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Abstract

Partially Observable Markov Decision Process (POMDPs) are notoriously hard to solve.
In this work we consider online planning in partially observable domains. Solving the
corresponding POMDP problem is a very challenging task, particularly in an online
setting. Our key contribution is a novel algorithmic approach, Simplified Information
Theoretic Belief Space Planning (SITH-BSP), which aims to speed up POMDP planning
considering belief-dependent rewards, without compromising on the solution’s accuracy.
We do so by mathematically relating the simplified elements of the problem to the
corresponding counterparts of the original problem. Specifically, we focus on belief
simplification and use it to formulate bounds on the corresponding original belief-
dependent rewards. These bounds in turn are used to perform branch pruning over
the belief tree, in the process of calculating the optimal policy. We further introduce
the notion of adaptive simplification, while re-using calculations between different
simplification levels, and exploit it to prune, at each level in the belief tree, all branches
but one. Therefore, our approach is guaranteed to find the optimal solution of the
original problem but with substantial speedup. As a second key contribution, we derive
novel analytical bounds for differential entropy, considering a sampling-based belief
representation, which we believe are of interest on their own. We validate our approach
in simulation using these bounds and where simplification corresponds to reducing the
number of samples, exhibiting a significant computational speedup while yielding the
optimal solution. Finally, we embed the paradigm of simplification into the MCTS
algorithm. In particular, we present Simplified Information-Theoretic Particle Filter
Tree (SITH-PFT), a novel variant to the MCTS algorithm that considers information-
theoretic rewards but avoids the need to calculate them completely. Our approach
is general; namely, any converging to the reward bounds can be easily plugged-in to
achieve substantial speedup without any loss in performance.
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Abbreviations and Notations

BSP : Belief Space Planning
POMDP : Partially Observable Markov Decision Process
MDP : Markov Decision Process
MCTS : Monte Carlo Tree Search
PFT : Particle Filter Tree
DPW : Double Progressive Widening
DEPOST : Determinized Sparse Partially Observable Tree
POMCP : Partially Observable Monte Carlo Planning
IPFT : Information Particle Filter Tree
SITH : Simplified Information Theoretic
UCB : Upper Confidence Bound
KF : Kalman Filter
KDE : Kernel Density Estimation
X : State space
A : Action space
T : Probabilistic transition model
r(·) : Reward function (over state or belief)
ρ(·) : Reward function over the belief
Z : Observation space
O : Probabilistic observation model
b[x] : Belief - Posterior distribution over the state x
bk : Belief at time index k
b0 : Initial/Prior belief (time index k = 0)
hk : History of all actions observations and prior belief up to time k
η : Normalization term
xk : State at time index k
ak : Action at time index k
zk : Observation at time index k
πk : Policy at time index k that maps a belief to an action
�k:k+L : Sequence from time index k to time index k + L

πk+ : Policy sequence from time index k to the predefined horizon
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J(bk, πk+) : Objective (Value) function over the belief at time k given a policy
J?(bk) : Optimal objective function
π? : Optimal Policy
V π(bk) : Value (objective) function over the belief at time k given a policy
Qπ(bk, ak) : Belief-Action value function given a policy
γ : Discount factor
H(·) : Differential Entropy
Ĥ(·) : Differential Entropy approximation
λ : Information weight constant
c : UCB exploration constant
�x,�I : multi objective split to over the state and information respectively
N(h) : Visitation count over some belief node
N(ha) : Visitation count over some belief-action node
bs : Simplified belief
lb or ` : Lower bound over the reward
ub or u : upper bound over the reward
LB, UB : Lower and upper bounds over cumulative reward functions
T : Belief tree
si : Simplification level i
sl : Simplification level of the lth belief node in the belief tree
m : Number of particles approximating the non parametric belief
nz : Number of observations acquired from some belief action node
∆s, ∆s : Distance between reward and it’s corresponding upper and lower bounds

: w.r.t simplification level s
As : Set of particles indexes w.r.t simplification level s
wi : Weight of particle i
N : Number of particles in the particle set representing the belief
UCB,UCB : Lower and upper UCB bounds
g(ha) : Bounds difference w.r.t belief action node ha
d : Depth of some tree node (root depth is maximal i.e. maximal height dmax)
N (·, ·) : Gaussian distribution
Σ : Covariance matrix
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Chapter 1

Introduction

1.1 Planning under uncertainty

In the world of autonomous agents operating in an uncertain environment, a Partially
Observable Markov Decision Process (POMDP) provides a principled mathematical
framework for planning under uncertainty. Solving a POMDP is proven to be PSPACE-
Complete Papadimitriou and Tsitsiklis [1987] giving rise to many algorithms trying
to approach the optimal solution without having to solve the entire problem. This
difficulty is more keenly felt when considering an online-setting of such autonomous
tasks, i.e., when a robot has few seconds in every time step to execute the action it deems
to be ‘optimal’. In a partially observable setting, the robot maintains a belief, a posterior
distribution over the state of interest, given actions and observations history the robot
has executed and gathered so far. At each planning session, given this belief the robot
determines the optimal policy (or action sequence) by constructing and traversing a
belief tree, as illustrated in Fig. 1.1, which models how the POMDP can evolve into
the future considering some finite horizon of time steps. When constructing the tree in
planning time, the tree branches when taking an action and again when acquiring an
observation.

This setting presents two main difficulties. The first is the curse of dimensionality.
The size of the state space grows exponentially with the number of state variables
and correspondingly so does the belief. The second is the curse of history. Planning
into the future requires building the belief tree, which grows exponentially with the
action and observation spaces. These two problems gave rise to many works trying to
reduce computation time when solving the POMDP such as Silver and Veness [2010]
and Smith and Simmons [2004]. In recent years many works began to used POMDPs to
model more realistic problems, such as continuous or huge observation and action spaces
e.g. Sunberg and Kochenderfer [2018], Garg et al. [2019], Lim et al. [2020b]. Another
example is works considering information-theoretic rewards (e.g. Fischer and Tas [2020]).
Information gathering rewards has proven to be extremely beneficial in various robotics
tasks such as exploration, efficient sensing etc. Stachniss et al. [2005], Singh et al. [2009].
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Figure 1.1: A belief tree is built starting from the current time belief bk (the root). Tree branches
when considering different future actions and observations. Round nodes represent belief nodes and
square nodes represent belief-action nodes. For each belief node, b in a given belief tree a simplified
belief bs is calculated and used to formulate bounds over the corresponding belief-dependent reward.
These bounds are then used to prune branches while calculating the optimal policy.

However, they can also be very costly (computationally speaking), and accounting for
each node in the belief tree the problem quickly becomes even more intractable.

In this work we consider this challenging setting of continuous state and observation
spaces, and the use of information-theoretic rewards. We utilize a notion called Simplifica-
tion, and show how it can be a Complementary method to POMDP planning algorithms,
speeding them up. We present novel mathematical simplification-based derivations that
form a new fundamental way suggesting how to speed up calculations when planning
is done by traversing the belief tree. Further, we consider non-parametric, sample-
based belief representation and we derive novel analytical bounds for the particle-based
differential entropy approximation. We verify that our approach can yield significant
speedup via experimenting on a continuous state and observation setting and using the
differential entropy approximation as a reward function.

1.2 Related Work

Accurately solving huge (or continuous) state and observations spaces POMDP is time-
consuming. Early methods, tackling MDPs with huge state space, such as Kearns et al.
[2002] build the belief tree up to a predetermined planning horizon. Next, they choose
the optimal action at the root by utilizing the Bellman operator Bellman et al. [1957]
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from the leaves up to the root of the tree, updating needed estimations along the way.
The purpose is to avoid iterating the entire belief space and only consider belief elements
that are achievable via sampled actions-observations sequences executed from the root
of the tree. However, building the tree in full is still highly expensive. Silver and Veness
[2010] introduced POMCP, an algorithm that applies Monte Carlo Tree Search over the
POMDP’s equivalent Belief-MDP. This method and its numerous expansions (Sunberg
and Kochenderfer [2018], Hoerger et al. [2019], Lim et al. [2020b] etc.) avoid building the
full belief tree. They do so by building it incrementally, exploring only the “promising”
parts. Commonly, they make use of a strategy to balance exploration and exploitation,
such as UCB Kocsis and Szepesvári [2006]. However, most of these algorithms are not
suitable for information-theoretic rewards since they require the belief to be represented
as a complete set of state samples commonly denoted as ‘particles’. This last demand
can be hardly met throughout the tree when the observation space is continuous because
they (the mentioned algorithms) each time simulate only a single state sample (particle).
Exceptions are PFT-DPW Sunberg and Kochenderfer [2018] and IPFT Fischer and Tas
[2020]. These algorithms represent the belief nodes as a set of particles and each time a
belief node is added to the tree, they propagate all the particles using a ‘particle filter’,
which is a common sampling-based approach that can be used to preform belief updates
given current belief, action and observation. Hence, the name Particle Filter Tree.

Another paradigm meant to speed up planning is the use of upper and lower bounds
throughout the tree nodes Kochenderfer et al. [2022]. The gap induced by the bounds
is used as a heuristic to choose “promising” sections of the tree to expand and when the
bounds at the root are close enough they serve as stopping criteria to the algorithm.
Smith and Simmons presented HSVI Smith and Simmons [2004], which is an early
seminal work that makes use of bounds over the belief tree in the context of POMDP
planning. However, their approach is not suitable for the setting we consider in this
work. A notable assumption they make is that the observation space is finite where we
assume it is infinite. Ye et al. introduced DESPOT Ye et al. [2017], which is one of
the state-of-the-art algorithms for POMDP planning. It uses MCTS, utilizes upper and
lower bounds, and adds regularizations to avoid over-fitting while planning. However,
this work is also inadequate for information-theoretic rewards since again, like others, it
simulates a single particle at a time which can lead to belief nodes containing a single
particle. Following work, DESPOT-α Garg et al. [2019], indeed simulates a complete
set of particles that potentially can open the door to information-theoretic rewards.
However, the unique exploration strategy of this algorithm makes use of α-vectors which
assumes a specific rewards structure that is not general enough and does not settle with
information-theoretic rewards.

It is worth mentioning additional methods such as belief compression that can
speed up planning Roy et al. [2005]. Yet, these kinds of methods are driven by error
minimization such as belief representation error induced by the relaxation they carry
out. In turn, these errors may result in a sub-optimal solution. On the other hand,
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simplification Elimelech and Indelman [2021], Shienman et al. [2021] strives to perform
relaxation of the decision-making problem while assuring the same solution as the
original (non-relaxed) problem. When it is not feasible, the potential objective error
(of executing one action over the optimal one) is bounded as part of the simplification
scheme.

Finally, incorporation of information-theoretic reward into POMDPs is a long
standing effort. Araya et al. [2010] were the first to consider rewards over the belief
for POMDP planning. They introduced ρ-POMDP and extended the exact α-vectors
method and a family of point based approximation algorithms to considering convex
belief-dependent reward functions. However their formulation does not suggest how to
deal with continuous state and observation spaces. Following work Fehr et al. [2018]
extended their work further to Lipschitz-continuous reward functions and provide an
HSVI-like algorithm which is as mentioned not suitable for continuous spaces. Thomas
et al. [2021] extended POMCP such that it can handle belief dependent rewards
(including information-theoretic ones) but their convergence proof does not hold when
considering continuous action or observation spaces. Additional attempts such as Dressel
and Kochenderfer [2017] were tackling offline solvers.

1.3 Contributions

We derive a new algorithmic approach, Complementary to existing POMDP planning
algorithms. The approach is meant to speed up planning when considering information-
theoretic rewards and continuous state and observation spaces. Our method follows the
general sparse sampling planning scheme and thus lays the foundations to expanding
it to additional planning techniques. Further, to demonstrate our approach we derive
novel bounds over the particle-based approximation of the differential entropy. The
bounds are easy to calculate, converge to the actual entropy approximation on-demand,
and can be efficiently updated incrementally. Subsequently, our approach demonstrates
substantial speedup while securing an identical to the baseline solution.

