uncertainty only over the final pose. The yellow path represents the locations
that the robot had previously visited and acts as the initial belief. Stating
position is denoted with a red star and the goal is denoted with a circle.
Black ellipses denote the marginal covariance at each step and black dashed
lines denote loop-closures. Notice how the marginal covariance shrinks in the
green path, right before it reaches the goal, due to a big loop closure.

a robot navigating in an uncertain environment must reach a
goal position with maximum accuracy; a reconstruction task
in which the robot is required to map a specific scene in the
environment with high accuracy; collision avoidance, where
localizing obstacles is of the greatest importance. As shown
in [23] and Fig. 1 the optimal solution in the focused case can
be significantly different from the one in the unfocused case,
i.e. considering all variables.

To solve these focused problems for Gaussian distributions,
exact state-of-the-art algorithms calculate the marginal poste-
rior covariance (information) matrix for each candidate action.
While the set of focused variables can be small, these calcula-
tions require a computationally expensive Schur complement
operation. Moreover, many problems in robotics require a high
n-dimensional state space model to represent robot poses,
obstacles and landmarks. In terms of the D-criterion for
example, which is common in information theoretic problems,
the general complexity of calculating the determinant of the
marginal information matrix is O(n3).

Solving an alternative problem in a different domain, with
respect to the same set of candidate actions, can be used to re-
duce the computational complexity. Such an alternative should
discriminate between candidate actions, be less expensive to
compute and would ideally yield a solution which is consistent
with the optimal solution of the original problem.

Efficient inference algorithms, operating on different prob-
abilistic graphical models, are commonly used to improve the
computational complexity. Modern approaches even suggest to
use the topological signature, induced from the connectivity of

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on March 27,2021 at 13:32:25 UTC from IEEE Xplore.  Restrictions apply. 



2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3068947, IEEE Robotics
and Automation Letters

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2021

x0

x1

x3 x6x2

x4 x5

(a) factor graph

v2

v3
v4

v5

v6

v0

v1

(b) topological graph

v1

v2

v3

va

v4

v5

6

010

w1a

(c) unfocused augmented topological graph

Fig. 2: Graph representations of a posterior belief. (a) factor graph FG with unfocused variables in blue, focused variables in purple and anchor variable
in yellow; (b) the corresponding topological graph G; (c) the unfocused topological augmented graph GU,A. The blob encapsulating the unfocused nodes
represents the reduced Laplacians in (26) and the edges in orange are new edges weighted according to (27). Specifically w1a = w10 + w15.

variables (see e.g. Fig 2b) within these graphical representa-
tions, as a further improvement in the context of information
theoretic decision making under uncertainty.

However, to the best of our knowledge, considering topolog-
ical aspects with respect to a focused set of variables, within
information theoretic BSP is a novel concept.

In this work we study the relation between the graphical
structure of SLAM and an information theoretic objective
function in the active focused case. We present a novel Focused
Topological Belief Space Planning (FT-BSP) concept that uses
topological signatures, associated with posterior probabilities,
to guide the search for an optimal action.

Our contributions in this paper are as follows: (a) We in-
troduce a novel approach, FT-BSP that, addresses the focused
information theoretic BSP problem via topological aspects; (b)
Within FT-BSP we derive two topological signatures to ap-
proximate the focused cost function; (c) We prove asymptotic
convergence and develop bounds for one of the signatures; (d)
We provide empirical results that show that the topological
signatures are highly correlated with the focused information
theoretic objective function considering measurement selection
and focused BSP, and are significantly faster to calculate.

II. RELATED WORK

In the last several decades, information theoretic decision
making approaches have been investigated in the context of
different problems. These include active perception, e.g. [1],
sensor deployment and measurement selection, e.g. [20] and
active SLAM, e.g. [9], [18], [28].

As initiations of a Partially Observed Markov Decision
Process (POMDP) [21], finding the optimal solution to these
problems is known to be computationally intractable [10]. As
such, different approaches have been developed to approxi-
mate the optimal solution while reducing the computational
complexity e.g. [9], [13] and [28].

