

Online Partially Observable Markov Decision Process Planning via Simplification

Ori Sztyglic

Advisor: Associate Prof. Vadim Indelman

Motivation

Autonomous Agents

• Planning Under Uncertainty

• Online Agents

Outline

- Background ullet
- **Related Work** \bullet
- Method \bullet
- Evaluation lacksquare
- Conclusion lacksquare

Background

Autonomous Navigation and Perception Lab

Background

- Partially Observable Markov Decision Process (POMDP) Commonly formulated as a tuple (X, A, Z, T, O, R, γ)
 - > X state space
 - \succ A action space
 - \succ Z observation space
 - \succ T probabilistic transition model
 - > 0 probabilistic observation model
 - \succ *R* reward model
 - $\succ \gamma$ discount factor

• Autonomous platform acting under uncertainty

Autonomous Navigation and Perception Lab

Background

- Belief Space Planning (BSP)
 - Instead of planning over the state space, plan in the probabilistic space over the state (denoted as *belief*)
 - $b[x_k] = \mathbb{P}(x_k \mid a_{1:k-1}, z_{1:k}, b_0)$
 - Allows the use of *Information Theoretic* rewards (e.g.):
 - Differential Entropy
 - Mutual information
 - Information Gain
 - Can be very useful

Background

- Online Planning
 - Multiple steps ahead in time
 - Multiple realizations of action-observation sequences:

 $\{(a_0, z_1), (a_1, z_2), (a_2, z_3), \dots, (a_{L-1}, z_L)\}$

- Commonly done by building a *Belief Tree*
 - tree root is the current time belief
 - Requires a "black box" simulator or motion and observation models access
 - Tree size limited by predefined params such as time/depth/number of nodes

JPL Autonomous Navigation and Perception Lab

Background

- Online Planning the Belief tree
 - Each node induces a reward: $r(b, a) \in \mathbb{R}$
 - Planning goal:

Find the actions sequence that induces highest cumulative reward

- More formally...
 - Find optimal Policy $\pi: b \to a$
 - Maximizing the Value Function

 $V^{\pi}(b_k) = \mathbb{E}_{z_{k+1}}[r(b_k, a) + V^{\pi}(b_{k+1})]$

Background

- Online Planning the Belief tree
 - Challenges?
 - Curse of History
 - \succ Curse of Dimensionality
 - Continuous Domains
 - Non-parametric beliefs
 - Information Theoretic
 - High dimension state space

Autonomous Navigation and Perception Lab

Background

- Non-parametric distributions
 - A more general setting
 - Typically, approximations resort to sampling
 - A well studied problem in Statistics, Information theory, Machine learning etc.
 - Commonly in planning:
 - State samples
 - Observation samples

Image source

Autonomous Navigation and Perception Lab

Background

- Monte Carlo Tree Search (MCTS)
 - Breaks the curse of history by "revealing" only parts of the full tree.
 - Breaks the curse of dimensionality by using a predefined number of state samples

Background

- Monte Carlo Tree Search (MCTS)
 - Additional details:
 - Builds the tree incrementally using a predefined time/iterations budget
 - Requires some heuristics for exploration strategy and rollout policy, e.g., UCB

Related Work

NPL Autonomous Navigation and Perception Lab

Related Work

- Recall our considered setting:
 - Online POMDP planning
 - <u>Continuous</u> state space
 - <u>Continuous</u> observation space
 - *Information theoretic* rewards (reward over the belief)

Autonomous Navigation and Perception Lab

Related Work

- Online POMDP Planners
 - POMCP (2010 Silver et al.)
 - POMCPOW (2017 Sunberg et al.)
 - PFT-DPW (2017 Sunberg et al.)
 - ➢ IPFT (2020 Fischer et al.)
 - $\succ \rho$ -POMCP (2021 Thomas et al.)
 - DESPOT (2017 Ye et al.)

> DESPOT- α (2019 Garg et al.)