Further we show how our approach can be Incorporated in a state-of-the-art MCTS
POMDP planner and provide a novel algorithmic framework based on our converging
bounds on the belief-dependent reward. This method is guaranteed to yield the same
action and belief tree as the most general algorithm suitable for such belief-dependent
rewards (PFT-DPW). Our approach is general; namely, any bounds that are converging
to the reward can be easily plugged-in to achieve substantial speedup without any loss
in performance.
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Chapter 2

Background

2.1 POMDPs

We model the Partially Observable Markov Decision Process (POMDP) for the finite
horizon case, as a 7-tuple: M = (X ,A, T, r,Z,O, b0), where X ,A and Z are the
state, action and observation spaces, respectively. T (x, a, x′) , P(x′ | x, a) is the
probabilistic transition model from past state x ∈ X to state x′ ∈ X via action a ∈ A.
O(x, z) , P(z | x) is the observation model expressing the measurement likelihood z ∈ Z
for a given state. b0 is the initial belief we have on the state at planning time. The
belief is a posterior distribution over the state given all actions and measurements so far.
It can be updated recursively via Bayes rule as b[x′] = η

∫
P(z′ | x′)P(x′ | x, a)b[x]dx,

where η is a normalization constant. Let hk = {b0, a0, z1, ...ak−1, zk} denote history of
actions and observations obtained by the agent up to time instance k and the prior
belief.

In this research we consider a belief-dependent reward function r(b, a). It allows one
to use information-theoretic costs such as (differential) entropy, information gain and
mutual information, thereby reasoning about future posterior uncertainty within the
decision making process.

We denote the posterior belief at planning time k as b[xk] , P(xk | a0:k−1, z1:k).
Further, we denote by πk+j a policy for time step k+ j, i.e. πk+j(b[xk+j ]) determines the
action ak+j . Let πk+ , πk:k+L−1 represent a sequence of policies for the entire planning
horizon of L steps that starts at time instant k. To shorten notations, we shall also use
in the sequel π(k+j)+ , πk+j:k+L−1, as well as bk+j , b[xk+j ]. When solving a POMDP,
one is trying to find the optimal policy that maximizes the objective (value) function,

J(bk, πk+) = E
zk+1:k+L

{
k+L−1∑
i=k

r(bi, πi(bi)) + r(bk+L)}, (2.1)

where r(bk+L) is the terminal reward. We may also consider a more general reward
structure of r(bi, bi−1, ai), which is required, for example, to support information-
theoretic reward functions such as information gain, and a specific sampling-based
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approximation of differential entropy Boers et al. [2010] that we shall use in Section
3.1.3. As earlier, action ai is determined by πi(bi). The optimal policy π?k+ , π

?
k:k+L−1

and the corresponding objective function are given by

π?k+ = arg max
πk+

J(bk, πk+), J?(bk)= max
πk+

J(bk, πk+). (2.2)

Further, the objective function (2.1) can be written recursively, i.e., the Bellman equation.

J(bk, πk+)=r(bk, ak) + E
zk+1
{J(bk+1, π(k+1)+)}. (2.3)

2.2 Planning using reward bounds

Usually when planning into the future a planning tree, or a belief tree in the more
general case, is built in some manner. Tree nodes represent the different future beliefs
that were acquired by considering future actions and observations. Each such node
induces some reward that can be calculated using the reward model which is given as
part of the POMDP tuple. This tree approximates the expectation of cumulative future
rewards given different possible policies. In order to decide which action should be taken
at the root of the tree, rewards should be summed bottom up (leaves to root). This
weighted summation for the different routes in the tree, is nothing but the objective
function (2.1). Once the rewards are propagated up the tree, the action (at the root)
that present greater future cumulative reward should be chosen, i.e. choose the most
promising subtree of the original tree (illustration in Fig. 2.1a). Due to the recursive
nature of (2.1), (2.3) this formulation is also recursive and is applied in each belief node
of the belief tree. I.e., in each node we propagate up the action that has the biggest
corresponding subtree cumulative reward. Thus we get the optimal policy.

A possible way to improve this setting is by bounding the tree branches. Meaning,
each belief node bk+j in the belief tree has child subtrees corresponding to the different
actions that can be taken from bk+j . Each child subtree has it’s own upper and lower
bound {LBm,UBm}|A|m=1 that we somehow got. So, according to the bounds, when some
actions (subtrees) seem to be less promising than their sibling action, we can avoid
expanding this tree branch in the first place. An alternative way to speedup the process
is eliminating existing branches (subtrees or actions) according to these bounds. It
becomes possible when for two sibling subtrees m′,m′′ corresponding to two different
actions, we get LBm′ > UBm′′ or LBm′′ > UBm′ . E.g., in Fig. 2.1c the lower bound of
π′′′′ is higher than all other policies upper bounds. However this becomes problematic if
(a) the bounds are not cheaper to calculate than the original objective of some tree. (b)
We cannot eliminate all actions but one since the bounds are not tight enough. E.g. in
Fig. 2.1b one cannot say for sure that policy π′′′′ is better than policy π′′ since the latter
upper bound is higher than the former lower bound. As explained later in 2.3, when
using incremental methods for planning, this straightforward scheme just explained can’t
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(a) (b) (c)

Figure 2.1: Action elimination using bounds. (a) Objective for some belief b and candidate policies;
(b) Objective bounds given belief coarse abstraction; (c) Objective bounds given belief fine abstraction.

be carried out naively since it will output a different solution compared to the baseline
(which in this work is PFT-DPW). One of our core novelties (see Sec. 3.2) shows how
we can incorporate converging bounds to incremental methods without changing the
baseline solution.

2.3 MCTS over Belief-MDP (PFT-DPW)

As mentioned before, the curse of history and the curse of dimensionality have been a
great challenge in the context of POMDP planning. MCTS (Monte Carlo Tree Search)
based algorithms tackle those problems by (a) building the belief tree incrementally and
exploring only the “promising” parts of the tree, and (b) representing the belief as a fixed
size set of weighted state samples (particles). The common practice to apply MCTS on
partially observable environments is to convert POMDP to Belief-MDP, see e.g. Sunberg
and Kochenderfer [2018]. Most of the MCTS based algorithms use the belief-action
value function notation, also known as the Q-function, V π∗(b) = arg max

ak

Qπ(bk, ak),

where

Qπ(bk, ak) = E
zk+1
{ρ(bk, ak, zk+1, bk+1)|bk, ak}+ E

zk+1
{V π∗(bk+1)|bk, ak} (2.4)

and where the notation of the objective (value function) is slightly different,

V π(bk) = E
zk+1:k+L

{
k+L−1∑
i=k

γi−kρ(bi, πi(bi), zi+1, bi+1)|π, bk}. (2.5)

We will use the notations interchangeably to settle with common MCTS litterateur
notations.

In our generalized formulation, the reward ρ(bk, ak, zk+1, bk+1) = rx(bk, ak) +
λrI(bk, ak, zk+1, bk+1) is a function of two subsequent beliefs, an action and an ob-
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servation. Specifically, our reward is

ρ(bk, ak, zk+1, bk+1) = E
xk∼bk

{r(xk, ak)} − λĤ(bk, ak, zk+1, bk+1), (2.6)

where r(xk, ak) is state and action dependent reward, and rx(bk, ak) is the expecta-
tion with regard to the state. rI(bk, ak, zk+1, bk+1) is an information-theoretic reward,
which in general can be dependent on consecutive beliefs and the elements relating
them (e.g. information gain). −Ĥ(bk, ak, zk+1, bk+1) is an estimator of our information-
theoretic reward weighted by λ. Yet, since such estimators do not commonly have
a closed-form expression for non-parametric beliefs represented by a set of samples,
one has to consider an estimator Ĥ of H (e.g., Boers et al. [2010]). As shall be seen,
our chosen estimator requires also previous belief bk, chosen action ak, and received
observation zk+1. Depending on the estimation method, the inputs can vary. Using the
structure of (2.6),

Q(bk, ak) = Qx(bk, ak) + λQI(bk, ak), (2.7)

where Qx is induced by state dependent rewards and QI by the information-theoretic
rewards. They are constituted by L elements of the form E

xi∼bi

{r(xi, ai)} and
−H(bi, ai, zi+1, bi+1), respectively. The Qx element is easy to calculate, thus out of our
focus, whereas the QI is computationally expensive to compute. From here on, for the
sake of clarity, we will use the notation h and b interchangeably.

An inherent part of MCTS based algorithms is the Upper Confidence Bound (UCB)
technique Kocsis and Szepesvári [2006] designed to balance exploration and exploitation
while building the belief tree. This technique assumes that calculating the reward
over the belief node does not pose any computational difficulty. Information-theoretic
rewards violate this assumption. The algorithm constructs the policy tree by executing
multiple simulations. Each simulation adds a single belief node to the belief tree or
terminates by terminal state or action. To steer towards more deep and beneficial
simulations, MCTS chooses action a† at each belief node according to following rule

a† = arg max
a∈A

UCB(ha) UCB(ha) = Q(ha) + c ·
√

log(N(h))
N(ha) , (2.8)

where N(h) is the visitation count of belief node defined by the history h, N(ha) is the
visitation count of belief-action node defined by the history h and following action a, c
is the exploration parameter and, Q(ha) is the approximation of the belief-action value
function Q for node ha obtained by simulations. When the action is selected, a question
arises either to open a new branch in terms of observation and posterior belief or to
continue through one of the existing branches. In continuous spaces, this is resolved by
the Progressive Widening technique Sunberg and Kochenderfer [2018]. If a new branch
is expanded, an observation o is created from state x drawn from the belief b.
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Chapter 3

Approach

3.1 SITH-BSP a general planning with simplification
scheme

3.1.1 Simplification

Simplification is any sort of relaxation of the POMDP tuple elements. In this work we
consider a specific instantiation of this general simplification framework; namely, we
suggest to use a simplified belief bs to bound the reward instead of calculating it in
full. Note, in this setting, simplification does not impact the distribution over which
the expectation is taken. Thus, a given belief tree of the original problem corresponds
also to the simplified problem. We assume the belief tree was built in some manner
and it is given. This setting settles well with Sparse Sampling approaches Kearns et al.
[2002] which are extremely general and widely used. Hence, we will derive our novel
approach over a similar setting. Extensions to additional approaches such as MCTS are
also presented in this research later on.

As mentioned, we aim to simplify the reward calculations. Namely, the original
reward model is bounded using the simplified belief and takes the form

lb(bs, b, a) ≤ r(b, a) ≤ ub(bs, b, a), (3.1)

where lb and ub are the corresponding lower and upper bounds, respectively. A key
requirement is reduced computational complexity of these bounds compared to the
complexity of the original reward. Furthermore, our formulation can be extended
straightforwardly to support also information-theoretic rewards of the form r(bi−1, bi),
which involve two (consecutive) beliefs bi−1 and bi, such as information gain. In such a
case, the corresponding bounds would be

lb(bs
i−1, b

s
i , bi−1, bi) ≤ r(bi−1, bi) ≤ ub(bs

i−1, b
s
i , bi−1, bi). (3.2)

In this section we formulate our approach considering the general form of the bounds
(3.1). In Section 3.1.3 we derive novel bounds of the form (3.2).
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Given a belief tree of the original problem M , Instead of calculating the computation-
ally expensive reward r(b, a) for each belief node b in this belief tree, we first calculate
the corresponding simplified belief bs, as illustrated in Fig. 1.1, and then formulate the
bounds lb and ub from (3.2). Moreover, we can now traverse the belief tree from the
leafs upwards and calculate recursively bounds over the objective (value) function at
each node bi via Bellman equation (2.3) as described below for i ∈ [k, k + L− 1].

