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Motivation
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• Online Agents
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Background

• Partially Observable Markov Decision Process (POMDP)  
Commonly formulated as a tuple 𝑋, 𝐴, 𝑍, 𝑇, 𝑂, 𝑅, 𝛾

Ø 𝑋 - state space 
Ø 𝐴 - action space
Ø 𝑍 - observation space
Ø 𝑇 - probabilistic transition model
Ø 𝑂 - probabilistic observation model
Ø 𝑅 - reward model
Ø 𝛾 - discount factor

• Autonomous platform acting under uncertainty

5



Background

• Belief Space Planning (BSP)
• Instead of planning over the state space, plan in the probabilistic space over 

the state (denoted as belief)
• 𝑏 𝑥! = ℙ(𝑥! ∣ 𝑎":!$", 𝑧":!, 𝑏%)
• Allows the use of Information Theoretic rewards (e.g.):

Ø Differential Entropy
Ø Mutual information
Ø Information Gain

• Can be very useful
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Background

• Online Planning
• Multiple steps ahead in time
• Multiple realizations of action-observation sequences:

(𝑎!, 𝑧" , (𝑎", 𝑧#), (𝑎#, 𝑧$), … , (𝑎%&", 𝑧%)}
• Commonly done by building a Belief Tree

Ø tree root is the current time belief
Ø Requires a “black box” simulator or motion and observation models access
Ø Tree size limited by predefined params such as time/depth/number of nodes
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Background

• Online Planning – the Belief tree
• Each node induces a reward: 𝑟 𝑏, 𝑎 ∈ ℝ
• Planning goal:

Find the actions sequence that induces
highest cumulative reward

• More formally…
Ø Find optimal Policy 𝜋: 𝑏 → 𝑎
Ø Maximizing the Value Function

V! 𝑏" = 𝔼#'()[𝑟 𝑏" , 𝑎 + 𝑉!(𝑏"$%)]
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Background

• Online Planning – the Belief tree
• Challenges?

Ø Curse of History 
Ø Curse of Dimensionality
Ø Continuous Domains
Ø Non-parametric beliefs
Ø Information Theoretic
Ø High dimension state space

Video source: Google DeepMind, David Silver 9

https://www.youtube.com/watch?v=Wujy7OzvdJk&t=1423s&ab_channel=TheArtificialIntelligenceChannel


Background

• Non-parametric distributions
• A more general setting
• Typically, approximations resort to sampling
• A well studied problem in Statistics,

Information theory, Machine learning etc.
• Commonly in planning:

Ø State samples
Ø Observation samples
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Image source

https://en.wikipedia.org/wiki/Multimodal_distribution


Background

• Monte Carlo Tree Search (MCTS)
• Breaks the curse of history by “revealing” only parts of the full 

tree.
• Breaks the curse of dimensionality by using a predefined number 

of state samples

Image source: ‘An Analysis of Monte Carlo Tree Search’ by James et al.
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https://www.researchgate.net/publication/312172859_An_Analysis_of_Monte_Carlo_Tree_Search


Background

• Monte Carlo Tree Search (MCTS)
• Additional details:

Ø Builds the tree incrementally using a predefined time/iterations 
budget

Ø Requires some heuristics for exploration strategy and rollout policy, 
e.g., UCB

Image source: ‘An Analysis of Monte Carlo Tree Search’ by James et al.
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https://www.researchgate.net/publication/312172859_An_Analysis_of_Monte_Carlo_Tree_Search
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Related Work

• Recall our considered setting:
• Online POMDP planning
• Continuous state space
• Continuous observation space
• Information theoretic rewards (reward over the belief)
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Related Work

• Online POMDP Planners
• POMCP (2010 Silver et al.)

Ø POMCPOW (2017 Sunberg et al.)
Ø PFT-DPW (2017 Sunberg et al.)
Ø IPFT (2020 Fischer et al.)
Ø 𝜌-POMCP (2021 Thomas et al.)

• DESPOT (2017 Ye et al.)
Ø DESPOT-𝛼 (2019 Garg et al.)
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Related Work

• Online POMDP Planners Comparison

• Many other solvers exist, but aren’t designed to continuous state space and/or Online 
setting: PBVI, HSVI, HSVI2, SARSOP, ABT, SARISA, 𝜌-POMDP, LC-HSVI etc. 

