
Speeding up POMDP Planning via Simplification
Ori Sztyglic1 and Vadim Indelman2

1Department of Computer Science 2Department of Aerospace Engineering
Technion - Israel Institute of Technology, Haifa 32000, Israel
ori.sztyglic@gmail.com, vadim.indelman@technion.ac.il

Abstract— In this paper, we consider online planning in par-
tially observable domains. Solving the corresponding POMDP
problem is a very challenging task, particularly in an online
setting. Our key contribution is a novel algorithmic approach,
Simplified Information Theoretic Belief Space Planning (SITH-
BSP), which aims to speed up POMDP planning considering
belief-dependent rewards, without compromising the solution’s
accuracy. We do so by mathematically relating the simplified el-
ements of the problem to the corresponding counterparts of the
original problem. Specifically, we focus on belief simplification
and use it to formulate bounds on the corresponding original
belief-dependent rewards. These bounds in turn are used to
perform branch pruning over the belief tree, in the process of
extracting the optimal policy from this existing belief tree. We
further introduce the notion of adaptive simplification, while
re-using calculations between different simplification levels, and
exploit it to prune, at each level in the belief tree, all branches
but one. Therefore, our approach is guaranteed to find the
optimal solution (policy) that corresponds to the given belief
tree but with substantial speedup. As a second key contribution,
we derive novel analytical bounds for differential entropy,
considering a sampling-based belief representation, which we
believe are of interest on their own. We validate our approach
in simulation using these bounds and where simplification
corresponds to reducing the number of samples, exhibiting a
significant computational speedup while yielding the optimal
solution for the given belief tree.

I. INTRODUCTION

In the world of autonomous agents operating in an uncer-
tain environment, a Partially Observable Markov Decision
Process (POMDP) provides a principled mathematical frame-
work for planning under uncertainty. Solving a POMDP is
proven to be PSPACE-Complete [1] giving rise to many
sub-optimal approaches that trade-off optimality and runtime
complexity. This difficulty is more keenly felt when consid-
ering an online-setting of such autonomous tasks, i.e. when
a robot has few seconds in every time step to execute the
action it deems to be ‘optimal’.

In a partially observable setting, the robot maintains a
belief, a posterior distribution over the state of interest, given
actions and observations history the robot has executed and
gathered so far. At each planning session, given this belief
the robot determines the optimal policy (or action sequence)
by constructing and traversing a belief tree, as illustrated in
Fig. 1, which models how the POMDP can evolve into the

This research was supported by the Israel Science Foundation (ISF) and
by a donation from the Zuckerman Fund to the Technion Center for Machine
Learning and Intelligent Systems (MLIS).

...

...

...

...

......

Fig. 1: For each belief node b in a given belief tree a simplified belief bs is calculated
and used to formulate bounds over the corresponding belief-dependent reward. These
bounds are then used to prune branches while calculating the optimal policy.

future considering some finite horizon of time steps. When
constructing the tree in planning time, the tree branches when
taking an action and again when acquiring an observation.

This setting presents two main difficulties known as the
curse of dimensionality and the curse of history. These
two problems gave rise to many works trying to reduce
computation time when solving the POMDP such as [2] and
[3]. In recent years many works began to address the POMDP
setting with more ‘real-world’ settings, such as continuous or
huge observation and action spaces e.g. [4]–[6]. Some recent
works consider information-theoretic rewards (e.g. [7], [8]).

Information theoretic rewards, such as differential entropy
and information gain, are essential in various robotics tasks
such informative planning, active estimation, active SLAM,
and efficient sensing (see e.g. [9], [10]). However, these
rewards can also be very computationally expensive, com-
pared to rewards over the state, since they may require to
reconstruct the manifold representing the belief and perform
expensive integration operations. Getting back to planning,
this enhanced computational burden is incurred for all nodes
in the belief tree.

In this work, we consider this challenging setting of
continuous state and observation spaces and information-
theoretic rewards. Before stating our actual contributions we
review the most relevant works in this context.