UB(bi, πi+)=ub(bsi , bi, a))+E
zi+1
{UB(bi+1, π(i+1)+)}

LB(bi, πi+)= lb(bsi , bi, a)+E
zi+1
{LB(bi+1, π(i+1)+)},

(3.3)

with πi+ = {πi, π(i+1)+} and a = πi(bi) ∈ A, and where the expectation is taken with
respect to P(· | bi, a), and the bounds are initialized at the terminal rewards (Lth time
step in the planning horizon) as LB(bk+L) = lb(rs(bk+L)) and UB(bk+L) = ub(rs(bk+L)).
This recursive procedure is common and practiced in many works (e.g. Ye et al. [2017]),
yet a key difference is that our bounds (3.2) are obtained by relating the simplified
POMDP elements to the original problem. Eq. (3.3) is a recursive update considering
some trajectory down the belief tree determined by some policy πi+. In contrast, we
now consider upper and lower bounds for the optimal policy π?i+. We denote these
bounds as

UB?(bi) , UB(bi, π?i+), LB?(bi) , LB(bi, π?i+). (3.4)

Updating the bounds (3.4) is done recursively in two steps. First by considering the
expansion of the already-calculated bounds UB?(bi+1) and LB?(bi+1) via (3.3) we have,

UB(bi, {a, π?(i+1)+})=ub(bsi , bi, a)+E
zi+1
{UB?(bi+1)}

LB(bi, {a, π?(i+1)+})= lb(bsi , bi, a)+E
zi+1
{LB?(bi+1)}.

(3.5)

In practice, the expectation over observations is approximated by a parametric
number of samples, nz, which yields

UB(bi, {a, π?
(i+1)+})=ub(bs

i , bi, a)+ 1
nz

∑
l

UB?(bl
i+1)

LB(bi, {a, π?
(i+1)+})= lb(bs

i , bi, a)+ 1
nz

∑
l

LB?(bl
i+1)

(3.6)

where superscript l is the belief node index corresponding to the zl observation. The
above is defined for each a ∈ A.

Second, we perform branch pruning using Alg. 3.1 and as explained in Section 2.2:
For each action a ∈ A we have corresponding bounds acquired via (3.6). For sufficiently
tight bounds, all branches but one can be pruned (w.l.o.g. the branch corresponding
to action a? ∈ A). Thus, the bounds corresponding to action a? hold: UB?(bi) =
UB(bi, {a?, π?(i+1)+}),LB

?(bi) = LB(bi, {a?, π?(i+1)+}), and π?i+(bi) = {a?, π?(i+1)+}. As a
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(a) (b)

Figure 3.1: (a) Leaf nodes are bounded using (3.2). (b) Adaptive Simplification, Subtrees are bounded
using (3.8) and Alg. 3.1.

consequence, we get upper and lower bounds on the optimal objective (value) function
J?(bi),

LB?(bi) ≤ J?(bi) ≤ UB?(bi), (3.7)

and the optimal policy π?i+(bi). See illustration in Fig. 3.1b.

Algorithm 3.1 Prune Branches
1: procedure Prune
2: Input: (belief-tree root, b; bounds of root’s children, {LBm,UBm}Cm=1). C is

the number of child branches going out of b.
3: LB? ← max

m
{LBm}Cm=1

4: for all children of b do
5: if LB? > UBm then
6: prune child m from the belief tree
7: end if
8: end for
9: end procedure

Yet, this formulation presents a difficulty. It is generally not guaranteed that after
using Alg. 3.1 we are left with a single branch in each belief node since the bounds
might overlap (see illustration in Fig. 2.1b). We discuss how we overcome this difficulty
in the next section.
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3.1.2 Adaptive Simplification

We address the problem of bounds overlapping by extending the definition of simplifica-
tion as we envision it to be an adaptive paradigm. We denote level of simplification as
how ‘aggressive’ the suggested simplification is. Assume that the belief is represented by
a set of samples (particles), as we do in Section 3.1.3. Taking a small subset of particles
to represent the simplified belief corresponds to coarse simplification. Taking many of
them will correspond to fine simplification. Naturally, with this setting, we can define
many discrete levels. We denote subscript i for si as the simplification level, where s0

and sn correspond, respectively, to coarsest and finest simplification levels. Additionally
we denote superscript j for sj as the index corresponding to the belief’s tree index. E.g.
in Fig. 1.1 for tree node b4

k+1 the corresponding simplification index is s4 and it may
assume any value of simplification: s4 ∈ {s0, s1, ...sn}.

Further, in order to assure we can prune all branches but one, we assume bounds
monotonically become tighter as the simplification level is increased and that the bounds
for the finest simplification level sn converge to the original problem. More formally
denote ∆s(b, a) , ub(bsi , bi, a)− r(bi, a) and ∆s(b, a) , r(bi, a)− lb(bsi , bi, a).

Assumption 3.1.1. ∀s ∈ [0, n − 1] we get: ∆s(b, a) ≥ ∆s+1(b, a) and ∆s(b, a) ≥
∆s+1(b, a).

Assumption 3.1.2. ∀bi, a we get: ub(bsn , bi, a) = lb(bsn , bi, a) = r(bi, a).

In the sequel we provide bounds that indeed satisfy these assumptions. A key question
is how can we decide the appropriate level of simplification beforehand? We would like
the coarsest level si that will enable eliminating actions/branches, i.e. lead us to the
situation depicted in Fig. 2.1c and not Fig. 2.1b. In Alg. 3.2 our adaptive simplification
approach is summarized. The general idea is to break down recursively a given belief tree
T into its sub-problems (subtrees), denoted as {Tm}|A|m=1, and solve each sub-problem
with its simplification level si. Ultimately this would lead to the solution of the entire
problem via (3.6). A potential computational issue is that it may not be worth it
to increase the simplification level repeatedly, since the overall time for all levels is
suppressing the time it takes to solve the original problem. Fortunately, as discussed
next, this is not an issue with our adaptive simplification.

Our adaptive simplification approach is based on two key observations. The first
key observation is that we can compare bounds from different levels of simplification
when pruning. Our second key observation is that we can re-use calculations between
different simplification levels, and thus avoid re-calculating simplification from scratch.
In the following sections, we elaborate on each of these crucial aspects.

16



Algorithm 3.2 Simplified Information Theoretic Belief Space Planning (SITH-BSP)
1: procedure Find Optimal Policy(belief-tree: T)
2: s← s0

3: return Adapt Simplification(T,s)
4: end procedure
5: procedure Adapt Simplification(belief-tree: T, si)
6: if T is a leaf then
7: return {lb,ub} . Corresponds to immediate reward bounds over the leaf

(3.1).
8: end if
9: Set simplification level: s← si

10: for all subtrees T′ in T do
11: Adapt Simplification(T′,s)
12: Calculate LBsj

,UBsj according to s and (3.8)
13: end for
14: Using {LBsj

,UBsj}|A|j=1 and Alg. 3.1 prune branches
15: while not all T′ but 1 in T pruned do
16: Increase simplification level: s← s+ 1
17: Adapt Simplification(T,s)
18: end while
19: Update {LBsj?,UBsj?} according to (3.11)
20: return optimal action branch that left a? and {LBsj?,UBsj?}.
21: end procedure

Comparing Bounds with Different Simplification Levels

Consider again some belief node bi in the belief tree, and assume recursively for each
of its children belief nodes bi+1 we already calculated the optimal policy π?(i+1)+(bi+1)
and the corresponding upper and lower bounds UBsl?(bi+1) and LBsl?(bi+1), where sl

indicates the simplification level, and l corresponds to the belief tree nodes indexing
notation. In general, the bounds for each belief node bi+1 can correspond to different
simplification levels, as illustrated in Fig. 3.1b.

We now discuss how the simplification level is updated recursively, and revisit the
process to calculate the optimal policy and the corresponding bounds for belief node
bi, previously described by Eqs. (3.6) and (3.7). Incorporating adaptive simplification,
Eq. (3.6) is modified to

UBsj (bi, {aji , π
?
(i+1)+})=ub(bsi , bi, a

j
i )+ 1

nz

∑
l

UBsl?(bli+1)

LBsj (bi, {aji , π
?
(i+1)+})= lb(bsi , bi, a

j
i )+ 1

nz

∑
l

LBsl?(bli+1).
(3.8)
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Note this equation applies for each aji ∈ A, and as mentioned, each belief node bli+1
(one for each observation zli+1) has its own simplification level sl. In other words, for
each bli+1, sl is the simplification level that was sufficient for calculating the bounds
{UBsl?(bli+1),LBsl?(bli+1)} and the corresponding optimal policy π?(i+1)+(bli+1). Thus,
when addressing belief node bi in (3.8), for each belief node bli+1 and its corresponding
simplification level sl, these bounds are already available. Yet, we may still need to
adapt the simplification level as we further discuss in Section 3.1.2.

Further, as seen in (3.8), the immediate reward and the corresponding bounds ub
and lb, in general, can be calculated with their own simplification level s. In particular,
when starting calculations, s could correspond to a default coarse simplification level,
e.g. coarsest level s0.

To define simplification level sj of the bounds (3.8) we remind the reader that the
belief tree is a discrete approximation to the expectation taken w.r.t. future observations
zi, i ∈ {k, k + L}. We account for some number nz of observations made in tree nodes
(e.g., in Fig. 3.1b, nz = 2)

sj , min{s, sl1 , sl2 , ...slnz }, (3.9)

where {sl1 , sl2 , ...slnz } represents the (generally different) simplification levels of belief
nodes bli+1 considered in the expectation approximation in (3.8). We explain the reason
to define sj as such in Section 3.1.2.

As mentioned earlier, we wish to decide which action a?i ∈ A is optimal from belief
node bi; the corresponding optimal policy would then be π?i+ = {a?i , π?(i+1)+}, where
π?(i+1)+ is the already-calculated optimal policy for belief node bli+1 that a?i leads to.
See illustration in Fig. 3.1b.

Determining a?i requires eliminating all other candidate actions aj ∈ A, which
involves comparing their corresponding bounds (3.8). Importantly, the bounds are
analytical, i.e. they are valid for all simplification levels.

As earlier, we can compare bounds for different candidate actions and if the bounds
do not overlap, perform pruning. For example, if for a1

i , a
2
i ∈ A,

UBs1(bi, {a1
i , π

?
(i+1)+}) < LB

s2(bi, {a2
i , π

?
(i+1)+}), (3.10)

we can prune the a1
i branch. If the bounds are sufficiently tight and all branches but

one were pruned, then the remaining action, in this case a2
i , is announced as a?i , and s2

is announced as s?. Thus the above-mentioned optimal policy π?i+ is constructed.

We now recall bi itself has an index in the belief tree, with respect to the previous level.
We denote it as bli, considering the father node of bi is bi−1, and the lth corresponding
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observation zli. At this point we get

UBsl?(bli) = UBs?(bli, {a?, π?(i+1)+})

LBsl?(bli) = LBs?(bli, {a?, π?(i+1)+}).
(3.11)

As in (3.7), (3.11) leads to bounds over the objective function

LBsl?(bli) ≤ J?(bli) ≤ UBs
l?(bli), (3.12)

where bli corresponds to the same notation as in (3.8), recursively. In general, pruning
as done in (3.10) will not always hold, and we need to adapt level of simplification. We
discuss in the next section how we do this, including re-use of calculations.