While numerous graphical models based inference and
learning algorithms were proposed, e.g. [11] and [12], the
structural properties of such models and their use in deci-
sion making under uncertainty was only recently studied. In
[14], [15] the authors show that under some conditions, the
D-optimality criterion is strongly correlated with the graph
topology of SLAM, described by the weighted number of
spanning trees. The authors of [17] introduced a topological
BSP concept, based on topological signatures, to approximate
the solution to BSP in multi-robot active 2D SLAM. They
showed, that both the number of spanning trees and the Von

Neumann graph entropy signatures [24], [27] have a strong
correlation with the information theoretic cost. Moreover, they
proposed to use an approximation of the Von Neumann graph
entropy, as presented in [7], which only depends on the graph
node degrees, to further reduce the computational complexity.
In [16], they provide performance guarantees for their method.
In [4] the authors suggested to use graph topologies, including
weighted number of spanning trees and weighted node tree
(T-optimality metric) to reduce computational complexity, in
order to find the best trajectory for loop-closures in active 3D
pose-graph SLAM. While all of these works utilize topological
aspects, none of them considers the focused case.

Active focused inference approaches aim to reduce the
uncertainty only over a predefined subset of variables. In
[23] the authors determine MI between unfocused and focused
variable using a message-passing algorithm. In the context of
resource-constrained systems, where some data will eventually
have to be discarded, the authors of [25] offered a two stage
approach where they calculated the posterior covariance matrix
for each measurement to obtain the marginal over a focused
set of variables. The rAMDL approach, presented in [18], [19]
efficiently evaluates the information theoretic cost for each
candidate action in the focused and unfocused cases. It avoids
a computationally expensive Schur complement operation for
each candidate action by performing a one-time calculation of
the marginal covariance, associated with the variables involved
in candidate actions. While all of these works utilize different
graphical models representations to reduce the computational
complexity, considering the focused case, none of them incor-
porate any topological aspects in inference nor in planning.
Furthermore, one of the main advantages of a topological BSP
approach, is that it does not have to propagate the belief nor
recover marginals during planning. Yet, under some conditions
and given tight bounds, it can find the optimal solution.

III. NOTATION AND PROBLEM FORMULATION

In this section we provide the theoretical background for
focused Belief Space Planning and briefly review the factor
graph model [22] from which we induce the topological
signature associated with a posterior belief.

A. Focused Belief Space Planning

Consider a robot operating in a partially known envi-
ronment, aiming to autonomously decide its future actions
based on information accumulated thus far and a user defined
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objective function J . In this work, for simplicity, we assume a
2D pose SLAM framework with relative pose measurements.

Let p ∈ R2 and θ ∈ [−π, π) denote the robot position and
orientation, respectively. Let xk denote the robot’s state at time
instant k where the state vector is defined as xk =

[
pTk θk

]T
.

The joint state, up to and including time k, is defined as
Xk = {x0, x1, ..., xk}. A focused subset of states is denoted
by XF

k ⊆ Xk while the remaining unfocused states are
denoted by XU

k = Xk/X
F
k .

Let z0:k and u0:k−1 denote, respectively, all observations
and controls up to time k. The motion and observation models
are given by

xk+1 = f(xk, uk) + wk , zjk = h(xj , xk) + vjk (1)

where wk ∼ N (0,Σw) and vjk ∼ N
(
0,Σvjk

)
are the process

and measurement noise terms. The posterior probability den-
sity function (pdf) over the joint state, denoted as the belief,
is given by

b [Xk]
.
= P (Xk|z0:k, u0:k−1) = P (Xk|Hk) , (2)

where Hk
.
= {z0:k, u0:k−1} represent history at time k. Given

a candidate action sequence uk:k+L−1 and future observations
zk+1:k+L, the future joint belief is given by

b [Xk+L]
.
= P (Xk+L|z0:k+L, u0:k+L−1) . (3)

The future joint belief can be expressed in terms of b [Xk] and
the corresponding motion and observation models

b [Xk+L] ∝P (Xk|Hk)
k+L∏
l=k+1

P (xl|xl−1, ul−1)P (Zl|Xl) , (4)

where the measurement likelihood term P (Zl|Xl) =∏nl
m=1 P (zl,im |xl, xim) represents all nl observations acquired

at time l between involved variables xl and xim , {im} ⊆
{0, 1, . . . , l − 1}.

