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Abstract. Autonomous agents operating in perceptually aliased envi-
ronments should ideally be able to solve the data association problem.
Yet, planning for future actions while considering this problem is not triv-
ial. State of the art approaches therefore use multi-modal hypotheses to
represent the states of the agent and of the environment. However, explic-
itly considering all possible data associations, the number of hypotheses
grows exponentially with the planning horizon. As such, the correspond-
ing Belief Space Planning problem quickly becomes unsolvable. More-
over, under hard computational budget constraints, some non-negligible
hypotheses must eventually be pruned in both planning and inference.
Nevertheless, the two processes are generally treated separately and the
effect of budget constraints in one process over the other was barely
studied. We present a computationally efficient method to solve the non-
myopic Belief Space Planning problem while reasoning about data asso-
ciation. Moreover, we rigorously analyze the effects of budget constraints
in both inference and planning.

Keywords: Planning under uncertainty · Robust perception · SLAM

1 Introduction

Intelligent autonomous agents and robots are expected to operate reliably and
efficiently under different sources of uncertainty. There are various possible rea-
sons for such uncertainty, including noisy measurements; imprecise actions; and
dynamic environments in which some events are unpredictable. In these set-
tings, autonomous agents are required to reason over high-dimensional proba-
bilistic states known as beliefs. A truly autonomous agent should be able to
perform both inference, i.e. maintain a belief over the high-dimensional state
space given available information, and decision making under uncertainty. The
latter is also known as the Belief Space Planning (BSP) problem, where the
agent should autonomously determine its next best actions while reasoning about
future belief evolution. However, both inference and BSP are computationally
expensive and practically infeasible in real-world autonomous systems where the
agent is required to operate in real time using inexpensive hardware.
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In real-world scenarios, an autonomous agent should also be resilient to the
problem of ambiguous measurements. These ambiguities occur when a certain
observation has more than one possible interpretation. Some examples include
the slip/grip behavior of odometry measurements; the loop closure problem in
visual Simultaneous Localization and Mapping (SLAM); and unresolved data
association. The latter is defined as the process of associating uncertain mea-
surements to known tracks, e.g. determine if an observation corresponds to a
specific landmark within a given map. Most existing inference and BSP algo-
rithms assume data association to be given and perfect, i.e. assume a single
hypothesis represented by a uni-modal state and map estimates. Yet, in percep-
tually aliased environments, this assumption is not reasonable and could lead to
catastrophic results. Therefore, it is crucial to reason about data association, in
both inference and planning, while also considering other sources of uncertainty.

Explicitly reasoning about data association, the number of hypotheses grows
exponentially with time. As such, when considering real time operation using
inexpensive hardware, hard computational constraints are often required, e.g.
bounding the number of supported hypotheses. State of the art inference and
planning approaches therefore use different heuristics, e.g. pruning and merging,
to relax the computational complexity. However, this loss of information incurs
loss in solution quality and there are usually no performance guarantees. More-
over, inference and planning are commonly treated separately and it is unclear
how budget constraints in one process affect another.

In this work we extend our presented approach in [17] to a nonmyopic setting.
Specifically, we handle the exponential growth of hypotheses in BSP by solving
a simplified problem while providing performance guarantees. To that end, we
analyze for the first time, the construction of a belief tree within planning given
a mixture belief, e.g. Gaussian Mixture Models (GMM). We further show how
to utilize the skeleton of such belief tree to reduce the computational complexity
in BSP. Crucially, this paper thoroughly studies, for the first time, the impacts
of hard budget constraints in either planning and/or inference.

2 Related Work

Several approaches were recently proposed to ensure efficient and reliable opera-
tion in ambiguous environments. Known as robust perception, these approaches
typically maintain probabilistic data association and hypothesis tracking.

A good inference mechanism should handle false data association made
by front-end algorithms and be computationally efficient. The authors of [16]
recently suggested to re-use hypotheses’ weights from previous steps to reduce
computational complexity and improve current-time hypotheses pruning. Con-
vex relaxation approaches over graphs were proposed in [2,13] to capture percep-
tual aliasing and find the maximal subset of internally coherent measurements,
i.e. correct data association. The max-mixture model was presented in [14] to
allow fast maximum-likelihood inference on factor graphs [12] that contain arbi-
trarily complex probability distributions such as the slip/grip multi modal prob-
lem. The authors of [7,8] used factor graphs with an expectation-maximization
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approach to efficiently infer initial relative poses and solve a multi robot data
association problem. In [21] the topological structure of a factor graph was mod-
ified during optimization to discard false positive loop closures. The Bayes tree
algorithm [10] was extended in [5,9] to explicitly incorporate multi-modal mea-
surements within the graph and generate multi-hypothesis outputs. These works,
however, were only developed for the purpose of inference, i.e. without planning.