Adapting Simplification Level with Calculation Re-Use

For some belief node bi in the belief tree, consider the bounds UBsj (bi, {aji , π?(i+1)+})
and LBsj (bi, {aji , π?(i+1)+}) from (3.8) for different actions aji ∈ A, that partially overlap
and therefore could not be pruned. Each such action aji can generally have its own
simplification level sj . We now iteratively increase the simplification level by 1. This
can be done for each of the branches, if sj is identical for all branches, or only for the
branch with the coarsest simplification level. Consider now any such branch whose
simplification level needs to be adapted from sj to sj + 1. Recall, that at this point,
the mentioned bounds were already calculated, thus their ingredients, in terms of
ub(bsi , bi, a

j
i ), lb(bsi , bi, a

j
i ) and {UBsl?(bi+1),LBsl?(bi+1)}nz

l=1, involved in approximating
the expectation in (3.8), are available. Recall also sj , min{s, sl1 , sl2 , ...slnz } from (3.9),
i.e. each element in {s, sl1 , sl2 , ...slnz } is either equal or larger than sj . We now discuss
both cases, starting from the latter.

As we assumed bounds to improve monotonically as simplification level increases,
see Assump. 3.1.1, for any sl > sj + 1 we already have readily available bounds
{UBsl?(bi+1),LBsl?(bi+1)} which are tighter than those that would be obtained for
simplification level sj + 1. Thus, we can safely skip the calculation of the latter and use
the existing bounds from level sl as is.

For the former case, i.e. sl = sj , we now have to adapt the simplification level to
sj+1 by calculating the bounds {UB(sl+1)?(bi+1),LB(sl+1)?(bi+1)}. Here, our key insight
is that, instead of calculating these bounds from scratch, we can re-use calculations
between different simplification levels, in this case, from level sl. As the bounds from
that level are available, we can identify only the incremental part that is “missing” to
get from simplification level sl to sl + 1, and update analytically the existing bounds
{UBsl?(bi+1),LBsl?(bi+1)} to recover {UB(sl+1)?(bi+1),LB(sl+1)?(bi+1)} exactly. The
same argument applies also for bounds over momentary rewards. In Section 3.1.4 we
apply this approach to a specific simplification and reward function.

We can repeat iteratively the above process of increasing the simplification level
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until we can prune all branches but one. This means each subtree will be solved
maximum once, per simplification level. Since we assumed the simplification converges
to the original problem for the finest level sn, see Assump. 3.1.2, we are guaranteed to
eventually disqualify all sub-optimal branches. Moreover, due to the discussed-above
calculation re-use, in the worst case, adapting the simplification all the way up to the
finest level sn, is roughly equivalent to solving the original problem. We address this
aspect explicitly in Section 3.1.4. For a detailed illustrative example w.r.t. Fig. 3.1b see
Sec. 6.2.

In the following sections, we present a specific simplification along with novel
derivations that show it holds the mentioned mathematical properties. Our described
approach is summarized in Alg. 3.1, 3.2.

3.1.3 Bounds

We now delve deeper to the novel bounds our chosen simplification suggests.

Belief Representation and Chosen Simplification

As mentioned, we use Particle Filter for belief update. This means the belief is
represented as a set of weighted particles,

b , {xi, wi}Ni=1, (3.13)

where N is a tune-able parameter specifying the desired number of particles.
Suggested Simplification: Given the belief representation (7.2), the simplified belief

is a subset of N s particles, sampled from the original belief, where N s ≤ N . More
formally:

bs
k,{(xi, wi) | i ∈ As

k, A
s
k ⊆ {1, 2, . . . , N},|As

k| =Ns
k}, (3.14)

where Ask is the set of particle indices comprising the simplified belief bsk for time k.
Increasing the level of simplification is done incrementally. Specifically, consider

|As| = N s and to get to the next simplification level we add m particles with indices
j ∈ B, |B| = m. Then the following holds: As∩B = ∅, As+1 = As∪B, N s+1 = N s+m.

Bounding the Differential Entropy

We consider a common reward function, the differential entropy. As one of our key
contributions, in this section we derive novel analytical upper and lower bounds lb and
ub considering this reward function, assuming a sampling-based belief representation
(7.2) and the corresponding simplified belief (3.14). These bounds can then be used
within our general simplification framework presented in Sections 3.1.1 and 3.1.2.

Under this setting approximating differential entropy of the belief is not an easy
task. To calculate H(b[xk]) = −

∫
b[xk] · log (b[xk]) dxk, one must have access to the

manifold representing the belief. Several approaches exist. One of them is using Kernel
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Density Estimation as done, e.g., by Fischer and Tas [2020]. Here, we consider the
method proposed by Boers et al. [2010]:

Ĥ(bk+1) , log
[∑

i

P(zk+1 | xi
k+1)wi

k

]
︸ ︷︷ ︸

(a)

(3.15)

−
∑

i

wi
k+1 · log

P(zk+1 | xi
k+1)

∑
j

P(xi
k+1 | x

j
k, ak)wj

k


︸ ︷︷ ︸

(b)

,

where i indexes particles and their corresponding weight as in (7.2) and (3.14). One
can observe this method requires access to samples representing both bk and bk+1; thus,
this corresponds to an information-theoretic reward of the form r(bk, bk+1). Utilizing
the chosen simplification (3.14) we can now upper and lower bound 3.15. We do so
below by bounding term (b) which is the source of complexity. First, as the models are
known, we define m , max{P(xk+1 | xk, ak)}.

Theorem 1. Term (b) in (3.15) can be upper and lower bounded via simplification as

(b) ≥ −
∑

i∈¬As
k+1

wi
k+1 · log

[
m · P(zk+1 | xi

k+1)
]

−
∑

i∈As
k+1

wi
k+1 · log

P(zk+1 | xi
k+1)

∑
j

P(xi
k+1 | x

j
k, ak)wj

k


(b) ≤ −

∑
i

wi
k+1 · log

∑
j∈As

k

P(zk+1 | xi
k+1)P(xi

k+1 | x
j
k, ak)wj

k


See proof in Sec. 6.1.

Finally, bounding (3.15) using Theorem 1 corresponds, in our general framework
from Sections 3.1.1 and 3.1.2, to (3.2).

3.1.4 Bounds Analysis

Convergence

We now analyze convergence of the simplification described in Section 3.1.3. Since
simplifying to the level of sn means the simplified belief is just the original belief, we get:
N s = N ⇒ b = bs ⇒ r(bs, a) = r(b, a). Furthermore, it can be easily seen the upper
and lower bounds in Theorem 1 coincide and equal to term (b) from (3.15). Meaning,
under our chosen simplification, the bounds converge to the original rewards for the
non-simplified original belief. Where we consider as lower bounds term (a) from (3.15)
with lower bound to term (b), and similarly we build the upper bounds (using (a) and
upper bound to (b)).
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Complexity Analysis

The original formulation of Boers et al. [2010] suggests complexity of O(N2) where N is
as in (7.2). The derivations in Section 3.1.3 suggest complexity of O(N s ·N), where N s

is the maximal number of particles needed for pruning, for some belief node. Altogether,
time saved for all belief nodes in the tree will result in the total speedup of our approach.

Re-use of Calculations

The unique structure of the simplification allows us to cache the calculation from a
previous simplification level. Specifically, moving from simplification level s to level
s+ 1, corresponds to adding some m additional particles to bs in order to get bs+1. For
the lower bound in Theorem 1 we can just cache the final result and augment the sums
with the calculations corresponding to the m missing particles. For the upper term in
Theorem 1, we need to cache the inner sums of the log, augment them with the missing
m particles calculations, and re-weight it using the outer sum weights. Note space
complexity remains the same since we are already caching the particles and weights
for each belief. This re-use of calculations results in time complexity, going up from
simplification level s0 to level sn being the same order as solving the original problem in
the first place. Thus, making simplification is worthwhile always (up to some constant
overhead).

3.2 SITH-PFT incorporation of simplification into state
of the art MCTS planner

SITH-PFT (Alg. 3.3) follows the same algorithmic baseline as PFT. We adhere to the
conventional notations Sunberg and Kochenderfer [2018] and denote by GPF(m)(bao) a
generative model receiving as input the belief b, an action a and an observation o, and
producing the posterior belief b′ and the mean reward over the state rx(b, a). For belief
update, we use a particle filter based on m belief samples. Instead of calculating the
immediate information-theoretic rewards and the corresponding QI function estimates,
we calculate low-cost lower and upper bounds `, u over the information-theoretic rewards
and corresponding bounds LB, UB over the QI function. These bounds are adaptive
and can be tightened on demand. We call the process of tightening “resimplification”. In
turn, these bounds induce bounds over UCB. As we discuss in detail next, an essential
aspect of our approach is using these bounds to achieve the exact same action-selection
as UCB without exactly calculating the Q function and UCB. To this end we present
a novel action-selection method (Alg. 3.4). Crucially, by tightening the bounds only
to a minimal needed extent (Alg. 3.5), we guarantee the same tree connectivity and
calculated optimal action compared to PFT-DPW, but faster. We devote the subsequent
section to the bounds and explain how they pertain to SITH-PFT.
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3.2.1 Information theoretic bounds

In the setting of continuous state space and nonparametric belief represented by m

weighted particles b , {wi, xi}mi=1, the estimation of differential entropy is not a simple
task. Typically, such estimators’ complexity is squared in the number of particles Fischer
and Tas [2020], Boers et al. [2010]. We use Boers et al. [2010] as a reward function
and utilize the bounds over it, developed by Sztyglic and Indelman [2021]. The bounds
can be tightened on demand incrementally without an overhead. Namely, after a few
bounds-tightening iterations they are just the reward itself and the entire calculation
is time-equivalent to calculating the original reward. We define the bounds over the
minus differential entropy estimator for bk+1 as (see the appendix for the full terms)

`(bk, ak, zk+1, bk+1;Ask, Ask+1)≤−Ĥ(bk, ak, zk+1, bk+1)≤u(bk, ak, zk+1, bk+1;Ask, Ask+1),
(3.16)

where s is the discrete level of simplification s ∈ {1, 2, . . . ,M}. Higher levels of
simplification correspond to tighter, and lower levels of simplification correspond to
looser bounds. Ask, Ask+1 are the simplification level corresponding sets of indices.
Specifically, bk, bk+1 are each represented as a set of m weighted particles. We keep
track over the indices of particles that were chosen for the bounds calculation. Namely,
As ⊆ {1, 2, . . . ,m} and |As| = ms. Each subsequent level (low to high) defines a larger
set of indices. Sometimes the bounds are not close enough to select the same action as
UCB. In this case, our modified action selection routine triggers the resimplification
process. When resemplification is carried out, new indices are drawn from the sets
{1, 2, . . . ,m} \Ask and {1, 2, . . . ,m} \Ask+1 respectively, and added to the sets Ask and
Ask+1. This operation promotes the simplification level to s+ 1 and defines As+1

k and
As+1
k+1. Importantly, increasing simplification level is done incrementally (as introduced

by Sztyglic and Indelman [2021]). Thus, when we refine the bounds `, u (Alg. 3.5 lines
3,12,18), from simplification level s = 1 all the way to s = M (worst case scenario)
the time complexity is equivalent to calculation of Ĥ(·). When s = M , it holds that
`(·) = −Ĥ(·) = u(·). Importantly, by caching the shared calculations of the two bounds,
we never repeat the calculation of these values and obtain maximal speedup. The
immediate bounds (3.16) induce bounds over QI(·). In MCTS, the Q approximation
is a mean over simulations. Each simulation yields a sum of discounted cumulative
rewards. Therefore, if we replace the reward −Ĥ(·) with the bounds from (3.16) we
will get corresponding discounted cumulative upper and lower bounds. Averaging the
simulations, in the same manner (Alg. 3.3 lines 29-30), yields

LB(·) ≤ QI(·) ≤ UB(·). (3.17)
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3.2.2 UCB bounds

Since the MCTS tree is built upon (2.8), using (2.7) and (3.17) we denote UCB upper
and lower bounds as

UCB(ha) , Qx(ha) + λLB(ha) + c ·
√

log(N(h))
N(ha) , (3.18)

UCB(ha) , Qx(ha) + λUB(ha) + c ·
√

log(N(h))
N(ha) . (3.19)

3.2.3 Guaranteed belief tree consistency

In this section, we define the Tree Consistency and explain and prove the equivalence of
our algorithm to PFT-DPW.