Given a user defined objective function J , a belief b [Xk]
and a set of candidate actions Uk, the goal of BSP is to find
the optimal action given by

U∗ = argmin
U

J (U) . (5)

For the unfocused case, a general objective function in BSP
can be written as

J (U) = E
Zk+1:k+L

[
L−1∑
l=0

cl (b [Xk+l] , uk+l) + cL (b [Xk+L])

]
, (6)

where cl represents a cost function for each look-ahead step,
cL represents the cost function of the terminal belief (at the
end of the planning horizon), and the expectation is taken with
respect to future observations. While each cost function can
include a number of different terms such as distance to goal,
energy spent and information measures of future beliefs, in
this work, we only consider the information theoretic term of
a terminal belief (to be defined) at time step k + L. We note
that different cost terms cl can be treated in a similar manner.
Specifically, given an appropriate posterior belief, we aim to
minimize the differential entropy H.

Evaluating the objective function (6) involves inference
over the appropriate posterior beliefs. Within a pose SLAM

framework with relative pose measurements, the Maximum
Likelihood (ML) estimation is obtained by the optimal state
X?
k that maximizes the belief (2). By fixing an arbitrary pose

as an anchor, e.g. x0, and considering the rest as unknown,
X?
k is obtained by minimizing the sum of weighted squared

errors between the predicted and measured relative poses

X?
k = arg min

Xk

||∆k − h (Xk)||2Σ−1 , (7)

where the measurement model

∆k = h (Xk) + ε , ε ∼ N (0,Σ) , (8)

represents a vector of m stacked relative pose measurements
zrij ∈ SE(2), r = 1, 2, ...,m generated according to the
motion and observation models (1). In this work, we assume
the noise covariance matrices, for both the rotational and
translational measurements, have a block-isotropic structure,
i.e. Σ = diag (Σp,Σθ) where Σp = diag

(
σ2
p1 I2, ..., σ2

pm I2
)

and Σθ = diag
(
σ2
θ1
, ..., σ2

θm

)
.

According to [29] the information matrix Λ (Xk), referred
from here on simply as Λk, of the ML estimation is given by
Λk = MTΣ−1M , where M = ∂h/∂Xk is a measurement
Jacobian. Evaluating Λk at the true value of Xk is known as
the Fisher Information Matrix (FIM) while evaluating Λk at
X?
k is used to approximate the FIM.
Given a multivariate Gaussian posterior belief and taking

the ML observations assumption [28], the differential entropy,
considering only the terminal joint belief, for the unfocused
case is given by (log denotes the natural logarithm in this
paper)

JH (U) = H (b [Xk+L]) =
n

2
log (2πe)− 1

2
log |Λk+L| , (9)

where n is the dimension of the joint state Xk+L and Λk+L
is the estimated FIM associated with the joint posterior belief
b [Xk+L]. As we are only interested in a focused set of
variables XF

k+L, the differential entropy, considering only the
terminal marginal belief, over the focused set, is given by

JF
H (U) = H

(
b
[
XF

k+L

])
=
nF

2
log (2πe)− 1

2
log
∣∣∣ΛM,F

k+L

∣∣∣ , (10)

where nF is the dimension of XF
k+L and ΛM,F

k+L is the marginal
FIM of the marginal posterior belief b

[
XF
k+L

]
.

B. Belief Topology

The joint belief at time k can be represented by a factor
graph [22]. A factor graph (FG) is a probabilistic graphical
model that represents a factorization of a probability density
function in terms of process and measurement models. It is a
bipartite graph whose nodes consist of factors F and variables
X . The variables X represent the random variables in the
estimation problem while the factors represent probabilistic
information on those variables. The FG edges encode connec-
tivity according to the variables involved in each factor. In this
work, we only consider pairwise factors without self-loops.

A topological representation of a joint belief is defined as
a topological graph G = (V, E , w) associated to a posterior
FG where each node vi ∈ V corresponds to a variable node
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xi ∈ X , as illustrated in Fig 2. Specifically, if x0 is fixed
as an anchor pose then v0 is the corresponding anchor node.
We also note that VF and VU correspond to XF and XU ,
respectively. The edge set E ⊆ V × V is defined as

eij
.
= (vi, vj) ∈ E ⇐⇒ fij

.
= (xi, xj) ∈ F , (11)

and the weight function w : E → R>0 assigns each edge
with a weight wij derived from the appropriate term in the
associated noise model of the corresponding factor.