Ambiguous data association was also considered in planning. In [1] a GMM
was used to model prior beliefs representing different data association hypothe-
ses. However, the authors did not reason about ambiguous data association
within future beliefs (owing to future observations), i.e. they assumed that it is
solved and perfect in planning. In [15] the authors introduced DA-BSP where, for
the first time, reasoning about future data association hypotheses was incorpo-
rated within a BSP framework. The ARAS framework proposed in [6] leveraged
the graphical model presented in [5] to reason about ambiguous data associa-
tion in future beliefs. All of these approaches handled the exponential growth in
the number of hypotheses by either pruning or merging. The first work to also
provide performance guarantees on the loss in solution quality was presented in
[17]. Yet, the authors only considered a myopic setting.

The notion of simplification was introduced in [4], where, the authors formu-
lated the loss in solution quality in BSP problems via bounds over the objective
function. However, they only considered the Gaussian case and a maximum like-
lihood assumption. The authors of [23] used bounds as a function of simplified
beliefs to reduce the computational complexity in nonmyopic BSP problems
with general belief distributions. In [22] they incorporated this concept within
a Monte Carlo Tree Search (MCTS) planning framework, i.e. without assuming
that the belief tree is given, which is complimentary to our approach. Yet, they
did not handle ambiguous data association nor budget constraints aspects.

3 Background and Notations

In this section we review some basic concepts from estimation theory and BSP
which we will use in the following sections.

3.1 Inference

Consider an autonomous agent operating in a partially known or pre-mapped
environment containing similar landmarks or scenes. The agent acquires obser-
vations and tries to infer random variables of interest that are application depen-
dent while reasoning about data association.

We denote the agent’s state at time instant k by xk. Let Zk � {zk,1, ..., zk,nk
}

denote the set of all nk measurements and let uk denote the agent’s action. Z1:k

and u0:k−1 denote all observations and actions up to time k, respectively. The
motion and observation models are given by

xk+1 = f (xk, uk, wk) , zk = h
(
xk, xl, vk

)
, (1)
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where xl is a landmark pose and wk and vk are noise terms, sampled from known
motion and measurement distributions, respectively.

Given nk observations, the data association realization vector is denoted by
βk ∈ N

nk . Elements in βk are associated according to the given observation
model and each element, e.g. landmark, is given a unique label. A specific data
association hypothesis is thus given by a specific set j of associations up to and
including time k and is denoted as βj

1:k.
At each time step the agent maintains a posterior belief over both continuous

and discrete variables given by

b [xk, β1:k] � P (xk, β1:k|z0:k, u0:k−1) = P (xk, β1:k|Hk) , (2)

where Hk � {Z1:k, u0:k−1} represents history. Using the chain rule, the belief
becomes a mixture and can be written as a linear combination of |Mk| hypotheses

bk =
∑

j∈Mk

P

(
xk|βj

1:k,Hk

)

︸ ︷︷ ︸
bjk

P

(
βj
1:k|Hk

)

︸ ︷︷ ︸
wj

k

, (3)

where bj
k is a conditional belief, with some general distribution, and wj

k is the
associated weight. Therefore, Mk is a set of maintained weighted conditional
beliefs, representing different data association hypotheses. In this work, we inter-
changeably refer to each bj

k as both a hypothesis and a component.
Each conditional belief hypothesis bj

k in (3) can be efficiently calculated by
maximum a posteriori inference, e.g. as presented in [10] for the Gaussian case.
Nevertheless, our formulation and approach also applies to a non-parametric
setting. Each component weight wj

k is calculating by marginalizing over the
state space and applying the Bayes rule (as developed in [15,17]).

Reasoning about data association, without any computational constraints,
the number of considered hypotheses grows exponentially with time. In general,
such belief is a function of bk = ψk (bk−1, uk−1, Zk). However, under hard compu-
tational constraints, the number of hypotheses is bounded by C ∈ N. Therefore,
the belief in each time step is a function of

bψ
k = ψC

k (bk−1, uk−1, Zk, C) , (4)

where ψC
k contains some heuristic function hinf such that |Mψ

k | ≤ C.