Related Work

Online POMDP Planners Comparison

Algorithm	Continuous state space	Continuous observation space	Rewards over the belief	Use Particle Filter
РОМСР	\checkmark	×	×	×
POMCPOW	\checkmark	\checkmark	×	×
PFT-DPW	\checkmark	\checkmark	\checkmark	\checkmark
IPFT	\checkmark	\checkmark	\checkmark	\checkmark
ho-POMCP	\checkmark	×	\checkmark	\checkmark
DESPOT	\checkmark	×	×	×
DESPOT- α	\checkmark	\checkmark	×	\checkmark

Many other solvers exist, but aren't designed to continuous state space and/or Online ٠ setting: PBVI, HSVI, HSVI2, SARSOP, ABT, SARISA, ρ -POMDP, LC-HSVI etc.

Contribution

- Novel simplification for our POMDP setting
- Novel simplification based differential entropy approximation bounds
- Embedding into a Sparse-Sampling planning scheme
- Embedding into a state-of-the-art MCTS planning scheme
- Theoretical guarantees for:
 - Tree-Consistency
 - Solution consistency
 - > Time complexity analysis

TECHNION | She Henry and Marilyn Taub Faculty of Computer Science ANPL Autonomous Navigation and Perception Lab

Method - Preliminaries

- Simplification
 - Solving a POMDP accurately is not tractable
 - Many approximation methods take place
 - Simplification deals with relaxation of the decision-making problem (e.g.)
 - Simplified decision making in the belief space using belief sparsification by K. Elimelech and V. Indelman IJRR 2021 accepted
 - Ft-bsp: Focused topological belief space planning by M. Shienman, A. Kitanov, and V. Indelman RA-L 2021
 - Ideally provides the same solution
 - If not possible, the potential objective error is bounded

ANPL Autonomous Navigation and Perception Lab

Method - Preliminaries

- Differential entropy approximation
 - The belief is approximated as a set of particles
 - Approximation can be achieved via Kernel Density Estimation or a method by Boers et al.

JPL Autonomous Navigation and Perception Lab

- Chosen Simplification
 - Belief node simplification use a sub-set of particles
 - Instead of expensive belief dependent reward calculation, calculate simplification-based reward bounds
 - Reward bounds can be generalized to Value function/Action-Value function bounds
 - We consider differential entropy approximation by Boers as a reward function

Novel Differential Entropy Bounds

- Novel Simplification based bounds
 - Differential entropy: $\mathcal{H}(X) = -\int_{x} b(x) \cdot \log(b(x)) dx$ •
 - Boers original approximation: •

$$\hat{\mathcal{H}}(b_{k+1}) \triangleq \log\left[\sum_{i} \mathbb{P}(z_{k+1} \mid x_{k+1}^{i}) w_{k}^{i}\right] - \sum_{i} w_{k+1}^{i} \cdot \log\left[\mathbb{P}(z_{k+1} \mid x_{k+1}^{i}) \sum_{j} \mathbb{P}(x_{k+1}^{i} \mid x_{k}^{j}, a_{k}) w_{k}^{j}\right]$$

$$\begin{aligned} \text{Our novel bounds (over:} &- \widehat{\mathcal{H}} \text{):} \\ u \triangleq -\log \left[\sum_{i} \mathbb{P} \left(z_{k+1} | x_{k+1}^{i} \right) w_{k}^{i} \right] + \sum_{i \in \neg A_{k+1}^{s}} w_{k+1}^{i} \cdot \log \left[\text{const} \cdot \mathbb{P} \left(z_{k+1} | x_{k+1}^{i} \right) \right] \\ &+ \sum_{i \in A_{k+1}^{s}} w_{k+1}^{i} \cdot \log \left[\mathbb{P} \left(z_{k+1} | x_{k+1}^{i} \right) \sum_{j} \mathbb{P} \left(x_{k+1}^{i} | x_{k}^{j}, a_{k} \right) w_{k}^{j} \right] \\ &\ell \triangleq -\log \left[\sum_{i} \mathbb{P} \left(z_{k+1} | x_{k+1}^{i} \right) w_{k}^{i} \right] + \sum_{i} w_{k+1}^{i} \cdot \log \left[\mathbb{P} \left(z_{k+1} | x_{k+1}^{i} \right) \sum_{j \in A_{k}^{s}} \mathbb{P} \left(x_{k+1}^{i} | x_{k}^{j}, a_{k} \right) w_{k}^{j} \right] \end{aligned}$$