Let W be a diagonal matrix of size |V| × |V| defined as

Wii =
∑
j

wij , (12)

i.e. each element on the main diagonal Wii is equal to the sum
of weights of all edges connected to node vi. The weighted
Laplacian matrix Lw associated to a topological graph G is
defined in [6] as

Lw(i, j) =


Wii if i = j,

−wij if vi and vj are adjacent,
0 otherwise

(13)

The weighted normalized Laplacian matrix L̂w associated to
a topological graph G is defined in [5] as

L̂w(i, j) =


1 if i = j,
−wij√
Wii·Wjj

if vi and vj are adjacent,

0 otherwise

(14)

The reduced weighted Laplacian matrix Lw and the reduced
weighted normalized Laplacian matrix L̂w are retrieved by
removing the row and column that correspond to the anchor
node from Lw and L̂w, respectively.

We also denote the reduced incidence matrix of G by A.
It is obtained by removing the row that corresponds to the
anchor node from the incidence matrix of G.

C. Weighted Tree Connectivity

Given a weighted topological graph G = (V, E , w) the
authors of [14] introduce a weighted version to Kirchoff’s
matrix tree theorem [2], where the value of each spanning
tree TG is given by

Vw (TG) =
∏

e∈E(TG)

w (e) , (15)

and the weighted number of spanning trees is defined as

tw (G) =
∑
t∈TG

Vw (t) . (16)

The Weighted Tree Connectivity (WTC) of G is defined as

τw (G) = log tw (G) . (17)

Considering the 2D pose SLAM framework addressed in this
work, the FIM of a posterior belief is given by (see eq. (18)
in [14])

Λ =

[
Lwp ⊗ I2 (Awp ⊗ I2)Γ∆wp

∗T Lwθ + ∆T
wp∆wp

]
, (18)

where * denotes the top-right block; I2 is the identity matrix
of size 2× 2 and ⊗ denotes the Kronecker product; Lwp , Lwθ
are the reduced weighted Laplacian matrices of G when edges
are weighted according to wp : ei → σ−2

pi , wθ : ej → σ−2
θj

respectively; Awp = A · diag (σp1 , ..., σpm) is the reduced
weighted incidence matrix when edges are weighted by wp;
Γ is defined as

Γ = I|E| ⊗
[

0 1
−1 0

]
, (19)

and ∆T
wp∆wp = Dwp is a diagonal matrix where

Dwp (i, i) =
∑

j∈Nout(i)

wp (i, j) ||pi − pj ||2 , (20)

i.e. Dwp (i, i) is equal to the weighted sum of squared dis-
tances between the i’th robot pose and every node observed
by it.

Under Theorem 3 in [14] the authors also provide lower
and upper bounds on the actual D-criterion

τw(G) ≤ log |Λ| ≤ τw(G) + n · log(1 + δ/λ1), (21)

where τw(G) = 2τwp(G) + τwθ (G); δ = ||∆T
wp∆wp ||∞ and

λ1 = λmin(Lwθ ). Moreover, they show that under some
conditions, these bounds become asymptotically tight and
the D-criterion is characterized solely by the weighted tree
connectivity of G

log |Λ|
δ/λ1→0+

= 2τwp(G) + τwθ (G). (22)

From hereon, we denote τw (G)
.
= τw.

IV. APPROACH

In focused topological BSP, we aim to rank candidate
actions by redefining the original focused problem (10) in
a topological space, where it can be solved more efficiently.
Given a belief b [Xk] and a set of candidate actions Uk, we
look for a topological representation G(uk) for each uk ∈ Uk
and a signature S : G(uk) → R, that would ideally yield
a solution which is consistent with the optimal solution of
the original focused problem (10) such that Û = U∗ where
Û = min

U
S(G(U)).

In this work, we derive topological signatures inspired by
the works of [14] and [17] on measurement selection and
active SLAM in the unfocused case, respectively.