Definition 1 (Tree consistent algorithms). Consider two algorithms, constructing a be-
lief tree. Assume every common sampling operation for the two algorithms uses the
same seed. The two algorithms are tree consistent if two belief trees constructed by the
algorithms are identical in terms of actions, observations, and visitation counts.

Our approach leans on a specific action selection procedure inside the tree, which
differs from the PFT. At every belief node we mark as a candidate action the one that
maximizes the lower bound UCB as such

ã = arg max
a∈A

UCB(ha). (3.20)

If ∀a 6= ã, UCB(hã) ≥ UCB(ha), there is no overlap (Fig. 3.2 (c)) and we can announce
ã is identical to a†, i.e., the action that would be returned by PFT using (2.8) and
the tree consistency was not compromised. Else, the bounds need to be tightened, so
we may guarantee the tree consistency. We examine the ha siblings of hã, fulfilling
a 6= ã : UCB(hã) < UCB(ha) (Fig. 3.2 (a)). Our next step is to tighten the bounds
via resimplification (Fig. 3.2 (b)) until there is no overlap. When some sibling nodes
have overlapping bounds, we strive to avoid tightening all of them at once since fewer
resimplifications lead to a greater speedup. Thus, among them we pick a single ha node
that induces the biggest “gap”, denoted by g, between its bounds (see Alg. 3.4 lines
20-28), where

g(ha) , UB(ha)− LB(ha). (3.21)

Further, we tighten the bounds down the branch of the chosen node (see Alg. 3.4 lines
7-9) for every member of C(ha), the set of children of ha. Since the bounds converge
to the actual information reward we can guarantee the algorithm will pick a single
action after a finite number of “bounds-tightening” iterations (resimplification); thus,
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Figure 3.2: Illustration of our approach. The circles denote the belief nodes, and the rectangles
represent the belief-action nodes. Rollouts, emanating from each belief node, are indicated by dashed
lines finalized with triangles. (a) The simulation starts from the root of the tree, but at node b3

1 it can
not continue due to an overlap of the child nodes (colored red) bounds. (b) One of the red colored
belief-action nodes is chosen, and resimplification is triggered from it down the tree to the leaves (shaded
green area in the tree). The beliefs and rollouts inside the green area (colored by light brown) undergo
resimplification if decided so. This procedure results in tighter bounds. (c) After the bounds got tighter,
nothing prevents the SITH-PFT from continuing down from node b3

1 guaranteeing the Tree Consistency.
If needed, additional resimplification can be commenced.

tree consistency is assured. In the following section, we delve into the resimplification
procedure.

3.2.4 Resimplification

In this section, we explain how resimplification is done. The algorithmic scheme is
formulated in a general manner. However, it is guided by a specific strategy meant to
minimize the number of times we tighten the bounds (as mentioned in Sec. 3.2.3). We
denote this strategy as Resimplification Strategy. We assume this strategy satisfies two
conditions to guarantee tree consistency.

Convergence 3.2.1. When using a converging strategy, each call to resimplify on the
children of ha, tightens the UCB(ha),UCB(ha) bounds (unless they are already equal).

Finite-time 3.2.2. When using a finite-time strategy, after a finite number of calls to
resimplify on the children of ha, it holds UCB(ha) = UCB(ha) = UCB(ha).

Resimplification algorithmic scheme

Consider a belief-action node ha at level d with LB(ha),UB(ha). Assume the algorithm
chooses it for bounds tightening, as described in Sec. 3.2.3 and Alg. 3.4 line 3. All
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tree nodes that ha is an ancestor to them, contribute their immediate `, u bounds
to LB(ha),UB(ha) calculation. Thus, to tighten LB(ha),UB(ha), we can potentially
choose any candidate nodes in the subtree of ha. Every child belief node of ha is
sent to the resimplification routine (Alg. 3.4 lines 7-9), which performs four tasks.
Firstly, it chooses the action (Alg. 3.5 line 7) that will participate in the subsequent
resimplification call and sends all its children beliefs nodes to the recursive call down the
tree (Alg. 3.5 line 8-10). Secondly, it refines the belief node `, u according to the specific
resimplification strategy (Alg. 3.5 lines 3,12,18). Thirdly, it reconstructs LB(ha), UB(ha)
once all the children belief nodes of ha have returned from the resimplification routine
(Alg. 3.5 line 11). Fourthly, it engages the rollout resimplification routine according
to the specific resimplification strategy (Alg. 3.5 lines 4, 13). Upon completion of this
resimplification call initiated at ha, we get tighter immediate bounds of some of ha
descendant belief nodes (including rollouts nodes). Accordingly, all of ha descendant
belief-action nodes bounds (LB,UB) were updated.

Specific resimplification strategy

Specifically, we decide to refine `′, u′ of a belief node h′ with depth d′ if

γd−d
′ · (u′ − `′) > 1

d
g(ha), (3.22)

where g(ha) corresponds to the gap (3.21) of the belief-action node ha that initially
triggered resimplification in Alg. 3.4 line 24. The explanation to (3.22) resimplification
strategy is rather simple. The right hand side of (3.22) is the mean gap per depth/level
in the sub-tree with ha as its root and spreading downwards to the leaves. Naturally,
some of the nodes in this subtree have u− ` above the mean gap, and some under. We
wish to locate and refine all the ones above. For the left-hand side of (3.22); the rewards
are accumulated and discounted according to their depth. Thus, when comparing ha
node with depth d to belief node h′ with depth d′, we must account for the relative
proper discount factor. Note the depth identified with the root is dmax as seen in Alg. 3.3
line 4, and the leafs are distinguished by depth d = 0. For each rollout originating from
the tree belief node, we find the rollout node with the biggest u − ` fulfilling (3.22)
term locally in the rollout and resimplify it (Alg. 3.5 lines 4,13). To choose the action
to continue resimplification down the tree, we take the action corresponding to the
belief-action node with the largest gap weighted by its visitation count (Alg. 3.5 line 7).
With this strategy, we aim to leave the belief tree at the lowest possible simplification
levels whilst still guarantee tree consistency.

Reconstructing the bounds

If the action selection procedure triggered a resimplification, it modified the bounds
through the tree. Since the resimplification works recursively, it reconstructs the belief-
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action node bounds coming back from the recursion (Alg. 3.5 line 11). Similarly, the
action dismissing procedure reconstructs LB, and UB of the belief-action node at which
the action dismissing is performed (Alg. 3.4 line 10). Moreover, on the way back from
the simulation, we shall update the ancestral belief-action nodes of the tree. Specifically,
we are required to reconstruct each LB and UB higher than the deepest starting point
of the resimplification (Alg. 3.3 line 23-25). Reconstruction is essentially a double loop.
To reconstruct UB(ha),LB(ha) we first query for all belief children nodes hao. We
then query all belief-action nodes that are children to the hao, i.e., haoa′. The possibly
modified immediate bounds ` and u are taken from hao nodes and the UB(·), LB(·)
bounds are taken from the haoa′ nodes. Importantly, each of the bounds is weighted
according to the proper visitation count.

3.2.5 Guarantees

Assuming a converging and finite-time resimplification strategy, the following theorems
are satisfied:

Theorem 2. The SITH-PFT and PFT are Tree Consistent Algorithms.

Theorem 3. The SITH-PFT provides the same solution as PFT.

Theorem 4. The specific resimplification strategy from Sec. 3.2.4 is a converging and
finite-time resimplification strategy.

See full proofs of the theorems and time complexity analysis using the specific bounds
in the appendix. Note other resimplification strategies are possible, see the appendix.
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3.2.6 Algorithms

Algorithm 3.3 SITH-PFT
1: procedure Plan(belief: b)
2: h← ∅
3: for i ∈ 1 : n do
4: Simulate(b, dmax, h)
5: end for
6: return Action Selection(b, h) . called with nullified exploration constant c
7: end procedure
8: procedure Simulate(belief: b, depth: d, history: h)
9: if d = 0 then

10: return 0
11: end if
12: a← Action Selection(b, h)
13: if |C(ha)| ≤ koN(ha)αo then
14: o← sample x from b, generate o from (x, a)
15: b′, rx ← GPF(m)(bao)
16: Calculate initial u′, `′ for b′ based on s← 1 . minimal simp. level
17: C(ha)← C(ha) ∪ {(rx, `′, u′, b′, o)}
18: R,L,U ← rx, `′, u′ + γ Rollout(b′, hao, d− 1)
19: else
20: (rx, `′, u′, b′, o)← sample uniformly from C(ha)
21: R,L,U ← rx, `′, u′ + γ Simulate(b′, hao, d− 1)
22: end if
23: if deepest resimplification depth < d then . accounting for updated deeper in

the tree bounds. See section 3.2.4
24: reconstruct LB(ha),UB(ha)
25: end if
26: N(h)← N(h) + 1
27: N(ha)← N(ha) + 1
28: Qx(ha)← Qx(ha) + R−Qx(ha)

N(ha)

29: LB(ha)← LB(ha) + L−LB(ha)
N(ha)

30: UB(ha)← UB(ha) + U−UB(ha)
N(ha)

31: return R,L,U

32: end procedure
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Algorithm 3.4 Action Selection
1: procedure Action Selection(b, h)
2: while true do
3: Status, a← Select Best(b, h)
4: if Status then
5: break
6: else
7: for all b′, o ∈ C(ha) do
8: Resimplify(b′, hao)
9: end for

10: reconstruct LB(ha),UB(ha)
11: end if
12: end while
13: return a
14: end procedure
15: procedure Select Best(b, h)
16: Status ← true
17: ã← arg max

a
{UCB(ha)}

18: gap ← 0
19: child-to-resimplify ← ã

20: for all ha children of b do
21: if UCB(hã) < UCB(ha) ∧ a 6= ã then
22: Status ← false
23: if UB(ha)− LB(ha) > gap then
24: gap ← UB(ha)− LB(ha)
25: child-to-resimplify ← a

26: end if
27: end if
28: end for
29: return Status, child-to-resimplify
30: end procedure
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Algorithm 3.5 Resimplification
1: procedure Resimplify(b, h)
2: if b is a leaf then
3: Refine{`,u}(b)
4: Resimplify Rollout(b, h)
5: return
6: end if
7: ã← arg max

a
{N(ha) · (UB(ha)− LB(ha))}

8: for all b′, o ∈ C(hã) do
9: Resimplify(b′, hão)

10: end for
11: reconstruct LB(hã),UB(hã)
12: Refine{`,u}(b)
13: Resimplify Rollout(b, h)
14: return
15: end procedure
16: procedure Resimplify Rollout(b, h)
17: brollout ← find weakest link in rollout
18: Refine{`,u}(brollout)
19: end procedure
20: procedure Refine{`,u}(b)
21: if (3.22) holds for b, refine its `, u and promote its simplification level
22: end procedure
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Chapter 4

Experiments and Results

4.1 SITH-BSP Evaluation

We consider an autonomous navigation to goal scenario with continuous state and
observation spaces. First, we experiment with a passive case, i.e. a given policy, to
demonstrate our novel entropy bounds behavior. Second, we show how the bounds can
use us to speed up POMDP planning as explained in Section 3.1. All experiments were
conducted on a laptop with Intel i7-9850H CPU 2.59GHz with 16 GB RAM.