3.2 DA-BSP

Given a posterior belief (3) and a set of candidate action sequences U the goal
of BSP is to find the optimal action sequence that would minimize/maximize
a certain objective function. We note that while in this paper we consider, for
simplicity, action sequences, our approach is applicable also to policies.

Reasoning about data association in planning, a user defined objective func-
tion J can be written as

J (bk, uk:k+N−1) = E
β(k+1)+

[

E
Z(k+1)+|β(k+1)+

[
N∑

n=1

c (bk+n, uk+n−1)

]]

, (5)
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Fig. 1. (a) A belief tree constructed during planning. Each node represents a posterior
belief (3); The number of belief components grows exponentially along the highlighted
path as presented in (b).

where β(k+1)+ � βk+1:k+N , Z(k+1)+ � Zk+1:k+N and c (·) denotes a cost func-
tion. The expectation is taken with respect to both future data association real-
izations and observations. The optimal action sequence u∗

k:k+N−1 is defined as

u∗
k:k+N−1 = argmin

U
J (bk, uk:k+N−1) . (6)

To solve (6) we need to consider all possible future realizations of Zk+n for
every n ∈ [k + 1, k + N ] while marginalizing over all possible locations and data
association realizations (see Section 5.2 in [15]). However, solving these inte-
grals analytically is typically not feasible. In practice, the solution should be
approximated by sampling future observations from the relevant distributions.
Using these samples, the agent constructs and traverses a belief tree (as shown
in Fig. 1a) which branches according to future actions and observations.

Nevertheless, the number of hypotheses grows exponentially with the plan-
ning horizon (see Fig. 1b). Specifically, given |Mk| hypotheses and D data asso-
ciation realizations, i.e. different βk+i at each look-ahead step, the number of
belief components at the nth look-ahead step is |Mk+n| = |Mk| |D|n. As such,
considering every possible future hypothesis is not practical.

4 Methodology

In this section we first describe how to construct a belief tree skeleton during
planning. We then present a general framework to reduce the computational com-
plexity when solving a sampling based approximation of (5). Finally, we analyze
the implications of using our proposed framework under different conditions.

4.1 Constructing the Belief Tree skeleton

Previous works addressed the exponential growth of the belief tree with the plan-
ning horizon without reasoning about data association. In this work we analyze
and describe, for the first time, the structure of a belief tree given a mixture
belief such as (3). In this setting there is an additional exponential growth in the
number of belief components for every considered future observation realization
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(see Fig. 1). These realizations are functions of future beliefs (3), data association
realizations and actions

P(Zk+1:k+n|bk, uk:k+n−1, βk+1:k+n). (7)

To construct the belief tree in practice, we sample states from beliefs, sample
data association given states and finally sample observations from (7).

Our key observation is that in order to construct a belief tree skeleton, i.e.
without explicitly calculating or holding posterior beliefs at each node, we can
sample future observations in two different ways. We describe these two options
for a planning horizon of n = 2. Specifically, we can either rewrite (7) as

P(Zk+2|bk+1|βk+1 , uk+1, βk+2)P(Zk+1|bk, uk, βk+1), (8)

where bk+1|βk+1 is a posterior belief and each term is evaluated by integrating
over xk+1:k+2, or, by first integrating and then applying the chain rule as∫

xk+2

P(Zk+2|xk+2, βk+2)

∫

xk+1

P(xk+2|xk+1, uk+1)P(Zk+1|xk+1, βk+1)P(xk+1|bk, uk). (9)

While these two expressions are analytically identical, they represent two differ-
ent processes of sampling. In the former observations are sampled from posterior
beliefs, while in the latter observations are sampled using the motion and obser-
vation models, similar to the MCTS particle trajectories techniques in [20,24].

Algorithm 1: Construct belief tree skeleton

Input: prior belief bk, action sequence uk:k+n−1
Output: sampled future observations Zk+1:k+n

1 Z = ∅
2 xk ∼ bk
3 for i ∈ [1, n] do
4 xk+i ∼ P(xk+i|xk+i−1, uk+i−1)
5 determine βk+i based on xk+i

6 Zk+i ∼ P(Zk+i|xk+i, βk+i)
7 Z = Z ∪ Zk+i

8 return Z

To avoid the explicit representation of the exponential number of belief com-
ponents, in this work we sample future observations using (9) and bypass the
inference stage. We formulate this sampling method in Algorithm 1.