II. RELATED WORK

Accurately solving huge (or continuous) state and obser-
vations spaces POMDP is time-consuming. Early methods,
tackling MDPs with huge state space, such as [11] build the
belief tree up to a predetermined planning horizon. Next,
they choose the optimal action at the root by utilizing the

Bellman operator from the leaves up to the root of the tree,
updating needed estimations along the way. The purpose is
to avoid iterating the entire belief space and only consider
belief elements that are achievable via sampled actions-
observations sequences executed from the root of the tree.
However, building the tree in full is still highly expensive. [2]
introduced POMCP, an algorithm that applies Monte Carlo
Tree Search over the POMDP’s equivalent Belief-MDP. This
method and its numerous expansions ([4], [6], [12] etc.)
avoid building the full belief tree. They do so by building
it incrementally, revealing only the “promising” parts. Com-
monly, they make use of a strategy to balance exploration
and exploitation, such as UCB [13]. However, most of these
algorithms are not suitable for information-theoretic rewards
since they require the belief to be represented as a complete
set of particles. A demand that can be hardly met throughout
the tree when the observation space is continuous because
they each time simulate only a single state sample (particle).
Exceptions are PFT-DPW [4] and IPFT [7] algorithms. These
algorithms represent the belief nodes as a set of particles and
each time a belief node is added to the tree, they propagate
all the particles using a particle filter.

Another paradigm meant to speed up planning is the use
of upper and lower bounds throughout the tree nodes [14].
The gap induced by the bounds is used as a heuristics
to choose “promising” sections of the tree to expand and
when the bounds at the root are close enough they serve
as stopping criteria to the algorithm. Smith and Simmons
presented HSVI [3], which is an early seminal work that
makes use of bounds over the belief tree in the context of
POMDP planning. However, their approach is not suitable
for the setting we consider in this work. State-of-the-art
algorithm DESPOT [15] and its extension DESPOT-α [5]
are also inadequate for information-theoretic rewards. The
former, like others, simulates a single particle at a time which
can lead to belief nodes containing a single particle; the latter
makes use of α-vectors and therefore assumes a specific
rewards structure that is not general enough and does not
settle with information-theoretic rewards.

It is worth mentioning additional methods such as belief
compression can speed up planning [16]. Yet, these kinds
of methods are driven by error minimization such as belief
representation error induced by the relaxation they carry out.
In turn, these errors may result in a sub-optimal solution. On
the other hand, simplification [17], [18] strives to perform
relaxation of the decision-making problem while assuring the
same solution as the original (non-relaxed) problem. When
it is not feasible, the potential objective error (of executing
one action over the optimal one) is bounded as part of the
simplification scheme.

III. CONTRIBUTION

All of the mentioned approaches practice one or more
of the celebrated methods meant to speed up planning.
However, nearly all of them are not suitable for information-
theoretic rewards where the source of the computational

burden shifts towards the reward calculation. Our method
addresses this challenge directly by utilizing a notion
called Simplification. We derive a new algorithmic approach,
Complementary to existing POMDP planning algorithms.
The approach is meant to speed up planning, consider-
ing information-theoretic rewards, non-parametric (sample-
based) belief representation, and when planning is done by
traversing the belief tree. Our method follows the general
sparse sampling planning scheme and thus lays the foun-
dations to expanding it to additional planning techniques.
Further, to demonstrate our approach we derive novel bounds
over the particle-based approximation of the differential
entropy. The bounds are easy to calculate, converge to the
actual entropy approximation on-demand, and can be effi-
ciently updated incrementally. Subsequently, our approach
demonstrates substantial speedup while securing an identical
to the baseline solution when tested on a continuous state
and observation setting and using the differential entropy ap-
proximation as a reward function. This paper is accompanied
with supplementary material [19].