- Novel Simplification based bounds
 - Our novel bounds:
 - Where:
 - $\triangleright \mathbb{P}(z \mid x)$ observation model
 - $\triangleright \mathbb{P}(x' \mid x, a)$ motion model
 - $\succ w^i$ weight of state sample x^i
 - \succ A^s set of simplified state indexes
 - $\blacktriangleright \neg A^s$ compliment of A^s
 - $\succ \text{ const is } \max_{x'} \mathbb{P}(x' \mid x, a)$

$$\begin{split} u &\triangleq -\log\left[\sum_{i} \mathbb{P}\left(z_{k+1} | x_{k+1}^{i}\right) w_{k}^{i}\right] + \sum_{i \in \neg A_{k+1}^{s}} w_{k+1}^{i} \cdot \log\left[\operatorname{const} \cdot \mathbb{P}\left(z_{k+1} | x_{k+1}^{i}\right)\right] \\ &+ \sum_{i \in A_{k+1}^{s}} w_{k+1}^{i} \cdot \log\left[\mathbb{P}\left(z_{k+1} | x_{k+1}^{i}\right) \sum_{j} \mathbb{P}\left(x_{k+1}^{i} | x_{k}^{j}, a_{k}\right) w_{k}^{j}\right] \\ \ell &\triangleq -\log\left[\sum_{i} \mathbb{P}\left(z_{k+1} | x_{k+1}^{i}\right) w_{k}^{i}\right] + \sum_{i} w_{k+1}^{i} \cdot \log\left[\mathbb{P}\left(z_{k+1} | x_{k+1}^{i}\right) \sum_{j \in A_{k}^{s}} \mathbb{P}\left(x_{k+1}^{i} | x_{k}^{j}, a_{k}\right) w_{k}^{j}\right] \end{split}$$

Autonomous Navigation and Perception Lab

Method

- Novel Simplification based bounds
 - Our bounds properties
 - Convergence
 - Monotonically increasing & decreasing
 - On-demand tightening
 - ➤ Complexity of $O(N \cdot N^s)$ instead of $O(N \cdot N)$
 - User defined simplification levels
 - Calculation reuse
 - No time loss whatsoever

N – number of particles representing original belief b N^{s} – number of particles representing simplified belief b^{s}

ANPL Autonomous Navigation and Perception Lab

Method

- Extending the bounds to objective bounds
 - Objective function:

$$J(b_k, \pi_{k+}) = r(b_k, a_k) + \mathbb{E}_{z_{k+1}} \{ J(b_{k+1}, \pi_{(k+1)+}) \}$$

Where:
$$\pi_{k+} \triangleq \pi_{k:k+L}$$

• Planning:

$$J(b_k, \pi_{k+1}^{\star}) = \max_{\pi_k} \{ r(b_k, a_k) + \mathbb{E}_{z_{k+1}} \{ J(b_{k+1}, \pi_{(k+1)+1}^{\star}) \} \}$$

• Rewards bounds translate to objective bounds:

$$\mathbf{lb}(b^{s}, b, a) \leq r(b, a) \leq \mathbf{ub}(b^{s}, b, a) \implies \mathcal{UB}(b_{i}, \pi_{i+}) = \mathbf{ub}(b^{s}_{i}, b_{i}, a)) + \mathbb{E}_{z_{i+1}} \{ \mathcal{UB}(b_{i+1}, \pi_{(i+1)+}) \}$$
$$\mathcal{LB}(b_{i}, \pi_{i+}) = \mathbf{lb}(b^{s}_{i}, b_{i}, a) + \mathbb{E}_{z_{i+1}} \{ \mathcal{LB}(b_{i+1}, \pi_{(i+1)+}) \},$$

Simplified Information Theoretic BSP (SITH-BSP)

- Planning using objective bounds
 - Analytical bounds along the tree
 - We can prune sub optimal branches traversing up the tree if the objective bounds do not overlap

JPL Autonomous Navigation and Perception Lab

- Planning using objective bounds
 - Overlapping bounds?
 - Increment the simplification level, in our case take more particles to represent the simplified belief.
 - This is done with calculation re-use