Yet, this is of little help if the posterior belief is required for calculating the
cost function itself. We next describe our approach to avoid these calculations.

4.2 Nonmyopic Distilled Data Association BSP

Our goal is to reduce the computational complexity of nonmyopic BSP prob-
lems where ambiguous data association is explicitly considered, i.e. solving (6)
efficiently. We start by writing (5) in a recursive form
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J (bk, uk:k+N−1) = c (bk, uk) + E
βk+1

[
E

Zk+1|βk+1

[J (bk+1, uk+1:k+N−1)]
]

. (10)

As in practice we approximate the solution via samples, we rewrite (10) as

Ĵ (bk, uk:k+N−1) = c (bk, uk) + Ê
βk+1

[
Ê

Zk+1|βk+1

[
Ĵ (bk+1, uk+1:k+N−1)

]]
. (11)

Using Bellman’s principle of optimality, the optimal solution for (11) is

Ĵ
(
bk, û∗

k:k+N−1

)
= min

uk

{c (bk, uk) + Ê
βk+1

[
Ê

Zk+1|βk+1

[
Ĵ

(
bk+1, u

∗
k+1:k+N−1

)]
]
},

(12)

where û∗
k:k+N−1 = argmin

U
Ĵ (bk, uk:k+N−1). To reduce the computational com-

plexity in (12), we propose utilizing the belief tree skeleton, without having access
to posterior beliefs, to solve an easier to compute version of the considered cost
function.

Fig. 2. BSP using bounds over the objective function. In (a) choosing action #1 is
guaranteed to be optimal as the corresponding upper bound is lower than all other
lower bounds; In (b) choosing action #2 is not guaranteed to be optimal. The loss in
solution quality, however, is upper bounded.

In general, the cost function over the original beliefs can be bounded using
a simplified belief bs

k as

c (bs
k, uk) ≤ c (bk, uk) ≤ c̄ (bs

k, uk) . (13)

We note that this formulation also supports replacing the cost function itself
with a computationally simpler function, as in [11,19].

Using the belief tree skeleton and some method to calculate the simplified
beliefs, to be defined, we now traverse the belief tree from the leafs upwards. At
each belief tree node the bounds over the objective function (5) are calculated
recursively using the Bellman equation (12) and (13) for every n ∈ [0, N − 1]

J
(
bk+n, u(k+n)+

)
= c

(
bs
k+n, uk+n

)
+ Ê

βk+1

[
Ê

Zk+n+1|βk+1

[
J

(
bk+n+1, u(k+n)+

)]
]

,

J̄
(
bk+n, u(k+n)+

)
= c̄

(
bs
k+n, uk+n

)
+ Ê

βk+1

[
Ê

Zk+n+1|βk+1

[
J̄

(
bk+n+1, u(k+n)+

)]
]

,

(14)
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where u(k+n)+ � uk+n:k+N−1. If these bounds do not overlap (see Fig. 2a), one
can guarantee to select the optimal action sequence as in (12).

Our general Nonmyopic Distilled Data Association BSP (ND2A-BSP) app-
roach is presented in Algorithm 2. The algorithm receives a belief tree skeleton;
a heuristic function h used to select the subsets of hypotheses in each belief tree
node, i.e. defines bs

k+n; and a decision rule R which decides whether the con-
sidered subsets are enough, e.g. when no overlap between bounds is required or
when calculations exceed a user defined time threshold, providing anytime per-
formance guarantees. The algorithm returns the best action sequence, given the
computational constraints, and an upper bound on the loss in solution quality.

It is worth mentioning that our approach can be adapted to a setting where
the belief tree construction is coupled with Q function estimates, e.g. using
MCTS and Upper Confidence Bound (UCB) techniques [20], following a similar
approach to the one presented in [22]. However, we emphasize that as the belief
tree skeleton approximates (10) via samples, our method provides performance
guarantees with respect to that specific skeleton, i.e. with respect to (12). Not to
be confused with the asymptotic guarantees of MCTS approaches, with respect
to the theoretical problem (10), which is an entirely different aspect not related
to the approach presented in this paper.