IV. BACKGROUND

We model the Partially Observable Markov Decision Pro-
cess (POMDP) for the finite horizon case, as a 7-tuple:
M = (X ,A, T, r,Z,O, b0), where X ,A and Z are the state,
action and observation spaces, respectively. T (x, a, x′) ,
P(x′ | x, a) is the probabilistic transition model from past
state x ∈ X to state x′ ∈ X via action a ∈ A.
O(x, z) , P(z | x) is the observation model expressing the
measurement likelihood z ∈ Z for a given state. b0 is the
initial belief we have on the state at planning time. The belief
is a posterior distribution over the state given all actions and
measurements so far. It can be updated recursively via Bayes
rule as b[x′] = η

∫
P(z′ | x′)P(x′ | x, a)b[x]dx, where η is a

normalization constant.
In this paper we consider a belief-dependent reward

function r(b, a). It allows one to use information-theoretic
costs such as (differential) entropy, information gain and
mutual information, thereby reasoning about future posterior
uncertainty within the decision making process.

We denote the posterior belief at planning time k as
b[xk] , P(xk | a0:k−1, z1:k). Further, we denote by πk+j
a policy for time step k + j, i.e. πk+j(b[xk+j]) determines
the action ak+j . Let πk+ , πk:k+L−1 represent a sequence
of policies for the entire planning horizon of L steps that
starts at time instant k. To shorten notations, we shall also
use in the sequel π(k+j)+ , πk+j:k+L−1, as well as bk+j ,
b[xk+j]. When solving a POMDP, one is trying to find the
optimal policy that maximizes the objective (value) function,

J(bk, πk+) = E
zk+1:k+L

{
k+L−1∑
i=k

r(bi, πi(bi)) + r(bk+L)}, (1)

where r(bk+L) is the terminal reward. We may also consider
a more general reward structure of r(bi, bi−1, ai), which
is required, for example, to support information-theoretic
reward functions such as information gain, and a specific

(a) (b) (c)

Fig. 2: Action elimination using bounds. (a) Objective for some belief b and candidate
policies; (b) Objective bounds given belief is simplified to level s0; (c) Objective
bounds given belief is simplified to level s1.

sampling based approximation of differential entropy [20]
that we shall use in Section V-C.2. As earlier, action ai is
determined by πi(bi). The optimal policy π?k+ , π?k:k+L−1
and the corresponding objective function are given by

π?k+ = arg max
πk+

J(bk, πk+), J?(bk)= max
πk+

J(bk, πk+). (2)

Further, the objective function (1) can be written recursively,
i.e., the Bellman equation.

J(bk, πk+)=r(bk, ak) + E
zk+1

{J(bk+1, π(k+1)+)}. (3)

In this paper, we resort to branch-and-bound pruning to
speed up planning over the belief tree. Instead of calculat-
ing rewards (Fig. 2a), we calculate the bounds over them
(Fig. 2b), and if they are not tight enough we tighten them
up (Fig. 2c) so we can prune tree branches.

V. OUR APPROACH

A. Simplification

Simplification is any sort of relaxation of the POMDP
elements (components of M). In this paper we consider a
specific instantiation of this general simplification frame-
work; namely, we suggest to use a simplified belief bs to
bound the reward instead of calculating it in full. Note, in this
setting, simplification does not impact the distribution over
which the expectation is taken. Thus, a given belief tree of the
original problem corresponds also to the simplified problem.
We assume the belief tree was built in some manner and
it is given. This setting settles well with Sparse Sampling
approaches [11] which are extremely general and widely
used. Hence, we will derive our approach over a similar
setting. Expansions to additional approaches such as MCTS
are possible and constitute an active research field [21].

As mentioned, we aim to simplify the reward calculations.
Namely, the original reward model is bounded using the
simplified belief and takes the form

lb(bs, b, a) ≤ r(b, a) ≤ ub(bs, b, a), (4)

where lb and ub are the corresponding lower and upper
bounds, respectively. A key requirement is reduced computa-
tional complexity of these bounds compared to the complex-
ity of the original reward. Furthermore, our formulation can
be extended straightforwardly to support also information-
theoretic rewards of the form r(bi−1, bi), which involve two
(consecutive) beliefs bi−1 and bi, such as information gain.
In such a case, the corresponding bounds would be

lb(bsi−1, b
s
i , bi−1, bi) ≤ r(bi−1, bi) ≤ ub(bsi−1, b

s
i , bi−1, bi). (5)

In this section we formulate our approach considering the
general form of the bounds (4). In Section V-C.2 we derive
novel bounds of the form (5).