VPL Autonomous Navigation and Perception Lab

AN

Method

• Full algorithmic scheme: *Simplified Information Theoretic Belief Space Planning (SITH-BSP)*

31

Method

• Full algorithmic scheme: *Simplified Information Theoretic* Belief Space Planning (SITH-BSP)

Algorithm 1 Prune Branches	Algorithm 2 Simplified Information Theoretic Belief Space Planning (SITH-BSP)				
1: procedure Prune	1: procedure FIND OPTIMAL POLICY(belief-tree: \mathbb{T})				
 Input: (belief-tree root, b; bounds of root's children, {LB^m, UB^m}^C_{m=1}) going out of b. LB[*] ← max{LB^m}^C_{m=1} for all children of b do if LB[*] > UB^m then prune child m from the belief tree end if end for end procedure 	2: $s \leftarrow s_0$ 3: return ADAPT SIMPLIFICATION(\mathbb{T}, s) 4: end procedure 5: procedure ADAPT SIMPLIFICATION(belief-tree: \mathbb{T}, s_i) 6: if \mathbb{T} is a leaf then 7: return {lb, ub} 8: end if 9: Set simplification level: $s \leftarrow s_i$ 10: for all subtrees \mathbb{T}' in \mathbb{T} do 11: ADAPT SIMPLIFICATION(\mathbb{T}', s)				
Submitted to ICRA/RA-L 2022 Online POMDP Planning via Simplification	12: Calculate $\mathcal{LB}^{s^{j}}, \mathcal{UB}^{s^{j}}$ according to s and (11) 13: end for 14: Using $\{\mathcal{LB}^{s^{j}}, \mathcal{UB}^{s^{j}}\}_{j=1}^{ \mathcal{A} }$ and Alg. 1 prune branches 15: while not all T' but 1 in T pruned do 16: Increase simplification level: $s \leftarrow s + 1$ 17: ADAPT SIMPLIFICATION(T,s) 18: end while 19: Update $\{\mathcal{LB}^{s^{j}*}, \mathcal{UB}^{s^{j}*}\}$ according to (14) 20: return optimal action branch that left a^{*} and $\{\mathcal{LB}^{s^{j}*}, \mathcal{UB}^{s^{j}*}\}$. 21: end procedure				

- Restricting assumption?
 - The belief tree is given
 - State-of-the-Art methods build the tree incrementally

Simplified Information Theoretic Particle Filter Tree (SITH-PFT)

- Following work
 - We incorporate the bounds into a state-of-the-art POMDP planner
 - Not straightforward
 - The goal was to show speed up compared to the baseline
- Chosen baseline
 - PFT-DPW (Sunberg et al. 2017)
 - Chosen because it is the least restricting.
 - Uses Particle Filter with Double Progressive Widening over a MCTS framework

IPL Autonomous Navigation and Perception Lab

Method

- MCTS Adaptation
 - Main Challenge: Build the same tree as PFT-DPW without calculating the rewards (only the bounds)
 - Baseline tree build is guided by UCB1:

$$UCB1(ha) = Q(ha) + c \cdot \sqrt{\frac{\log(N(h))}{N(ha)}}$$

Where:

- \succ *h*, a are history (belief representation) and action respectively
- $\succ Q(ha)$ belief action value function (known as Q function)
- \succ c exploration constant
- \succ N(·) belief/belief-action node visitation counter

ANPL Autonomous Navigation and Perception Lab

- MCTS Adaptation
 - Main Challenge: Build the same tree as PFT-DPW without calculating the rewards (only the bounds)
 - Solution: We use the bounds to lower and upper bound the UCB:

$$\underline{\mathrm{UCB}}(ha) \triangleq Q^{x}(ha) + \lambda \mathcal{LB}(ha) + c \cdot \sqrt{\frac{\log(N(h))}{N(ha)}}$$
$$\overline{\mathrm{UCB}}(ha) \triangleq Q^{x}(ha) + \lambda \mathcal{UB}(ha) + c \cdot \sqrt{\frac{\log(N(h))}{N(ha)}}$$