Algorithm 2: Generic Nonmyopic Distilled Data Association BSP

Input: belief tree skeleton T , simplification heuristic h, decision rule R
Output: action sequence u∗, loss

1 Function ND2A-BSP(T, h, R):
2 LB∗, UB∗, loss = PLAN (T.root, h, R)
3 u∗ ← corresponding to LB∗, UB∗

4 return u∗, loss

5 Function PLAN(Node, h, R):
6 Node.bsk+n ← h (Node)

7 if Node is a leaf then
8 return c

(
Node.bsk+n

)
, c̄

(
Node.bsk+n

)
, 0 // loss = 0 at leaf

9 Node.bounds = ∅
10 foreach child C of Node do
11 lb, ub, loss ← ND2A-BSP(C, h, R)

12 LB ← c
(
Node.bsk+n

)
+ lb // objective lower bound (14)

13 UB ← c̄
(
Node.bsk+n

)
+ ub // objective upper bound (14)

14 Node.bounds = Node.bounds ∪ (LB, UB)

15 while R (Node.bounds) is not satisified do
16 ND2A-BSP(Node, h, R) // further simplification is needed
17 LB∗, UB∗, loss ← Node.bounds
18 return LB∗, UB∗, loss

We now analyze different settings, within inference and planning, where the
agent either has or does not have hard budget constraints. To the best of our
knowledge, this is the first time that these aspects are addressed in works that
attempt to reduce the computational complexity of the planning problem. The
differences between the considered settings are summarized in Table 1.

4.3 No Budget Constraints in Inference

In this section we assume that there are no constraints in inference, i.e. each belief
tree node can theoretically hold every possible hypothesis within the planning
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Table 1. A summary of the considered scenarios, with respect to budget constraints
on the number of supported hypotheses in each algorithm, for each considered case.
Cases 1&2 are presented in Sect. 4.3 while cases 3&4 are presented in Sect. 4.4

Budget constraints in inference Budget constraints in planning

Case 1 � �

Case 2 � �

Case 3 � �

Case 4 � �

horizon. The objective of inference however is different than the main goal of
BSP. In inference the agent tries to represent the considered state as accurately
as possible while in planning the goal is to retrieve the optimal action sequence
or policy. As such, in this setting, the problems are decoupled (see Fig. 3a).

We now further separate between two cases, when the planning algorithm
either has budget constraints or not. In both cases, each belief tree node still has
an exponential number of components, which we avoid calculating explicitly.

Case 1. With no budget constraints in planning we propose bounding the cost
function as

c
(
bk, uk+, Z(k+1)+, bs

k+n

) ≤ c (bk+n, uk+n) ≤ c̄
(
bk, uk+, Z(k+1)+, bs

k+n

)
. (15)

where uk+ � uk:k+n−1 and Z(k+1)+ � Zk+1:k+n. A key difference from the
approach presented in [23] is that these bounds are not functions of bk+n.

As the number of belief components grows exponentially we avoid calculating
c (bk+n). Instead, we calculate a simplified belief bs

k+n, using Bayesian updates
via uk:k+n−1 and Zk+1:k+n, only for specific components from the prior belief
bk. This extends our proposed approach in [17] to the nonmyopic case. Each
simplified belief is formally defined, using Ms

k+n ⊆ Mk+n components, as

bs
k+n �

∑

r∈Ms
k+n

ws,r
k+nbr

k+n, ws,r
k+n �

wr
k+n

wm,s
k+n

, (16)

where wm,s
k+n �

∑
m∈Ms

k+n
wm

k+n is used to re-normalize each corresponding
weight. Most importantly, a simplified belief bs

k+n is calculated using only a
subset of hypotheses, i.e. without calculating the posterior belief bk+n.

Using Algorithm 2 given a decision rule R, with no overlap between bounds
(14), and a heuristic h, e.g. which chooses hypotheses greedily based on prior
weights, we guarantee the selection of the optimal actions sequence, with respect
to the specific belief tree, while reducing the computational complexity.

Case 2. Under budget constraints in planning, the algorithm can use up to C
components, in each simplified belief bs

k+n, to calculate the bounds in (15). Yet,
each subset of components is chosen independently w.r.t. bk+n which develops
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Fig. 3. No budget constraints in inference. Colors denote components generated from
previous time steps. (a) Planning without budget constraints, the algorithm can choose
any subset of components, highlighted in yellow, in each node to evaluate the bounds;
(b) With budget constraints in planning, each subset selection is bounded in size by C
= 2.

exponentially, i.e. hypotheses chosen in time steps k + n and k + n + i are not
necessarily related (see Fig. 3b).