Algorithm Continuous 
state space 

Continuous 
observation space 

Rewards over 
the belief

Use Particle Filter

POMCP ü û û û

POMCPOW ü ü û û

PFT-DPW ü ü ü ü

IPFT ü ü ü ü

𝜌-POMCP ü û ü ü

DESPOT ü û û û

DESPOT-𝛼 ü ü û ü
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Contribution

• Novel simplification for our POMDP setting
• Novel simplification based differential entropy 

approximation bounds
• Embedding into a Sparse-Sampling planning scheme
• Embedding into a state-of-the-art MCTS planning scheme
• Theoretical guarantees for:

Ø Tree-Consistency
Ø Solution consistency
Ø Time complexity analysis
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Method - Preliminaries

• Simplification
• Solving a POMDP accurately is not tractable
• Many approximation methods take place
• Simplification deals with relaxation of the decision-making 

problem (e.g.)
Ø Simplified decision making in the belief space using belief sparsification by K. Elimelech and V. Indelman

IJRR 2021 accepted
Ø Ft-bsp: Focused topological belief space planning by M. Shienman, A. Kitanov, and V. Indelman RA-L 2021

• Ideally provides the same solution
• If not possible, the potential objective error is bounded
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Method - Preliminaries

• Differential entropy approximation
• The belief is approximated as a set of particles
• Approximation can be achieved via Kernel Density Estimation or a 

method by Boers et al.
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Method

• Chosen Simplification
• Belief node simplification – use a sub-set of particles
• Instead of expensive belief dependent reward calculation,

calculate simplification-based reward bounds 
• Reward bounds can be generalized to 

Value function/Action-Value function bounds
• We consider differential entropy approximation by Boers as a reward function
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Novel Differential Entropy Bounds
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Method

• Novel Simplification based bounds 
• Differential entropy: ℋ 𝑋 = −∫& 𝑏 𝑥 ⋅ log 𝑏 𝑥 𝑑𝑥
• Boers original approximation:

• Our novel bounds (over: − ;ℋ):
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Method

• Novel Simplification based bounds 
• Our novel bounds:
• Where:

Ø ℙ 𝑧 𝑥 observation model
Ø ℙ 𝑥′ 𝑥, 𝑎 motion model
Ø 𝑤* weight of state sample 𝑥*

Ø 𝐴+ set of simplified state indexes
Ø ¬𝐴+ compliment of 𝐴+

Ø const is max
,-

ℙ(𝑥- ∣ 𝑥, 𝑎)
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Method

• Novel Simplification based bounds 
• Our bounds properties

Ø Convergence
Ø Monotonically increasing & decreasing
Ø On-demand tightening
Ø Complexity of Ο 𝑁 ⋅ 𝑁+ instead of Ο(𝑁 ⋅ 𝑁)
Ø User defined simplification levels
Ø Calculation reuse
Ø No time loss whatsoever
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𝑁 – number of 
particles 
representing 
original belief 𝑏
𝑁+ – number of 
particles 
representing 
simplified belief 𝑏+



Method

• Extending the bounds to objective bounds
• Objective function:

• Planning:

• Rewards bounds translate to objective bounds:

⇒
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Where: 𝜋89 ≜ 𝜋8:89;



Simplified Information Theoretic BSP
(SITH-BSP)
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Method

• Planning using objective bounds
• Analytical bounds along the tree
• We can prune sub optimal branches traversing up the tree if the 

objective bounds do not overlap
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Method

• Planning using objective bounds
• Overlapping bounds?

• Increment the simplification level, in our case - take more particles 
to represent the simplified belief.

• This is done with calculation re-use
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Method

• Full algorithmic scheme: Simplified Information Theoretic 
Belief Space Planning (SITH-BSP)
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Method

• Full algorithmic scheme: Simplified Information Theoretic 
Belief Space Planning (SITH-BSP)

• Submitted to ICRA/RA-L 2022
Online POMDP Planning via Simplification
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https://arxiv.org/abs/2105.05296


Method

• Restricting assumption?
• The belief tree is given
• State-of-the-Art methods build the tree incrementally
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Simplified Information Theoretic Particle 
Filter Tree
(SITH-PFT)
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Method

• Following work
• We incorporate the bounds into a state-of-the-art POMDP planner
• Not straightforward 
• The goal was to show speed up compared to the baseline

• Chosen baseline
• PFT-DPW (Sunberg et al. 2017)
• Chosen because it is the least restricting.
• Uses Particle Filter with Double Progressive Widening over a MCTS framework 
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Method