ANPL Autonomous Navigation and Perception Lab

38

Method

• Algorithmic Overview

Autonomous Navigation and Perception Lab

- Theorems:
 - **Theorem 1.** *The SITH-PFT and PFT-DPW are Tree Consistent Algorithms*
 - **Theorem 2.** The SITH-PFT provides the same solution as PFT-DPW
 - **Theorem 3.** The specific resimplification strategy is a converging and finite-time resimplification strategy

- Full proofs along with time complexity analysis can be • found in the original paper:
 - 'Simplified Belief-Dependent Reward MCTS Planning with Guaranteed Tree ٠ Consistency' by O. Sztyglic*, A. Zhitnikov*, V. Indelman 2021 (submitted to NeurIPS 2021)

1:	procedure PLAN(belief: b) $h \leftarrow \emptyset$	Alg	orithm 2 Action Selection		
3: 4: 5:	for $i \in 1 : n$ do SIMULATE (b, d_{max}, h) end for	1:	procedure ACTION SELECTION(<i>b</i> , <i>h</i> while true do) Alg	orithm 3 Resimplification
6:	return ACTION SELECTION(b, h	3:	Status, $a \leftarrow \text{SELECT BEST}(b)$	1.	procedure $\mathbf{P}_{\text{ESIMPLIEV}}(h, h)$
	nullified exploration constant c	4:	if Status then	1.	if his a loof them
7:	end procedure	5:	break	2:	If 0 is a leaf then
8:	procedure SIMULATE(belief: b, dep	6:	else	3:	$\operatorname{ReFINE}_{\{\ell,u\}}(b)$
9:	if $d = 0$ then	7:	for all $b', o \in C(ha)$ do	4:	RESIMPLIFY ROLLOUT (b, h)
10:	return 0	8.	RESIMPLIEY $(b' hao)$	5.	return
	end if	Q.	end for	5.	and if
2:	$a \leftarrow \text{ACTION SELECTION}(b, n)$ if $ C(h_n) \leq h_n N(h_n) \alpha_n$ then	10.	reconstruct CB(ha) 1/B(6:	end II
1.0:	$ C(na) \leq \kappa_o N(na) \circ \text{then}$	10.	reconstruct $LD(na), AD($	7:	$\tilde{a} \leftarrow \arg \max\{N(ha) \cdot (\mathcal{UB}(ha) - \mathcal{LB}(ha))\}$
14:	$b' = c_{xx}$ (hao)	11:	end if		a
6.	$C_{alculata initial w'} \ell' for b' h$	12:	end while	8:	for all $b', o \in C(h\tilde{a})$ do
0:	minimal simp level	13:	return a	9:	RESIMPLIFY $(b', h\tilde{a}o)$
7.	$C(ha) \leftarrow C(ha) \sqcup f(r^x \ell' a)$	14:	end procedure	10.	and for
18.	$B L U \leftarrow r^x \ell' u' + \gamma ROI$	15:	procedure SELECT BEST (b, h)	10.	$\mathcal{C}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}D$
19:	else	16:	Status ← true	11:	reconstruct $LB(na), UB(na)$
20:	$(r^x, \ell', u', b', o) \leftarrow \text{sample ur}$	17.	$\tilde{a} \leftarrow \arg \max\{ UCB(ha) \}$	12:	$REFINE_{\{\ell,u\}}(b)$
21:	$R, L, U \leftarrow r^x, \ell', u' + \gamma$ SIM	17.	$a \leftarrow arg max (\underline{ocb}(na))$	13:	RESIMPLIFY ROLLOUT (b, h)
22:	end if	18:	$gap \leftarrow 0$	14.	return
23:	if deepest resimplification depth -	19:	child-to-resimplify $\leftarrow \tilde{a}$	17.	
	for updated deeper in the tree bounds	20.	for all ha children of h do	15:	ena procedure
24:	reconstruct $\mathcal{LB}(ha), \mathcal{UB}(ha)$	21.	if $UCB(h\tilde{a}) < \overline{UCB}(ha) \land a$	16:	procedure RESIMPLIFY ROLLOUT(b, h)
25:	end if	21.	$n \underline{OCD}(na) < OCD(na) / a$	17:	$b^{\text{rollout}} \leftarrow \text{find weakest link in rollout}$
26:	$N(h) \leftarrow N(h) + 1$	22:	Status \leftarrow faise	18.	REEINE (hrollout)
27:	$N(ha) \leftarrow N(ha) + 1$	23:	$\mathbf{II} \ \mathcal{UB}(na) - \mathcal{LB}(na) > \xi$	10.	$REFINE_{\{\ell,u\}}(0)$
28:	$Q^x(ha) \leftarrow Q^x(ha) + \frac{R-Q^x(ha)}{N(ha)}$	24:	$gap \leftarrow \mathcal{UB}(ha) - \mathcal{LB}$	19:	ena procedure
20.	$\mathcal{LB}(ha) \leftarrow \mathcal{LB}(ha) + \frac{L - \mathcal{LB}(ha)}{L - \mathcal{LB}(ha)}$	25:	child-to-resimplify \leftarrow	20:	procedure REFINE $\{\ell, u\}(b)$
	$\mathcal{LD}(ha) \leftarrow \mathcal{LD}(ha) + \frac{N(ha)}{N(ha)}$	26:	end if	21:	if (12) holds for b, refine its ℓ , u and promote
30:	$\mathcal{UB}(ha) \leftarrow \mathcal{UB}(ha) + \frac{\mathcal{UB}(ha)}{N(ha)}$	27:	end if		its simplification level
31:	return R, L, U	28:	end for	22	and mus as down
32:	end procedure	29.	return Status child-to-resimplify	22:	ena procedure
		29.	return Status, ennu-to-resimping		