In this setting, the number of possible distilled subsets for each bs
k+n is

(|Mk+n|
C

)
which can be very high. Moreover, there are no guarantees that the

bounds between candidate actions would not overlap. However, using the bounds
in (15), our proposed approach can yield the worst-case loss in solution quality,
i.e. provide performance guarantees (see Fig. 2b).

4.4 Hard Budget Constraints in Inference

In the previous section we only considered that the belief at the root of the tree
is provided from inference. As the posterior beliefs within the constructed belief
tree were with an exponentially increasing number of components, i.e. without
budget constraints, the key idea was to avoid making explicit inferences. Instead,
we calculated bounds that utilized, under budget constraints in planning, a fixed
number of components. In practice, however, real world autonomous systems do
not work that way. Instead, they are often required to operate in real time
using inexpensive hardware with hard computational budget constraints in both
inference and planning.

Under hard budget constraints on the number of considered hypotheses in
inference, the posterior belief in each belief tree node is determined by (4), i.e.
|Mψ

k+n| ≤ C under some heuristic hinf . Moreover, once a hypothesis is discarded
in time step k it is no longer considered in future time steps. Yet, the decision
regarding which components to choose, while calculating the bounds in planning,
depends on either if the heuristic in (4) is given or determined within planning.
To the best of our knowledge, the latter is a novel concept never considered.

Case 3. In this setting we consider the heuristic in (4) to be given within plan-
ning, i.e. posterior belief tree nodes exactly represent how the belief would evolve
in inference under (4). In contrast to Sect. 4.3, as the number of components does
not grow exponentially, we sample future observations according to (8) and con-
struct the belief tree explicitly, i.e. perform inference in each node. Therefore,
the planning algorithm can no longer choose any subset of components for each
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Fig. 4. Hard budget constraints in inference. Colors denote components generated from
previous time steps. (a) Planning given the heuristic in inference, the algorithm can
only evaluate the bounds using components that represent how the belief would evolve
in inference; (b) The planning algorithm is free to choose components under any valid
heuristics in inference given the budget C. Each selected component in time step k+n+1
must originate from a selected component in time step k + n.

bs
k+n, i.e. hypotheses discarded in time step k + n cannot be considered in time

step k + n + 1 (see Fig. 4).
The bounds over the considered cost are now a function of the belief in the

previous time step under (4). Specifically, we rewrite them as

c
(
bψ
k+n−1, uk+n−1, Zk+1, b

s
k+n

)
≤c

(
bψ
k+n, uk+n

)
≤ c̄

(
bψ
k+n−1, uk+n−1, Zk+1, b

s
k+n

)
.

(17)

These bounds represent a recursive setting in contrast to the bounds in (15).
Using our approach iteratively in each time step, reduces the computational

complexity of the considered cost function in planning while providing perfor-
mance guarantees. As each posterior belief is determined by inference (Fig. 4a),
performance guarantees are with respect to the given heuristic in inference (4).

Case 4. We now relax the assumption that the planning algorithm is confined
to the specific heuristic in (4). Unlike in Case 2, where each subset of compo-
nents can be used in each node to calculate the bounds, this setting has an
additional constraint. We formulate this by representing the bounds from (15)
in two consecutive time steps

c
(
bk, uk+, Z(k+1)+, bs

k+n

) ≤ c (bk+n) ≤ c̄
(
bk, uk+, Z(k+1)+, bs

k+n

)
,

c
(
bk, uk+, Z(k+1)+, bs

k+n+1

) ≤ c (bk+n+1) ≤ c̄
(
bk, uk+, Z(k+1)+, bs

k+n+1

)
,

s.t.
∣
∣Ms

k+n

∣
∣ ,

∣
∣Ms

k+n+1

∣
∣ ≤ C and ∀bs,ij

k+n+1 ∈ bs
k+n+1 ⇒ bs,j

k+n ∈ bs
k+n,

(18)

where bs,j
k+n denotes the jth hypothesis in the simplified subset bs

k+n and bs,ij
k+n+1

denotes the ith hypothesis in the simplified subset bs
k+n+1, originated from bs,j

k+n,
i.e. as in Fig. 1b.

The components chosen in the sequence of bounds (18) which minimizes the
loss, w.r.t. the original problem, define a heuristic hp� (see Fig. 7c), which is valid
in inference. The heuristic hp� can be used with any BSP approach to solve (12)
and to reduce computational complexity, using our approach, as described in
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Case 3. To the best of our knowledge, leveraging hp� is a novel concept. We
note that while hp� minimizes the loss in planning, it is generally different than
hinf . As such, the implications of utilizing such heuristic in inference are not
straightforward. The study of such mechanism is left for future research.