Given a belief tree of the original problem M , Instead
of calculating the expensive reward r(b, a) for each belief
node b in this belief tree, we first calculate the corresponding
simplified belief bs, as illustrated in Fig. 1, and then formu-
late the bounds lb and ub from (5). Moreover, we can now
traverse the belief tree bottom-up and calculate recursively
bounds over the objective (value) function at each node bi via
Bellman equation (3) as described below for i ∈ [k, k+L−1].

UB(bi, πi+)=ub(bsi , bi, a))+E
zi+1

{UB(bi+1, π(i+1)+)}

LB(bi, πi+)= lb(bsi , bi, a)+E
zi+1

{LB(bi+1, π(i+1)+)},
(6)

with πi+ = {πi, π(i+1)+} and a = πi(bi) ∈ A, and where
the expectation is taken with respect to P(· | bi, a), and the
bounds are initialized at the terminal rewards (Lth time step
in the planning horizon) as LB(bk+L) = lb(rs(bk+L)) and
UB(bk+L) = ub(rs(bk+L)). This recursive procedure is
common and practiced in many works (e.g. [15]), yet a key
difference is that our bounds (5) are obtained by relating the
simplified POMDP elements to the original problem. Eq. (6)
is a recursive update considering some trajectory down the
belief tree determined by some policy πi+. In contrast, we
now consider upper and lower bounds for the optimal policy
π?i+. We denote these bounds as

UB?(bi) , UB(bi, π
?
i+), LB?(bi) , LB(bi, π

?
i+). (7)

Updating the bounds (7) is done recursively in two steps.
First by considering the expansion of the already-calculated
bounds UB?(bi+1) and LB?(bi+1) via (6).

In practice, the expectation over observations is approxi-
mated by a parametric number of samples, nz , which yields

UB(bi, {a, π?
(i+1)+})=ub(bsi , bi, a)+

1

nz

∑
l

UB?(bli+1)

LB(bi, {a, π?
(i+1)+})= lb(bsi , bi, a)+

1

nz

∑
l

LB?(bli+1)
(8)

where superscript l is the belief node index corresponding
to the zl observation. The above is defined for each a ∈ A.

Second, we perform branch pruning using Alg. 2 and
as explained in Section IV: For each action a ∈ A we
have corresponding bounds acquired via (8). For suffi-
ciently tight bounds, all branches but one can be pruned
(w.l.o.g. the branch corresponding to action a? ∈ A). Thus,
the bounds corresponding to action a? hold: UB?(bi) =
UB(bi, {a?, π?(i+1)+}),LB

?(bi) = LB(bi, {a?, π?(i+1)+}),
and π?i+(bi) = {a?, π?(i+1)+}, resulting upper and lower
bounds on the optimal objective (value) function J?(bi),

LB?(bi) ≤ J?(bi) ≤ UB?(bi), (9)

and the optimal policy π?i+(bi). See illustration in Fig. 3b.
Yet, this formulation presents a difficulty. It is generally

not guaranteed that after using Alg. 2 we are left with a single
branch in each belief node since the bounds might overlap

(a) (b)
Fig. 3: (a) Leaf nodes are bounded using (5). (b) Adaptive Simplification, Subtrees
are bounded using (10) and Alg. 2.

(see illustration in Fig. 2b). We discuss how we overcome
this difficulty in the next section.

B. Adaptive Simplification

We address possible bounds overlapping by extending the
definition of simplification as we envision it to be an adaptive
paradigm. We denote level of simplification as how ’aggres-
sive’ the suggested simplification is. Consider the belief is
represented by a set of samples (particles), as we do in
Section V-C.1. Taking a small subset of particles to represent
the simplified belief corresponds to coarse simplification.
Taking many of them will correspond to fine simplification.
Naturally, with this setting, we can define many discrete
levels. We denote subscript i for si as the simplification
level, where s0 and sn correspond, respectively, to coars-
est and finest simplification levels. Additionally we denote
superscript j for sj as the index corresponding to the belief’s
tree index. E.g. in Fig. 1 for tree node b4k+1 the corresponding
simplification index is s4 and it may assume any value of
simplification: s4 ∈ {s0, s1, ...sn}.