Evaluation

Autonomous Navigation and Perception Lab

Evaluation – SITH-BSP

- Bounds Convergence study
 - Predefined action sequence
 - True belief is Gaussian so we can access the ground truth differential entropy
 - The agent maintains a belief as a weighted particle set
 - We experiment with changing number of particles
- Scenario setting: Continuous 2D 'Light-Dark' problem
 - Map is known along with motion and observation models
 - Belief is over the agent 2D location
 - Near scattered 'Light-Beacons' the uncertainty is reduced •

ANPL Autonomous Navigation and Perception Lab

Evaluation – SITH-BSP

• Scenario:

ANPL Autonomous Navigation and Perception Lab

Evaluation – SITH-BSP

• Bounds Comparison (200 particles):

Evaluation – SITH-BSP

• Bounds Comparison:

Fig. 1: Differential Entropy Approximations ans Bounds. Calculations were done using 100 particles. From left to right: Simplification is $N^s = \{0.1, 0.5, 0.9\} \cdot N$

Fig. 2: Differential Entropy Approximations and Bounds. Calculations were done using 50 particles. From left to right: Simplification is $N^s = \{0.1, 0.5, 0.9\} \cdot N$

Fig. 3: Differential Entropy Approximations and Bounds. Calculations were done using 20 particles. From left to right: Simplification is $N^s = \{0.1, 0.5, 0.9\} \cdot N$

Autonomous Navigation and Perception Lab

Evaluation – SITH-BSP

- Planning baseline: A 'Sparse-Sampling' scheme
 - Tree predefined observation branching factor ٠
 - Find optimal action sequence/policy using Bellman updates ٠
 - Different tree structures and a 'hard' and an 'easy' scenarios ٠
- Scenario setting: Continuous 2D 'Light-Dark' problem •
 - Map, motion, and observation models are known ٠
 - Belief is over the agent 2D location ٠
 - 'Light-Beacons' for uncertainty reduction ٠
 - Reward model: 'distance to goal' & differential entropy approximation ٠

ANPL Autonomous Navigation and Perception Lab

Evaluation – SITH-BSP

• Scenario:

ANPL Autonomous Navigation and Perception Lab

Evaluation – SITH-BSP

• Results (Planning time in seconds):