4.1.1 Experimental Setting - 2D Continuous Light-Dark

We consider a 2D continuous Light-Dark problem. The robot starts at some unknown
point x0 ∈ R2. In this world, there are spatially scattered beacons with known locations.
Near the beacons, the attained observations are less ‘noisy’. The goal is to get to the
goal xt ∈ R2 (upper right corner of the world). Initial belief is b[x0] = N (x0, I · σ0),
motion and observation models are T = P(x′ | x, a) = N (x+ a, I · σT ), O = P(z | x) =
N (x − xb, I · σO · max{r, rmin}) respectively, where r is the robot’s distance to the
nearest beacon whose known location is xb, and rmin is a tune-able parameter. For
all experiments, the belief is approximated by a set of N weighted samples as in (7.2).
This setting implies the belief at each time step is Gaussian and can be inferred exactly
using Kalman Filter (KF). Thus, the differential entropy has a closed-form and can
be calculated across the simulation. Note we consider this Gaussian case only as a
reference point and our approach is applicable to any distribution.

4.1.2 Differential Entropy Approximations

To verify our novel bounds behavior we consider a passive scenario over the setting
described in 4.1.1. The robot moves diagonally to the goal (Fig. 4.1a). Along the
way, it passes close by two beacons. Consequentially, the robot’s uncertainty decreases.
In Fig 4.2a we plot the bounds along with the original approximation (3.15), a KDE
approximation (as done by Fischer and Tas [2020]), the actual differential entropy and
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(a) (b)

Figure 4.1: (a) Localization with a predefined policy in an environment represented by known
landmarks. Particles are colored according to weight (high-red, small-yellow). Blue ellipses correspond
to estimated uncertainty covariance by a KF. (b) Planning simulation, setting II. At each time step the
robot is planning L step into the future and then executes the first action from the calculated optimal
policy. The plot shows belief evolution in terms of particles sets along the actual trajectory taken by
the robot.

naive approximation using discrete entropy of the particles weights: h(b) = −
∑
iw

i ·
logwi. We experiment with a changing number of particles and it is clear the bounds
converge to the original reward (differential entropy approximation) (3.15).

4.1.3 Planning in 2D environment

We demonstrate the simplification speedup when planning in a continuous 2D scenario.
The setting is as in Section 4.1.1. However, now the robot is given the ability to plan
a parametric number of L steps into the future. After the planning session is done,
the robot executes the first action out of the calculated optimal policy, acquires a new
observation, updates the belief, and performs planning again (and so on). The reward
function is −r(b, a) = E

x∼b
{‖x− xt‖1} + Ĥ(b), where the first term is the expected

distance to goal, and Ĥ(bk) is the approximation of the differential entropy (3.15).
We apply our approach considering different tree structures. Specifically, we evaluate

our approach on a POMCP-like tree (deep and sparse) Silver and Veness [2010], DESPOT-
like sparse tree (Ye et al. [2017]), and on a shallow and ‘thick’ tree like the one generated
by Lim et al. [2020a]. We provide a full explanation of how these trees are built in the
caption of Table 4.1. The reported results in Table 4.1 are the mean planning time (in
seconds) of our approach, compared to calculating the objective using original rewards.
We experiment with a changing number of particles and planning horizon.

We consider two settings: ‘I’ and ‘II’. Setting ‘II’, illustrated in Fig. 4.1b, is more
complex as the robot needs to move from the bottom left corner to the top right and
the action space is {left, right, up, down}. Setting ‘I’ is easier: The robot needs to move
from an initial point x0 to the same height point xL, which means the optimal path is
just a straight line, while the action space is {left, right}. This easy setting allows the
robot to utilize simplification to its full extent. Empty cells in Table 4.1 correspond
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Table 4.1: Mean time per planning session. Each table entry is (original objective time/simplified
approach time). Results are in Seconds. The second row indicates the number of particles used.
DESPOT-like belief tree Ye et al. [2017] was built by expanding all actions in every level of the tree but
only making a single observation in each level, i.e. nz = 1. POWSS-like tree Lim et al. [2020a] was built
by expending each belief node for all actions, and generating an observation for each particle of the
belief, i.e. number of observations when branching is as the number of particles. POMCP-like tree Silver
and Veness [2010] was built using five ‘rollout’s starting from the root of the tree. In each rollout down
the tree, we randomly choose if to expand a new node by taking an action that was not taken previously
from that node or to go down the tree using nodes that were already expanded from previous rollouts.

Simulation Horizon Ye et al. [2017] Tree
20 50 100

Setting I
1 0.124/0.043 0.741/0.192 2.892/0.667
2 0.364/0.129 2.196/0.584 8.616/2.042
3 0.853/0.339 5.059/1.324 19.899/4.658

Setting II

1 0.245/0.099 1.513/0.4 5.855/2.018
2 1.209/0.738 7.195/3.821 30.638/13.49
3 5.027/3.212 31.515/18.288 -

Simulation Horizon Lim et al. [2020a] Tree
10 20 30

Setting I
1 0.554/0.287 4.065/1.437 12.908/3.953
2 11.02/5.386 - -
3 - - -

Setting II

1 1.112/0.953 8.501/5.143 26.375/11.977
2 - - -
3 - - -

Simulation Horizon Silver and Veness [2010] Tree
20 50 100

Setting I
5 1.13/0.776 6.625/2.008 28.19/7.232
10 2.648/2.555 15.342/8.214 -
15 4.2/3.677 26.205/20.174 -

Setting II

5 1.383/0.733 8.417/3.864 33.244/10.97
10 2.985/2.112 17.293/6.092 -
15 4.53/3.701 27.712/11.385 -
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(a)

(b) (c)

Figure 4.2: (a) Differential entropy approximations and bounds. Calculations were done using N = 200
particles. From left to right: Simplification is Ns = {0.1, 0.5, 0.9} ·N . (b) and (c) show simplification
level histograms vs. tree depth for entire simulation (10 planning sessions). (b) Setting I using N = 50
and Horizon of 4. (c) Setting II using N = 20 and Horizon of 3. x-axis corresponds to tree nodes of some
depth in the belief tree. y-axis corresponds to the simplification level needed to achieve pruning. The
scale of the circles corresponds to how many nodes were in that category. Circle scales are normalized
since the number of nodes grows exponentially going down the tree.

to runs that planning session (for a regular objective) took longer than 35 [sec] and
was stopped. Initial simplification level was set to s0 = 0.1, i.e., N s0 = 0.1 · N and
specifically the levels are si ∈ {0.1, 0.2, 0.4, 0.8, 1.0}.

It is clear from Table 4.1, using our suggested simplification is a favorable approach,
leading to speedup in all of the conducted experiments. Since the simplification bounds
are analytical and used for eliminating branches in the belief tree of the original problem,
the same optimal action is obtained with or without our simplification. In other words,
we demonstrate a significant speedup while obtaining the same solution.

In Fig. 4.2 we can get a glimpse into how our adaptive simplification performing
in the tree depth for Settings I and II. The shown plots are histograms that tell us
what are the levels of simplification in the tree needed for pruning. It can be seen that
indeed for Setting I the simplification is performing extremely well thus saving a lot
of time 4.2b. In the more difficult Setting II, indeed higher simplification levels are
more common 4.2c. Nevertheless, as seen in Table 4.1, we still get a significant speedup,
while the speedup for Setting I is even more drastic. This implies our simplification can
identify by itself situations where we can save resources (computation time) and all this
without compromising on the accuracy of the desired solution.
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(a) SITH-PFT (b) PFT-DPW (c) IPFT

Figure 4.3: 2D Continuous Light Dark. The agent starts from an initial unknown location and is given
an initial belief. The goal is to get to location (0, 0) (circled in red) and execute the terminal action.
Near the beacon (white light) the observations are less noisy. We consider multi-objective function,
accounting for the distance to the goal and the differential entropy approximation (with the minus sign
for reward notation). Executing the terminal action inside the red circle gives the agent a large positive
reward but executing it outside it, will yield a large negative reward.

4.2 SITH-PFT Evaluation

In the continuous setting with information-theoretic rewards, many common POMDP
benchmarks (e.g., rock sampling, laser tag) are inadequate. We turn to the challenging
Continuous Light Dark Problem with a few modifications. We extend it to a 2D domain
and place a single “light beacon” in the continuous world. The agent’s goal is to get
to location (0, 0) and execute the terminal action - Null. Executing it within a small
radius from (0, 0) will give the agent a reward of 200, and executing it outside the
radius will yield a negative reward of -200. The agent can move in eight evenly spread
directions A = {→,↗, ↑,↖,←,↙, ↓,↘, Null}. The multi-objective reward function is
r(b, a, z, b′) = − E

x∼b′
{‖x‖2} − λĤ(b, a, z, b′). Motion, observation, and initial belief are

PT (·|x, a) = N (x+ a,ΣT ), PZ(z|x) = N (x,min{1.0, ‖ x− xb ‖22} · ΣO), b0 = N (x0,Σ0)
respectively. xb is the 2D location of the beacon and all covariance matrices are diagonal
(i.e. Σ = I · σ2). Implementation is built upon the JuliaPOMDP package collection
Egorov et al. [2017]. The code will become available upon acceptance of Sztyglic et al.
[2021]. Extensive experiments confirm the advantage of our approach. We experiment
with ten different configurations (rows of Table 4.2) that differ in m (number of particles),
d (simulation depth), and #iter (number of simulation iterations per planning session).
Each scenario comprises 10 planning sessions i.e. the agent performs up to 10 planning-
action executing iterations. We repeat each of the experiments 25 times. In all different
configurations, we obtained significant speedup while achieving the exact same solution
compared to PFT. Results are summed up in Table 4.2. An illustration can be found in
Fig. 4.3. Note that SITH-PFT 4.3a yields identical to PFT solution 4.3b while IPFT
demonstrates severely degraded behavior. We remind the purpose of our work is to
speed up the PFT approach when coupled with information-theoretic reward. Hence,
since the two algorithms produce identical belief trees and action at the end of each
planning session, there is no point reporting the algorithms identical performances
(apart from planning time). For our simulations, we used an 8 cores Intel(R) Xeon(R)
CPU E5-1620 v4 with 128 GB of RAM working at 3.50GHz.
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Table 4.2: Runtimes of SITH-PFT versus PFT-DPW. The rows are different configurations of the
number of belief particles m, maximal tree depth d, and the number of iterations per planning session.
Reported values are averaged over 25 simulations 10 planning sessions each, and presented with the
standard errors. In all simulations SITH-PFT and PFT-DPW declared identical actions as optimal and
exhibited identical belief trees in terms of connectivity and visitation counts.

(m, d, #iter.) Algorithm planning time [sec]

(50, 30, 200) PFT-DPW 3.54± 0.4
SITH-PFT 2.96± 0.49

(50, 50, 500) PFT-DPW 9.82± 1.31
SITH-PFT 8.1± 1.33

(100, 30, 200) PFT-DPW 13.42± 1.49
SITH-PFT 10.77± 1.73

(100, 50, 500) PFT-DPW 35.06± 4.44
SITH-PFT 26.7± 4.37

(200, 30, 200) PFT-DPW 55.89± 5.41
SITH-PFT 39.46± 7.09

(200, 50, 500) PFT-DPW 142.14± 12.39
SITH-PFT 100.09± 14.67

(400, 30, 200) PFT-DPW 211.86± 24.18
SITH-PFT 160.36± 31.02

(400, 50, 500) PFT-DPW 570.13± 45.48
SITH-PFT 414.65± 53.37

(600, 30, 200) PFT-DPW 503.78± 31.61
SITH-PFT 374.0± 44.23

(600, 50, 500) PFT-DPW 1204.78± 119.16
SITH-PFT 912.92± 116.08
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this research we have introduced SITH-BSP, an algorithmic paradigm able to speedup
calculations when performing online POMDP planning, considering general distributions
and belief-dependent rewards. The lion share of our approach, definition of simplification
over sparse sampling planning, is mathematically formulated in a general manner. It
can be easily extended to many directions and as we showed applicable for existing or
future approaches. The more specific aspects of our approach (assuming Particle Filter
for belief approximation) provides novel derivations for bounds over the differential
entropy approximation and may be taken to other areas in the vast field of robotics.
We have shown how the approach assumes an adaptive form, while re-using calculations
and thus gives the exact optimal solution to the original problem in an effective manner.