• MCTS Adaptation
• Main Challenge: Build the same tree as PFT-DPW without 

calculating the rewards (only the bounds)
• Baseline tree build is guided by UCB1:

𝑈𝐶𝐵1 ℎ𝑎 = 𝑄 ℎ𝑎 + 𝑐 ⋅ &'((* + )
*(+-)

Where:
Ø ℎ, a are history (belief representation) and action respectively
Ø 𝑄(ℎ𝑎) belief action value function (known as Q function)
Ø 𝑐 exploration constant
Ø 𝑁(⋅) belief/belief-action node visitation counter
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Method

• MCTS Adaptation
• Main Challenge: Build the same tree as PFT-DPW without 

calculating the rewards (only the bounds)
• Solution: We use the bounds to lower and upper bound the UCB:

36



Method

• Algorithmic Overview
Light green section 
is determined by 
following a specific 
“Resimplification
Strategy”
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Method

• Theorems:
• Theorem 1. The SITH-PFT and PFT-DPW are Tree Consistent 

Algorithms
• Theorem 2. The SITH-PFT provides the same solution as PFT-DPW
• Theorem 3. The specific resimplification strategy is a converging 

and finite-time resimplification strategy
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Method
• Full proofs along with time complexity analysis can be 

found in the original paper:
• ‘Simplified Belief-Dependent Reward MCTS Planning with Guaranteed Tree 

Consistency’ by O. Sztyglic*, A. Zhitnikov*, V. Indelman 2021 (submitted to NeurIPS
2021)
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https://arxiv.org/pdf/2105.14239.pdf


Evaluation
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Evaluation – SITH-BSP

• Bounds Convergence study
• Predefined action sequence
• True belief is Gaussian so we can access the ground truth 

differential entropy
• The agent maintains a belief as a weighted particle set 
• We experiment with changing number of particles

• Scenario setting: Continuous 2D ‘Light-Dark’ problem
• Map is known along with motion and observation models
• Belief is over the agent 2D location
• Near scattered ‘Light-Beacons’ the uncertainty is reduced
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Evaluation – SITH-BSP
• Scenario:
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Evaluation – SITH-BSP

• Bounds Comparison (200 particles):
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Simplification level: 0.1 Simplification level: 0.5 Simplification level: 0.9



Evaluation – SITH-BSP

• Bounds Comparison:
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Evaluation – SITH-BSP

• Planning baseline: A ‘Sparse-Sampling’ scheme
• Tree predefined observation branching factor
• Find optimal action sequence/policy using Bellman updates
• Different tree structures and a ‘hard’ and an ‘easy’ scenarios

• Scenario setting: Continuous 2D ‘Light-Dark’ problem
• Map, motion, and observation models are known
• Belief is over the agent 2D location
• ‘Light-Beacons’ for uncertainty reduction
• Reward model: ‘distance to goal’ & differential entropy approximation
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Evaluation – SITH-BSP
• Scenario:
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Evaluation – SITH-BSP

• Results (Planning time in seconds):

• Simplification level: 
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Evaluation – SITH-PFT

• Planning baseline: PFT-DPW with entropy approximation
• Some comparison with IPFT that incorporates entropy approximation with PFT-DPW

• Scenario setting: Continuous 2D ‘Light-Dark’
• Map, motion, and observation models are known
• Belief is over the agent 2D location
• ‘Light-Beacons’ for uncertainty reduction
• Reward model: ‘distance to goal’ & differential entropy approximation
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Evaluation – SITH-PFT

• Scenario:
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Evaluation – SITH-PFT
• Time results:
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Conclusion
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Conclusion

For the setting of POMDP with belief-dependent rewards:
• We introduced novel highly functional bounds over 

differential entropy approximation based on weighted 
particles

• Developed a general Sparse-Sampling adaptation to such 
simplification based converging bounds, leading to 
substantial speed up.

• Developed a general MCTS adaptation to such 
simplification based converging bounds, leading to speed 
up. 53



Conclusion

• Future possible work:
• Incorporation of the bounds into other POMDP planning 

algorithms
• Incorporation of the bounds into other Domains such as SLAM
• Given other analytical converging bounds, they can be 

incorporated into our existing Sparse-Sampling and MCTS 
adaptations

• Usage of the bounds (or some linear variant of them) as an 
exploration heuristics for rollout estimators required by MCTS 
algorithms
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Thank you for your time, any questions?
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