A. Manipulating JFH
In practice, at each time step, we maintain a factor graph

that represents the joint posterior belief from which we can
induce the topological graph. Specifically, at time step k+L we
have access to FGk+L. As we are interested in a topological
representation which corresponds to the marginal posterior
belief over the focused variables XF

k+L, we would first need to
marginalize out the unfocused variables XU

k+L. Although such
algorithms exist, e.g. the sum-product algorithm [22], as the
set of focused variables is often small with respect to the entire
estimation problem, e.g. when we are interested in reducing
the entropy only over the robot’s last pose, calculating the
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marginal posterior information matrix involves an expensive
Schur complement operation.

As the joint posterior information matrix Λk+L is positive-
definite and symmetric, we can partition it such that

Λk+L =

[
ΛFk+L ΛF,Uk+L

(ΛF,Uk+L)T ΛUk+L

]
, (23)

where ΛFk+L ∈ RnF×nF and ΛUk+L ∈ RnU×nU are constructed
from Λk+L by retrieving only the rows and columns related
to XF

k+L and XU
k+L respectively. Notice that ΛUk+L is the

conditional posterior information matrix of XU
k+L, conditioned

on the rest of the variables XF
k+L. The remaining blocks,

ΛF,Uk+L, contain the mixed information between focused and
unfocused variables.

While the marginal posterior information matrix ΛM,F
k+L can

be calculated using the Schur complement, to calculate the
focused objective function (10) we only need to evaluate∣∣∣ΛM,F
k+L

∣∣∣. Using theorem 2.1 from [26] where∣∣∣Λk+L

∣∣∣ =
∣∣∣ΛM,F
k+L

∣∣∣ · ∣∣∣ΛUk+L

∣∣∣⇒ ∣∣∣ΛM,F
k+L

∣∣∣ =
∣∣∣Λk+L

∣∣∣/∣∣∣ΛUk+L

∣∣∣,
(24)

and substituting (24) into (10) we rewrite JFH as

JFH (U) =
nF

2
log (2πe)− 1

2
log
∣∣∣Λk+L

∣∣∣+
1

2
log
∣∣∣ΛUk+L

∣∣∣. (25)

Using (21), we can approximate log |Λk+L|. To derive an
approximation for (25) that is characterized solely by structural
properties, we now aim to approximate log

∣∣ΛUk+L

∣∣ using
topological aspects.

From here on, we drop the time indices and refer to a
general posterior belief b [X] with the associated FIM Λ.

B. The unfocused augmented graph GA,U

Our goal is to find a topological graph, and a corresponding
signature that would approximate log

∣∣ΛU ∣∣.
According to (23), as ΛU is a principal submatrix of Λ, it

is not hard to see that by taking only the rows and columns
that correspond to XU , the unfocused block ΛU is given by

ΛU =

[
LUwp ⊗ I2 (AUwp ⊗ I2)Γ∆U

wp

∗T LUwθ + (∆U
wp)T∆U

wp

]
. (26)

We observe that both LUwp and LUwθ represent reduced weighted
Laplacian matrices, that contain all unfocused variables and
weighted edges connected to those variables (see e.g. Fig 2c).
As such, to construct a topological graph, we can add a virtual
node va, to create the augmented weighted topological graph
GU,A. Note that the anchor node and all nodes that represent
focused variables do not belong to GU,A.

This augmented weighted topological graph is formally
defined as GU,A

(
VU
⋃
va, EU,A, wU,A

)
where each node vi ∈

VU corresponds to a variable xi ∈ XU ; the edge set EU,A is
defined as a union of three groups {eU,Aij |vi, vj ∈ VU ∧ eij ∈
E} ∪ {eU,Aia |vi ∈ VU , vj ∈ VF ∧ eij ∈ E} ∪ {e

U,A
ia |vi ∈

VU ∧ ei0 ∈ E} where ei0 denotes an edge connected to the

anchor node; each edge eU,Aia ∈ EU,A connected to the virtual
node va is weighted by

wU,Aia =
∑
j

wij such that vi ∈ VU and vj ∈ VF , (27)

while the remaining edges are weighted according to wU,Aij =
wij . Note that in (27), edges to the virtual node are weighted
such that we construct a Laplacian matrix, i.e. where the sum
of each row and each column is exactly zero. We can now
use the weighted version of Kirchhoff’s theorem (17) as a
topological signature for this graph. Specifically, we define

τU,Aw = 2τwp(GU,A) + τwθ (GU,A). (28)

C. Weighted Tree Connectivity Difference Signature

We approximate the focused objective function (25), using
the Weighted Tree Connectivity Difference (WTCD) between
G and the augmented graph induced from it GU,A. This
topological signature is defined as

S
WTCD

=
nF

2
log (2πe)− 1

2

[
τw − τU,Aw

]
. (29)

Using this signature we can get an approximated solution Û
whose properties we analyze from here on.
Theorem 1. The WTC of GU,A asymptotically bounds
log
∣∣ΛU ∣∣.