Further, we presented a novel method to accelerate information-theoretic reward
planning using state of the art MCTS planner. Our approach is applicable with any
converging to the reward bounds. We provide thorough proofs that our method is
entirely equivalent to PFT-DPW, yielding the same solution and belief tree in each
planning step. Our experiments demonstrate that the technique is paramount in terms of
computation time compared to PFT-DPW. In the worst-case scenario, the computation
time is approaching the baseline. The limitation of our algorithm is that it leans on
converging bounds, which are not trivial to derive and specific for a particular reward
function. In addition, it requires slightly more caching than the baseline.

5.2 Future work

Many possible extensions can be envisioned. The algorithmic baseline already exists,
thus, deriving new converging to the reward bounds can provide a new algorithm by
simply plugin them into our existing mechanism. Note this is true for both SITH-
BSP and SITH-PFT. Importantly, these bounds don’t have to be over information
theoretic rewards function. Complex and ‘expensive’ reward functions can be envisioned.
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Additionally, the existing bounds can be extended further to additional POMDP
celebrated planners such as DESPOT-α. Finally, the math used in the development of
the bounds can be modified into a linear approximation. While it is not tight enough
for our proposed algorithm it can be thought of as a heuristic tool to guide the tree
expansion in MCTS like methods.
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Chapter 6

Appendix 1 SITH-BSP

6.1 Proof for Theorem 1
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(6.2)

6.2 Adaptive Simplification Illustrative Example

Consider Fig. 3.1b and assume the subtrees to b1
i were solved using simplification levels

that hold s2 = s1 + 1, s2 < s3, s4. Further assume the immediate reward simplification is
s = s1. According to definitions above this means that for b1

i , sj=1 = min{s1, sl=1, sl=2}
and sj=2 = min{s1, sl=3, sl=4}. Now, we consider the case the existing bounds of the
subtrees were not tight enough to prune, we adapt simplification level of the tree starting
from b1

i : s1 → s1 + 1. Since s1 < s1 + 1 we re-simplify the subtree corresponding to
simplification level of s1 to simplification level s1 + 1, i.e. to a finer simplification.

However we do not need to re-simplify subtrees corresponding to s2, s3, s4: The tree
corresponding to s2 is already simplified to the currently desired level thus we can use
its existing bounds. For the two other trees, their current simplification levels, s3 and
s4, are higher (finer) than the desired s1 + 1 level, and since the bounds are tighter
as simplification level increases we can use their existing tighter bounds without the
need to ’go-back’ to a coarser level of simplification. If we can now prune one of the
actions, we keep pruning up the tree. If pruning is still not possible, we need to adapt
simplification again with simplification level s1 + 2.
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6.3 Additional Entropy Results

Figure 6.1: Differential Entropy Approximations ans Bounds. Calculations were done using 100
particles. From left to right: Simplification is Ns = {0.1, 0.5, 0.9} ·N

Figure 6.2: Differential Entropy Approximations ans Bounds. Calculations were done using 50 particles.
From left to right: Simplification is Ns = {0.1, 0.5, 0.9} ·N

Figure 6.3: Differential Entropy Approximations ans Bounds. Calculations were done using 20 particles.
From left to right: Simplification is Ns = {0.1, 0.5, 0.9} ·N
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Chapter 7

Appendix 2 SITH-PFT

7.1 Information theoretic bounds

u , − log
[∑

i

PZ(zk+1|xik+1)wik

]
+

∑
i∈¬As

k+1

wik+1 · log
[
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]

+
∑

i∈As
k+1

wik+1 · log
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∑
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∑
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j
k, ak)w

j
k

 ,
(7.1)

where const = max
x′

PT (x′|x, a).

7.1.1 Proofs

Assumptions

For the following proofs (Secs. 7.1.1 and 7.1.1) assume we are using a converging and
finite-time resimplification strategy that satisfies Assumptions 3.2.1,3.2.2.

Proof for Theorem 2

Proof. We provide proof by induction on the belief trees structure.
Base: Consider an initial given belief node b0. No actions were taken and no observations
were made. Thus, both PFT tree and SITH-PFT trees contain a single identical belief
node and the claim holds.
Induction hypothesis: Assume we are given two identical trees with n nodes, generated
by PFT and a SITH-PFT. The trees uphold the terms of Definition 1.
Induction step: Assume by contradiction that in the next simulation (expanding the
belief tree by one belief node by definition) different nodes were added to the trees.
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Thus, we got different trees.
Two different scenarios are possible:

Case 1. The same action-observation sequence a0, z1, a1, z2...am was chosen in both
trees, but different nodes were added.

Case 2. Different action-observation sequences were chosen for both trees and thus, we
got different trees structure.

Case 1 is not possible. Since the Induction hypothesis holds, the last action am was
taken from the same node denoted h′ shared and identical to both trees. Next the same
observation model is sampled for a new observation and a new belief node is added
with a rollout emanating from it. The new belief nodes and the rollout are identical
for both trees since both algorithms use the same randomization seed and the same
observation and motion models.

Case 2 must be true since we showed Case 1 is false. There are two possible
scenarios such that different action-observation sequences were chosen:

Case 2.1. At some point of the actions-observations sequence, different observations
zi, z

′
i were chosen.

Case 2.2. At some point of the actions-observations sequence, PFT chose action a†

while SITH-PFT chose a different action, ã, or even got stuck without picking any
action.

Case 2.1 is not possible since if new observations were made, they are the same
one by reasons contradicting Case 1 . If we draw existing observations (choose some
observation branch down the tree) the same observations are drawn since they are
drawn with the same random seed and from the same observations “pool”. It is the
same “pool” since the Induction hypothesis holds.

Case 2.2 must be true since we showed Case 2.1 is false, i.e., when both algo-
rithms are at the identical node denoted as h PFT chooses action a†, while SITH-PFT
chooses a different action, ã, or even got stuck without picking any action. Specifically,
PFT chooses action a† = arg max

a
UCB and SITH-PFT’s candidate action is

ã = arg max
a∈A

UCB(ha).

Two different scenarios are possible:

Case 2.2.1. the UCB,UCB bounds over hã were tight enough and ã was chosen such
that a† 6= ã.

Case 2.2.2. SITH-PFT is stuck in an infinite loop. It can happen if the UCB,UCB
bounds over hã, and at least one of its sibling nodes ha, are not tight enough. However,
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all of the tree nodes are at the maximal simplification level. Hence, resimplification is
triggered over and over without it changing anything.

Case 2.2.1 is not possible since the bounds are analytical (always true) and converge
to the actual reward (UCB = UCB = UCB) for the maximal simplification level.

Case 2.2.2 is not possible. If the bounds are not close enough to make a deci-
sion, resimplification is triggered. Each time some ha node - sibling to hã and maybe
even hã itself is chosen in Select Best to over-go resimplification. According to
Assumption. 3.2.1 and Assumption. 3.2.2, after some finite number of iterations for all
of the sibling ha nodes (including hã) it holds UCB(ha) = UCB(ha) = UCB(ha) and
some action can be picked. If different actions have identical values we choose one by
the same rule UCB picks actions with identical values (e.g. lower index/random).

Now, since Case 2.2.2 is false, after some finite number of resimplification iter-
ations, SITH-PFT will stop with bounds sufficient enough to make a decision. And
since Case 2.2.1 is false it holds that a† = ã. Thus we get a contradiction and the proof
is complete.

Proof for Theorem 3:

Proof. Since the same tree is built according to Theorem 2, the only modification
now is the final criteria at the end of the planning session at the root of the tree:
a∗ = arg max

a
Q(ha). Note we can set the exploration constant of UCB to c = 0 and we

get that UCB is just the Q function. Thus if the bounds are not tight enough at the root
to decide on an action, resimplification will be repeatedly called until SITH-PFT can
make a decision. The action will be identical to the one chosen by UCB at PFT from
similar arguments mentioned in the proof of Theorem 2, 7.1.1. Note that additional
final criteria for action selection could be introduced, but it would not matter since
tree consistency is kept according to Theorem 2 and the bounds converge to the actual
immediate rewards and Q estimations.

Proof for Theorem 4

We now prove the resimplification strategy described in section 3.2.4 is converging and
finite-time resimplification strategy.

Proof: Converging resimplification strategy. Consider the condition for refinement of
the bounds (3.22). Since 1

dg(ha) is the mean gap over all the nodes that are the
descendants to ha, some of the nodes are above this mean gap, and some are under
(accounting for the discount factor). We refine all the ones that are above. Further,
for each descendant rollout, we refine one rollout node that is above the mean gap. If
each time we refine all descendants belief nodes that are above the mean gap and one
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rollout node per descendant rollout (if it satisfies (3.22)), after one iteration the mean
gap must decrease since there exists a node above the mean gap that got tighter. If
there is no such node above the mean gap that means all the values u′− `′ are the same
throughout the sub-tree and those values must be zero since the immediate bounds
converge. Thus, the mean gap (and consequentially so does UCB(ha)−UCB(ha)) is
getting smaller in each iteration unless it is already zero.

Proof: Finite-time resimplification strategy. Similar to previous proof, in each iteration
there exists a node above the mean gap that is chosen for refinement. There are no
nodes above the gap only if throughout the sub-tree all the values u′ − `′ are zero. This
happens after a finite number of iterations since there is a finite number of nodes and
a finite number of simplification levels. Since the bounds converge, at the maximal
simplification level it holds u′ = `′ ⇒ u′ − `′ = 0. Thus, after all nodes in the sub-tree
got to the maximal simplification level it holds 1

dg(ha) = 0 and consequentially so does
UCB(ha)−UCB(ha) = 0⇒ UCB(ha) = UCB = UCB(ha)).

Time complexity analysis

We turn to analyze the time complexity of our method using the chosen bounds (7.1).
We assume the significant bottleneck is querying the motion and observation models
PT (x′|x, a),PZ(z|x) respectively. Assume the belief is approximated by a set of m
weighted particles,

b = {xi, wi}mi=1. (7.2)

Consider the Boers et al. [2010] differential entropy approximation for belief at time
k + 1,

Ĥ(bk, ak, zk+1, bk+1) , log
[∑

i

PZ(zk+1|xik+1)wik

]
︸ ︷︷ ︸

a

+ (7.3)

∑
i

wik+1 · log

PZ(zk+1|xik+1)
∑
j

PT (xik+1|x
j
k, ak)w

j
k


︸ ︷︷ ︸

b

(7.4)

Denote the time complexity to query the observation and motion models a single time
as tobs, tmot respectively. It is clear from (7.2), (7.3) (term a) and, (7.4) (term b) that:

∀b as in (7.2) Θ(Ĥ(b)) = Θ(m · tobs +m2 · tmot). (7.5)
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Since we share calculation between the bounds, the bounds’ time complexity, for some
level of simplification s, based on Sztyglic and Indelman [2021], is:

Θ(`s + us) = Θ(m · tobs +ms ·m · tmot), (7.6)

where ms is the size of the particles subset that is currently used for the bounds
calculations, e.g. ms = |As| (As is as in (7.1)) and `s, us denotes the immediate upper
and lower bound using simplification level s. Further, we remind the simplification
levels are discrete, finite, and satisfy

s ∈ {1, 2, . . . ,M}, `s=M = Ĥ = us=M . (7.7)

Now, assume we wish to tighten `s, us and move from simplification level s to s+ 1.
Since the bounds are updated incrementally (as introduced by Sztyglic and Indelman
[2021]), when moving from simplification level s to s+ 1 the only additional data we are
missing are the new values of the observation and motion models for the newly added
particles. Thus, we get that the time complexity of moving from one simplification level
to another is:

Θ(`s + us → `s+1 + us+1) = Θ((ms+1 −ms) ·m · tmot), (7.8)

where Θ(`s + us → `s+1 + us+1) denotes the time complexity of updating the bounds
from one simplification level to the following one. Note the first term from (7.6), m · tobs,
is not present in (7.8). This term has nothing to do with simplification level s and it
is calculated linearly over all particles m. Thus, it is calculated once at the beginning
(initial/lowest simplification level).