4.5 The Cost Function

While the formulation thus far was for a general cost function, in this section
we focus on active disambiguation of hypotheses. Specifically, we utilize the
Shannon entropy, defined over posterior belief components weights. The cost
for a belief bk+n with Mk+n components is thus given by Hk+n � c (bk+n) =
−∑

r∈Mk+n

wr
k+n

ηk+n
log

(
wr

k+n

ηk+n

)
, where ηk+n �

∑
r∈Mk+n

wr
k+n. Similarly, for a sim-

plified belief bs
k+n with Ms

k+n ⊆ Mk+n the cost is given by Hs
k+n � c

(
bs
k+n

)
=

−∑
r∈Ms

k+n
ws,r

k+nlog
(
ws,r

k+n

)
.

To allow fluid reading, proofs for all theorems and corollaries are given in the
supplementary material [18].

Theorem 1. For each belief tree node representing a belief bk+n with Mk+n

components and a subset Ms
k+n ⊆ Mk+n the cost can be expressed by

Hk+n =
wm,s

k+n

ηk+n

[
Hs

k+n + log

(
ηk+n

wm,s
k+n

)]
−

∑

r∈¬Ms
k+n

wr
k+n

ηk+n
log

(
wr

k+n

ηk+n

)
, (19)

where ¬Ms
k+n � Mk+n \ Ms

k+n.

Using Theorem 1, we derive bounds for Hk+n which are computationally more
efficient to calculate as we only consider a subset of hypotheses. However, as eval-
uating ηk+n requires by definition evaluating all posterior components weights,
which we do not have access to, we need to bound this term as well (denoted
below as LB [ηk+n] and UB [ηk+n]).

Theorem 2. Given a subset of components Ms
k+n ⊆ Mk+n, the cost term in

each belief tree node is bounded by

LB [Hk+n] =
wm,s

k+n

UB [ηk+n]

[
Hs

k+n + log

(LB [ηk+n]
wm,s

k+n

)]
, (20)

UB [Hk+n] =
wm,s

k+n

LB [ηk+n]

[
Hs

k+n + log

(UB [ηk+n]

wm,s
k+n

)]
− γ̄log

(
γ̄

|¬Mk+n|
)

, (21)

where γ̄ = 1 − ∑
r∈Ms

k+n

wr
k+n

UB[ηk+n]
and

∣
∣¬Ms

k+n

∣
∣ > 2.

Furthermore, considering different levels of simplifications, i.e. adding belief com-
ponents to Ms

k+n, these bounds converge.
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Corollary 1. The bounds in Theorem 2 converge to Hk+n when Ms
k+n → Mk+n

lim
Ms

k+n→Mk+n

LB [Hk+n] = Hk+n = UB [Hk+n] . (22)

A recursive update rule is given in Section C of the supplementary material [18].

Theorem 3. Given a subset of components Ms
k+n ⊆ Mk+n, the term ηk+n, in

each belief tree node, is bounded by

LB [ηk+n] = wm,s
k+n ≤ ηk+n ≤ wm,s

k+n+

⎛

⎝ |Mk+n|
|Mk| −

∑

r∈Ms
k+n

wr
k

⎞

⎠
n∏

i=1

σi = UB [ηk+n] ,

(23)
where σi � max (P (Zk+i|xk+i)) and wr

k is the prior weight at time k for every
component in Ms

k+n at time k + n.

As in Theorem 2, since we only consider a subset of hypotheses, these bounds are
also computationally more efficient to calculate and converge. We also note that
specifically for Case 3, the bounds in Theorem 2 and Theorem 3 are calculated
iteratively in each time step k + n given the belief bψ

k+n−1 as presented in (17).

Corollary 2. The bounds in Theorem 3 converge to ηk+n when Ms
k+n → Mk+n

lim
Ms

k+n→Mk+n

LB [ηk+n] = ηk+n = UB [ηk+n] . (24)

A recursive update rule is given in Section C of the supplementary material [18].