Proof. Following a similar proof to theorem 3 in [14] we get

τU,Aw ≤ log|ΛU | ≤ τU,Aw + nU · log(1 + δU/λU1 ), (30)

where δU = ||
(

∆U
wp

)T
∆U
wp ||∞ and λU1 = λmin(LUwθ ). It is

easy to see that

log
∣∣ΛU ∣∣

δU/λU1→0+

= τU,Aw . (31)

�

Theorem 2. Let ε(JFH)
.
= JFH −SWTCD

be the approximation
error, then it is bounded by

−n
2

log
(

1 +
δ

λ1

)
≤ ε(JFH) ≤ nU

2
log
(

1 +
δU

λU1

)
. (32)

Proof. Using inequalities (21), (30) and eq. (25) we get

UB[JFH] =
nF

2
log (2πe)− 1

2
τw +

+
1

2

[
τU,Aw + nU · log

(
1 +

δU

λU1

)]
= S

WTCD
+
nU

2
log
(

1 +
δU

λU1

)
. (33)

Similarly, the lower bound is given by

LB[JFH] =
nF

2
log (2πe)− 1

2

[
τw + n · log

(
1 +

δ

λ1

)]
+

+
1

2
τU,Aw = S

WTCD
− n

2
log
(

1 +
δ

λ1

)
. (34)

�
Lemma 1.

δ/λ1 → 0+ ⇒ δU/λU1 → 0+.
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Proof. Since the FIM is Hermitian and since ΛU is a principal
submatrix of Λ, according to Cauchy’s interlacing theorem [8],
the eigenvalues must satisfy

λ1 ≤ λU1 ≤ λ2 ≤ .... ≤ λn ≤ λUn ≤ λn+1. (35)

In addition, as nU is a finite number, i.e. represents the size of
a finite graph, and as wU,A is defined over finite non negative
weights, ∃α < ∞ such that δU < αδ. Combined with (35),
we get

δ/λ1 → 0+ ⇒ αδ/λ1 → 0+ ⇒ δU/λU1 → 0+. (36)

�

Lemma 1 implies that when δ/λ1 → 0+, the approximation
error in (32) approaches zero.

While S
WTCD

asymptotically converges to the focused
objective function (25), evaluating this signature still requires
calculating the determinant of the associated Laplacian ma-
trices. Moreover, if we would like to use these bounds to
eliminate candidate actions, we need to perform eigenvalue
decomposition to retrieve λ1, which cannot be done online.
Theorem 3. The approximation error ε(JFH) can also be
bounded using topological aspects only, where

1

2

(
τwθ −

n∑
i=1

log [Wθ(i, i) + δ]

)
≤ ε

(
JFH
)
... (37)

≤ 1

2

(
n∑
i=1

log
[
WU,A
θ (i, i) + δU,A

]
− τU,Awθ

)
. (38)

Proof. We follow [16] and derive the Hadamard bounds for
the focused case. Following the proof to Theorem 3 in [14]
we know that

log|Λ| ≤ 2τwp + log|Lwθ + δI|. (39)

We denote by Wθ the diagonal matrix defined in (12) based
on weights wθ defined in (18). Since Lwθ + δI is a positive-
definite matrix, applying Hadamard inequality we get

log|Lwθ + δI| ≤
n∑
i=1

log [Wθ(i, i) + δ] . (40)

Replacing (40) into (39) we get

log|Λ| ≤ 2τwp +
n∑
i=1

log [Wθ(i, i) + δ] . (41)

Similarly, for log|ΛU | we get

log|ΛU | ≤ 2τU,Awp +
n∑
i=1

log
[
WU,A
θ (i, i) + δU,A

]
. (42)

Replacing (41) and (42) into the definition of S
WTCD

we get
new bounds for ε

(
JFH
)
. �

While these bounds are somewhat more conservative, they
are functions of topological aspects only. We avoid the eigen-
value decomposition and can use them online.