Simulation	Horizon		[14] Tree		Horizon		[21] Tree		Horizon		[2] Tree	
		20	50	100		10	20	30		20	50	100
	1	0.124/0.043	0.741/ 0.192	2.892/ 0.667	1	0.554/ 0.287	4.065/1.437	12.908/ 3.953	5	1.13/ 0.776	6.625/ 2.008	28.19/7.232
Setting I	2	0.364/0.129	2.196/0.584	8.616/ 2.042	2	11.02/5.386	-	-	10	2.648/2.555	15.342/8.214	-
	3	0.853/ 0.339	5.059/ 1.324	19.899/ 4.658	3	-	-	-	15	4.2/3.677	26.205/ 20.174	-
	1	0.245/ 0.099	1.513/ 0.4	5.855/ 2.018	1	1.112/ 0.953	8.501/ 5.143	26.375/ 11.977	5	1.383/ 0.733	8.417/ 3.864	33.244/ 10.97
Catting II	2	1.209/ 0.738	7.195/ 3.821	30.638/ 13.49	2	-	-	-	10	2.985/2.112	17.293/ 6.092	-
Setting II	3	5.027/ 3.212	31.515/ 18.288	-	3	-	-	-	15	4.53/ 3.701	27.712/11.385	-

JPL Autonomous Navigation and Perception Lab

Evaluation – SITH-PFT

- Planning baseline: PFT-DPW with entropy approximation
 - Some comparison with IPFT that incorporates entropy approximation with PFT-DPW ٠
- Scenario setting: Continuous 2D 'Light-Dark'
 - Map, motion, and observation models are known ٠
 - Belief is over the agent 2D location ٠
 - 'Light-Beacons' for uncertainty reduction ٠
 - Reward model: 'distance to goal' & differential entropy approximation ٠

Evaluation – SITH-PFT

Scenario: •

50

TECHNION | So The Henry and Marilyn Taub Faculty of Computer Science ANPL Autonomous Navigation

Evaluation – SITH-PFT

• Time results:

	(<i>m</i> , <i>d</i> , #iter.)	Algorithm	planning time [sec]
_	(50, 20, 200)	PFT-DPW	3.54 ± 0.4
	(50, 30, 200)	SITH-PFT	2.96 ± 0.49
	(50, 50, 500)	PFT-DPW	9.82 ± 1.31
	(30, 30, 500)	SITH-PFT	8.1 ± 1.33
	(100 30 200)	PFT-DPW	13.42 ± 1.49
	(100, 30, 200)	SITH-PFT	10.77 ± 1.73
	(100 50 500)	PFT-DPW	35.06 ± 4.44
	(100, 50, 500)	SITH-PFT	26.7 ± 4.37
	(200, 30, 200)	PFT-DPW	55.89 ± 5.41
	(200, 30, 200)	SITH-PFT	39.46 ± 7.09
_	(200 50 500)	PFT-DPW	142.14 ± 12.39
	(200, 50, 500)	SITH-PFT	100.09 ± 14.67
	$(400 \ 30 \ 200)$	PFT-DPW	211.86 ± 24.18
	(400, 50, 200)	SITH-PFT	160.36 ± 31.02
	(400 50 500)	PFT-DPW	570.13 ± 45.48
	(400, 50, 500)	SITH-PFT	414.65 ± 53.37
	$(600 \ 30 \ 200)$	PFT-DPW	503.78 ± 31.61
	(000, 50, 200)	SITH-PFT	374.0 ± 44.23
	(600 50 500)	PFT-DPW	$120\overline{4.78 \pm 119.16}$
	(000, 50, 500)	SITH-PFT	912.92 ± 116.08

Conclusion

Conclusion

For the setting of POMDP with belief-dependent rewards:

- We introduced novel highly functional bounds over differential entropy approximation based on weighted particles
- Developed a general Sparse-Sampling adaptation to such simplification based converging bounds, leading to substantial speed up.
- Developed a general MCTS adaptation to such simplification based converging bounds, leading to speed up.

Conclusion

- Future possible work:
 - Incorporation of the bounds into other POMDP planning algorithms
 - Incorporation of the bounds into other Domains such as SLAM
 - Given other analytical converging bounds, they can be incorporated into our existing Sparse-Sampling and MCTS adaptations
 - Usage of the bounds (or some linear variant of them) as an exploration heuristics for rollout estimators required by MCTS algorithms

Thank you for your time, any questions?