5 Results

We evaluate the performance of our approach for the different cases presented in
Sect. 4. Our prototype implementation uses the GTSAM library [3]. Our consid-
ered scenarios represent highly ambiguous environments containing perceptually
identical landmarks in different locations. In our first scenario, floors, the agent
is initially located in one of F floors such that each floor contains a unique land-
mark, specific to that floor (Fig. 5a). In our second scenario, 2d random, the agent
is initially placed in a random environment in front of a blue square (Fig. 5b).
Both scenarios can be considered as versions of the kidnapped robot problem.
With no other prior information, the initial belief, in both cases, is multi-modal
containing |M0| hypotheses. The agent captures the environment using range
measurements containing a class identifier, e.g. red triangle or green square.
When the agent receives a measurement to some landmark which is ambiguous,
i.e. it can theoretically be generated from more than one landmark, the num-
ber of hypotheses grows (see Fig. 5c). The number of identical landmarks can
be adjusted to represent higher ambiguity, increasing the number of considered
hypotheses. The agent’s goal is to disambiguate between hypotheses by solving
the corresponding BSP problem (6) at each planning session using entropy over
posterior belief components weights as a cost function.



Nonmyopic Distilled Data Association BSP Under Budget Constraints 115

Fig. 5. (a) The floors environment where F identical floors represent different prior
hypotheses. Each floor contains a unique landmark. The true location of the agent is
highlighted in yellow; (b) The 2d random environment with many identical landmarks.
The agent is initially placed in front of a blue square with no other prior information;
(c) A planning session where ambiguous data association results in two hypotheses
denoted by the yellow and blue ellipses.

In our first experiment we consider Case 1. We compare our approach with
evaluating the cost function over the original belief, i.e. considering every possible
future hypothesis. The heuristic in planning chooses the subset of components
for each belief tree node greedily based on prior weights at time k. The decision
rule R was set as no overlap, i.e. no loss with guaranteed optimal solution.
The computational merits of our approach are presented in Fig. 6. Moreover, in
Fig. 6c, f we can see that with a longer planning horizon the subset of hypotheses
used for disambiguation becomes smaller. As more observations are utilized along
the horizon, it is easier to discard wrong hypotheses in our considered cases.

In our second experiment we consider Case 2. In Fig. 7a we present the loss
as a function of the budget size. As expected, with higher budget constraints the
loss in solution quality becomes smaller. Moreover, as can be seen in Fig. 7b the
loss is higher closer to the root of the belief tree, as bounds are accumulated in
the non-myopic setting, increasing the overlap.

Considering Case 3, our experiments did not show any computational
improvements between calculating the original cost function and using our app-
roach. We indicate that this is because there is no exponential growth in the
number of hypotheses within the horizon and our considered cost function is
linear w.r.t. the number of components. However, as seen in [23], using a differ-
ent cost, which is beyond the scope of this work, our approach can reduce the
computational complexity while providing guarantees in Case 3 as well.

Finally, we consider Case 4. We first report that under this setting the compu-
tational complexity is high as every possible heuristic under the given budget is
considered. In Fig. 7c preliminary results indicate that this process can improve
the bounds over the loss in solution quality vs a given heuristic hinf .
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Fig. 6. Case 1 study for floors and 2d random environments. All scenarios presented
carry zero loss. (a), (d) Planning time as a function of the planning horizon. In both
environments, all settings the considered 4 prior hypotheses; (b), (e) Planning time
as a function of the number of prior hypotheses. In both environments, all settings
considered a planning horizon of 3; (c), (f) % components used to calculate bounds in
each level of the belief tree. Circles scales are normalized as the number of nodes grows
exponentially going down the tree.

Fig. 7. (a) Normalized loss as a function of the size of the budget in Case 2. In all
settings the number of floors, i.e. prior hypotheses was set to 12; (b) Normalized loss
along the depth of a belief tree in Case 2 with C = 3 components and a planning
horizon of n = 2; (c) Normalized loss as a function of the size of the budget in Case 4,
i.e. considering every valid heuristic in inference hp candidate. When C ≤ 6, the heuristic
hp� induces a smaller loss than hinf . When C > 6, both hp� and hinf induce zero loss,
i.e. are optimal in this setting.

6 Conclusions

In this work we introduced ND2A-BSP, an approach to reduce the computa-
tional complexity in data association aware BSP with performance guarantees
for the nonmyopic case. We rigorously analyzed our approach considering differ-
ent settings under budget constraints in inference and/or planning.
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Furthermore, future research will consider how to utilize information from
planning in inference when the latter is subject to hard computational budget
constraints, as in most real-world autonomous systems.
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