Algorithm 1: Focused Topological BSP

Input: Set of factor graphs corresponding to candidate actions U
and a graph signature S

Output: approximate solution to FT-BSP: Û
1 foreach candidate action U do
2 infer topological graph G (section III. B)
3 construct unfocused augmented topological graph GU,A (section

IV. B)
4 evaluate S using G and GU,A (eq. 29 or eq. 49)
5 end
6 return Û = min

U
S(U)

D. Von Neumann Difference Signature

Inspired by [17], we also propose a second topological
signature to be evaluated online. The Von Neumann entropy
ĤV N of a topological graph G was introduced in [27] as
the Shannon entropy associated with the eigenvalues of its
normalized Laplacian

HV N
(
L̂w
)

= −
n∑
i=1

λ̂i
2

log
λ̂i
2
. (43)

Using the quadratic approximation, as proposed in [7], we
rewrite (43) for the weighted case as

HV N ≈ H̃V N =
n log 2

2
− 1

2

(
Tr
[
L̂2
w

]
− n

)
. (44)

Following a similar derivation as for equation (8) in [7], the
trace of the square of the weighted normalized Laplacian is

Tr
[
L̂2
w

]
= n+ 2

∑
eij∈E

wij
Wii ·Wjj

. (45)

Substituting (45) into (44) we get an expression for the
approximated Von Neumann graph entropy for the weighted
case

H̃V N
(
L̂w
)

=
n log 2

2
−
∑
eij∈E

wij
Wii ·Wjj

. (46)

We denote

hw = 2H̃V N
(
L̂wp

)
+ H̃V N

(
L̂wθ

)
(47)

hU,Aw = 2H̃V N
(
L̂U,Awp

)
+ H̃V N

(
L̂U,Awθ

)
, (48)

and formally define the Von Neumann Difference (VND)
topological signature as

S
VND

=
nF

2
log (2πe)− 1

2

[
hw − hU,Aw

]
. (49)

Calculating (46) is dependent on the diagonal matrix W
and generally has a quadratic complexity in the number
of nodes O(n2). However, in the context of BSP, as the
dimensionality of n grows with time, the information matrix
and the topological representation become sparse. Evaluating
(46), in this case, only depends on a small number of non-zero
elements, i.e. the number of edges |E|.
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Incremental aspects: Calculating (49) requires evaluating
H̃V N for the weighted Laplacian matrices of both G and GU,A.
However, we can re-use calculations rather than evaluating
each from scratch. The approximated Von Neumann entropies
(44) for a posterior belief, at time k + L, are given by

H̃V N

(
L̂w

)
=

(k + L+ 1) log 2

2
−
∑

eij∈E

wij

Wii ·Wjj
(50)

H̃V N

(
L̂U,A

w

)
=

(
k + L+ 2−

∣∣nF
∣∣) log 2

2
−

∑
eij∈EU,A

wU,A
ij

WU,A
ii ·WU,A

jj

(51)
Subtracting (51) from (50) and rearranging the result we get

H̃V N
(
L̂U,Aw

)
= H̃V N

(
L̂w
)

+

(
1−

∣∣nF ∣∣) log 2

2
+ ∆, (52)

where

∆ =
∑
eij∈E

wij
Wii ·Wjj

−
∑

eij∈EU,A

wU,Aij

WU,A
ii ·WU,A

jj

. (53)

According to (27), all edges that are not connected to the
virtual node in the augmented graph, share the same weights
in both graphs. We denote an edge that does not connect to an
unfocused node by e¬U and by eV an edge which is connected
to the virtual node. Reducing all shared terms between the two
sums in (53), we rewrite ∆ as

∆ =
∑
e¬Uij ∈E

wij
Wii ·Wjj

−
∑

eVij∈EU,A

wU,Aij

WU,A
ii ·WU,A

jj

. (54)

Notice that evaluating ∆ is dependent on the number of
focused variables and their connectivity. The smaller they are,
with respect to the entire problem, the more we gain in terms
of computational costs.