We can now deduce using (7.6) and (7.8)

Θ(`s+1 + us+1) = Θ(`s + us) + Θ(`s + us → `s+1 + us+1). (7.9)

Finally, using (7.5), (7.6), (7.7), (7.8), and (7.9), we come to the conclusion that if at
the end of a planning session, a node’s b simplification level was 1 ≤ s ≤M than the
time complexity saved for that node is

Θ((m−ms) ·m · tmot). (7.10)

This makes perfect sense since if we had to resimplify all the way to the maximal level
we get s = M ⇒ ms=M = m and by substituting ms = m in (7.10) we saved no time at
all.

To conclude, the total speedup of the algorithm is dependent on how many belief
nodes’ bounds were not resimplified to the maximal level. The more nodes we had at
the end of a planning session with lower simplification levels, the more speedup we get
according to (7.10).
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Additional resimplification strategies

We note that the proofs for Theorems 2, 3 depends on our resimplification strategy 3.2.4.
That is, additional strategies can be introduced as long as they satisfy Assumptions 3.2.1,
and 3.2.2. To clarify, a simple example of a converging and finite-time resimplification
strategy would be to refine the bounds of all nodes (belief tree nodes and rollout nodes)
that are descendants to the belief-action node ha that was chosen for resimplification
at Select Best procedure. Naturally, there will always be a node that got tightened
(unless all bounds are already equal); thus, Assumption. 3.2.1 is satisfied. Further, after
a finite time, all nodes in the sub-tree got to the maximal level of simplification, and the
bounds converged. Thus, Assumption. 3.2.2 is satisfied. Note that using this brute-force
strategy can result in many unnecessary resimplifications. So, the potential speed-up
may decrease but in the worst case, SITH-PFT will still yield the same time complexity
as PFT.
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ii 
 

(.  MCTS - Monte Carlo Tree Searchשעושה הנחה דומה נקראת חיפוש מונטה קרלו בעץ )

שיטה זו ידועה כמוצלחת בהתמודדות עם שתי הקללות המדוברות שכן היא מייצגת את מרחב  

המצב על ידי מספר סופי של דגימות וכן אינה בונה את העץ במלואו אלא רק "חושפת" חלקים  

מבטיחים מעץ האמונה על ידי שימוש ביוריסטיקות ובנייה הדרגתית של העץ. ברוב העבודות  

של  העו שימוש בשיטות  שהסוכן מקבל    MCTSשות  הגמול/פרס  כי  הוא תלוי מרחב  מניחים 

 informationאינפורמציה תאורטית )   המצב. זו הנחה מגבילה שכן היא אינה מאפשרת פרסי

theoretic rewards  פרסים אלו כגון אנטרופיה דיפרנציאלית הוכיחו את עצמם כשימושיים .)

ציות בהן לסוכן חשוב להקטין את חוסר הוודאות שלו )כגון מיפוי  ביותר במגוון רחב של אפליק

של פרסים אלו הוא שהם יכולים   החסרונותמערה שקרסה, משימות חיפוש וחילוץ ועוד(. אחד 

להיות יקרים לחישוב. בעבודה זו שלנו אנו מבצעים תכנון במרחב האמונה ההסתברותי בשילוב  

תאורטית.   אינפורמציה  פרסי  עושעם  )אנו  ההפשטה  ברעיון  שימוש  של simplificationים   )

חלקים מהבעיה המקורית על מנת לספק את אותו פתרון מייטבי כמו שיטות קודמות לנו רק  

יותר.   מהירה  אנליטיים  בצורה  חסמים  הפשטה  פיתחנו  מבוסס  מבוססי  ידוע  קירוב  עבור 

הופ  אלו  חסמים  כיצד  מראים  ואנו  הדיפרנציאלית  לאנטרופיה  ואף  חלקיקים  להדוקים  כים 

המקורי לקירוב  להתכנסות  דרישה  מגיעים  פי  שני  על  מציגים  אנו  אלו  חסמים  בעזרת   .

חדשים   יכולים  SITH-PFT  -ו  SITH-BSPאלגוריתמים  שאנו  הוא  זו  בעבודה  המנחה  הקו   .

   לפסול ובאופן זה    החסמים להימנע מחישוב פרס האינפורמציה התאורטי היקר על ידי חישוב  

ל פעם על ידי הידוק הגבולות עבור כל צומת בעץ רק על פי הנדרש. באופן זה אנו  ענפי העץ בכ

בפרס היקר לחישוב, אלא שאנו  מייצרים פתרון זהה לחלוטין לפתרון המקורי שעושה שימוש  

 sparseעושים זאת מהר יותר. האלגוריתם הראשון בנוי על סכמה הידועה בשם דגימה דלילה ) 

sampling  להוות ונועדה  המתמטיים  (  הפיתוחים  כל  את  המכילה  בסיס  בסיסיים  האבן 

כיצד יש לשלב את החסמים בפתרון בעיית תכנון שכזו. האלגוריתם השני מדגים  המדגימים  

( ולהגיע  state of the artכיצד ניתן  לקחת את השיטה כללית הזו ולשלב אותו באלגוריתם חדיש )

ות הללו נהנות מסכמת פעולה כללית שיכולה  לשיפור בביצועים במובן זמן הריצה.  שתי השיט

הן הדרגתיות, כלומר,  לקבל חסמים מתכנסים אחרים על פרסים נוספים. בנוסף שתי השיטות  

אות מהדקות  ואינן  החסמים  את  להדק  שצריך  לכמה  הצורך  לפי  עצמן  כדי    םמתאימות  עד 

להיעז  החסמים  הידוק  טרם  ניתן  כיצד  מראים  אנו  לבסוף  התהליך.  בתחילת    ר התכנסות 

בחישובים שנעשו בפעם הקודמת שהחסמים הודקו ובכך לחסוך זמן ריצה יקר. אנו מוודאים  

 כי הגישה שלנו עליונה במובן זמן ריצה וזהה במובן ביצועים על ידי סימולציות מחשב. 
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 תקציר 
 

בתחומי הבינה המלאכותית והרובוטיקה, ניווט אוטונומי בסביבה לא ידועה מהווה בעיה קשה  

כתוצאה    בדיוקומרכזית. בבעיות מסוג זה, הנעלמים כגון מיקום הסוכן או הרובוט אינם ידועים  

אחת הדרכים למדל בעיה  (.  ממידע שמכיל אי וודאות המגיע מהסביבה )כגון מדידות רועשות 

היא   וודאות  אי  המכילה  מודלשכזו  למחצה   מסוג  הנחת  מובחן  מרקובי  החלטה    תהליך 

(POMDP .))תחת הנחת מודל זה, במקום גישה למרחב המצב של הסוכן )ואולי אף של העולם   

( פילוג  )כגון  (. כעת  belief)  אמונה( על מרחב המצב הידוע בשם  distributionלסוכן יש  תכנון 

תנועה( מסלול  )   תכנון  האמונה  של  ההסתברותי  במרחב   BSP – belief spaceמתבצע 

planning  תכנון נעשה על ידי שימוש באמונה ההתחלתית שיש לסוכן ובמודלים הסתברותיים .)

מודל התנועה ומודל המדידה. בעזרת אלו, ניתן על ידי ביצוע פעולה   – שלסוכן יש גישה אליהם 

.  וכמו כן לקבל גמול/פרס עבור הפעולה שנבחרה   כן קבלת מדידה לעדכן את האמונהולאחר מ

את   למצוא  לנסות  מנת  על  העתיד  אל  קדימה  לתכנן  יכול  הסוכן  המתואר,  התהליך  בעזרת 

, כלומר מדיניות שתמקסם את ערך הפרסים שהוא מקבל  ( המיטבית policyמדיניות הפעולה )

מדידות שונים.    – ל ידי לקיחה בחשבון של רצפי פעולות  . ביכולתו לעשות זאת עלאורך הדרך

( האמונה  עץ  בניית  ידי  על  היא  כאלו  עתידיים  רצפים  לבחון  המקובלת  (  belief treeהדרך 

ששורשו הוא האמונה ההתחלתית וצמתי העץ במורדו מתאימות לפעולות ומדידות עתידיות  

הבעיו   POMDPפתרון  שונות.   למחלקת  שייכת  מדויקת  ה  בצורה  .  PSPACE-Completeת 

הקושי בפתירת בעיות שכאלו אף מורגש יותר כאשר על הסוכן לפתור בעיה שכזו בכל צעד תחת  

(. אי לכך מדענים רבים פיתחו מגוון שיטות  online planningמגבלת זמן, קרי, תכנון מקוון )

במלואה  הבעיה  את  לפתור  מבלי  המדויק  הפתרון  את  לקרב  מנת  על  יותר  ב יעילות  תקווה  , 

אחת   הוא  אמונה  עץ  בניית  כאמור  המיטבי.  לפתרון  קרוב  מספיק  יהיה  המקורב  שהפתרון 

השיטות הקיימות לקרב פתרון שכן במקום לבנות את העץ במלואו )על ידי התחשבות בכל רצפי  

ו- הפעולות גודל מוגדר מראש  או תחת מגבלת זמן.  \מדידות האפשריים( ניתן לבנות אותו עד 

העץ, ענפיו מתפצלים בכל פעם ששוקלים מספר פעולות ושוב כאשר שוקלים  כאשר בונים את  

מספר מדידות שונות. אי לכך הגידול בצמתי העץ הוא מעריכי ככל שבונים אותו לעומק גדול  

גדלה מעריכית במימד   גדל כמות המצבים האפשריים  יותר. בנוסף ככל שמימד מרחב המצב 

 curse ofקיללת ההיסטוריה )תוארו ידועות בתור  ובאופן דומה גם האמונה. שתי הבעיות ש 

history( וקיללת המימד )curse of dimensionality  בעבודה זו אנו מניחים כי האמונה יכולה .)

א מודל  ידי  על  מיוצגת  דגימות  -להיות  של  אוסף  ידי  על  מקורבת  להיות  ויכולה  פרמטרי, 

ממושקלות ממרחב המצב הידועות בתור חלקיקים. שיטת פתרון מקורב פופולרית ומוצלחת  



 

 

 

 

, בפקולטה למדעי פרופסור חבר ואדים אינדלמןהמחקר בוצע בהנחייתו של 
 .המחשב

כמאמרים מאת המחבר ושותפיו  או הוגשו חלק מן התוצאות בחיבור זה פורסמו
של המחבר, אשר   מאסטרבמהלך תקופת מחקר ה עת-למחקר בכנסים ובכתבי

 :גרסאותיהם העדכניות ביותר הינן

 

 

 

 

 תודות 
אותי כיצד  ואדים אינדלמן על שלימדתסור שלי פרופ למנחהאני רוצה להודות 

סטנדרטים הגבוהים ביותר. אני גם רוצה להודות למשפחתי הקרובה  ב לבצע מחקר
)ועדיין   שתמכתם בי לאורך כל שנות לימודיי מירב, ניצן, יורם ורוקסנה על 

 (. תומכים

 ל שהייתה שם בשבילי מדי יום. עלסיום ברצוני להודות לאשתי י

 

 

 

 

 
 אני מודה לטכניון על התמיכה הנדיבה במשך השתלמותי. 
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