Following similar steps, we can also derive a recursive
update rule for calculating the VND signature for the posterior
graph S

VND
(Gk+L) from the VND signature of the prior

S
VND

(Gk) for each candidate action. As such, calculating this
signature is computationally very efficient.

signature measurement selection active SLAM
SWTCD 18.88 1.21
SVND 12.02 0.14
JF
H 146.24 6.34

TABLE I: Average time in milliseconds for calculating both signatures and
the focused objective function for each candidate action. We note that while
the WTCD signature is calculated using a highly optimized Matlab code
with a C back-end and that JF

H is calculated in C++, we calculate the V ND
signature purely in Matlab without code optimization.

V. RESULTS

We evaluate our approach considering a measurement se-
lection problem and an active 2D pose SLAM simulation, to
empirically study the two topological signatures.

In our first experiment, we use the 2D pose SLAM Intel
dataset [3], which contains n = 1228 robot poses and 278
loop-closure observations. We modified the original covariance
matrix to have a block-isotropic structure. In this measurement
selection problem, the goal is to find the most informative

subset of observations, with respect to a random focused set
of variables of size nF < n/2. All sub-graphs share the
same vertex set and contain all odometry edges. In total, we
generate nL = 278 such sub-graphs where, for each sub-graph
we randomly choose a subset of loop closure edges. Given
the focused set of variables, we evaluate the original focused
objective function and the two topological signatures. This
experiment was performed several times for different focused
sets in different sizes. In Fig. 3 we see that both signatures
are highly correlated with the focused objective function (25)
given a specific focused set. In Table I we report the average
run time statistics for all runs showing the improvement in
computational cost.
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Fig. 3: Topological signatures vs marginal entropy for different loop-closure
measurements given a random focused set of poses in the Intel dataset.

In our second experiment, we evaluate our approach in
an active 2D pose SLAM simulation. In this scenario, the
robot’s objective is to reach a predefined goal with maximum
accuracy, while navigating in an unknown environment. Using
a probabilistic roadmap (PRM) [13] we first discretize the
environment. We assume that the robot previously visited some
areas within the map and that all planning sessions start right
after. We then randomly generate a set of candidate paths, over
the roadmap, all ending at the predefined goal (see e.g. Fig 4).
As such, the focused set of variables is defined as the last robot
pose in each candidate path. i.e. the objective is to reduce the
uncertainty over that position. Given all candidate paths, we
evaluate the original focused objective function and the two
topological signatures. As seen in Fig. 5 both signatures are
highly correlated with the focused objective function (25). The
figure also shows that in this setting, the bounds developed in
Theorem 2 are sufficiently tight to allow action elimination.
However, the Hadamard bounds developed in Theorem 3, are
not informative in this case as they are not tight enough to
allow action elimination. In general, Hadamard bounds are
more informative in diagonally dominant matrices. In the
specific case presented δ was relatively small.

VI. CONCLUSIONS

In this work, we introduced a novel concept that considers
topological aspects for decision making under uncertainty,
with respect to a focused set of variables. In the context
of information theoretic problems, we developed two such
topological signatures and empirically showed that there is a
very high correlation between both signatures and the focused
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Fig. 4: different candidate paths generated on top of a PRM in a single
planning session. Stating position is denoted with a red star and the goal
is denoted with a circle. The yellow path represents the locations that the
robot had previously visited and acts as the initial belief.
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Fig. 5: Topological signatures in dashed lines vs JF
H in a focused BSP

problem. The solid lines represent the bounds developed in Theorem 2.

information theoretic objective function in two different prob-
lems. We developed bounds for the approximation error of
the WTCD signature and showed that under some conditions
it converges to the optimal solution. As such, we can use
this signature and bounds to discriminate between candidate
actions. Furthermore, as calculating these bounds requires
eigenvalue decomposition, we also introduced the Hadamard
bounds, that are based solely on topological aspects and can be
calculated online. We then derived the VND signature, which
extends the work of [17], to handle the focused case and
weighted Laplacian matrices. Not only that calculating this
signature is more computationally efficient, we also showed
that it can be done in incremental fashion.

Finally, as can be seen in Table I, we found that calculating
both signatures is an order of magnitude faster then calculating
the objective function in the measurement selection experi-
ment. In the active SLAM experiment, the advantage of using
the VND signature is even more prominent.
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