Further, we assume bounds monotonically become tighter
as the simplification level is increased and that the bounds
for the finest simplification level sn converge to the original
problem. More formally denote ∆

s
(b, a) , ub(bsi , bi, a) −

r(bi, a) and ∆s(b, a) , r(bi, a)− lb(bsi , bi, a).

Assumption 1. ∀s ∈ [0, n − 1] we get: ∆
s
(b, a) ≥

∆
s+1

(b, a) and ∆s(b, a) ≥ ∆s+1(b, a).

Assumption 2. ∀bi, a we get: ub(bsn , bi, a) =
lb(bsn , bi, a) = r(bi, a).

In the sequel we provide bounds that indeed satisfy these
assumptions. A key question is how can we decide the
appropriate level of simplification beforehand? We would
like the coarsest level si that will enable eliminating ac-
tions/branches, i.e. lead us to Fig. 2c and not Fig. 2b. In
Alg. 1 our adaptive simplification approach is summarized.
The general idea is to break down recursively a given
belief tree T into its sub-problems (subtrees), denoted as
{Tm}|A|m=1, and solve each sub-problem with its simplifi-
cation level si. Ultimately this would lead to the solution

of the entire problem via (8). A potential computational
issue is that increasing the simplification level repeatedly
might be not worth it, since overall time for all levels
calculations is suppressing the time it takes to solve the
original problem. Fortunately, this is not an issue with our
adaptive simplification, as discussed next.

Our adaptive simplification approach is based on two key
observations. The first key observation is we can compare
bounds from different levels of simplification when pruning.
Our second key observation is that we can re-use calculations
between different simplification levels, and thus avoid re-
calculating simplification from scratch. In the following
sections, we elaborate on each of these crucial aspects.

1) Comparing Bounds with Different Simplification Lev-
els: Consider again some belief node bi in the belief tree, and
assume recursively for each of its children belief nodes bi+1

we already calculated the optimal policy π?(i+1)+(bi+1) and

the corresponding upper and lower bounds UBs
l?(bi+1) and

LBs
l?(bi+1), where sl indicates the simplification level, and

l corresponds to the belief tree nodes indexing notation. In
general, the bounds for each belief node bi+1 can correspond
to different simplification levels, as illustrated in Fig. 3b.

We now discuss how the simplification level is updated
recursively, and revisit the process to calculate the optimal
policy and the corresponding bounds for belief node bi,
previously described by Eqs. (8) and (9). Incorporating
adaptive simplification, Eq. (8) is modified to

UBsj (bi, {aji , π
?
(i+1)+})=ub(bsi , bi, a

j
i)+

1

nz

∑
l

UBsl?(bli+1)

LBsj (bi, {aji , π
?
(i+1)+})= lb(bsi , bi, a

j
i)+

1

nz

∑
l

LBsl?(bli+1).

(10)

Note this equation applies for each aji ∈ A, and as men-
tioned, each belief node bli+1 (one for each observation
zli+1) has its own simplification level sl. In other words, for
each bli+1, sl is the simplification level that was sufficient
for calculating the bounds {UBs

l?(bli+1),LBs
l?(bli+1)} and

the corresponding optimal policy π?(i+1)+(bli+1). Thus, when
addressing belief node bi in (10), for each belief node bli+1

and its corresponding simplification level sl, these bounds
are already available. Yet, we may still need to adapt the
simplification level as we further discuss in Section V-B.2.

Further, as seen in (10), the immediate reward and the
corresponding bounds ub and lb, in general, can be cal-
culated with their own simplification level s. In particular,
when starting calculations, s could correspond to a default
coarse simplification level, e.g. coarsest level s0.

To define simplification level sj of the bounds (10) we
remind the belief tree is a discrete approximation to the
expectation taken w.r.t future observations zi, i ∈ {k, k+L}.
We account for some number nz of observations made in tree
nodes (e.g. in Fig. 3b, nz = 2)

sj , min{s, sl1 , sl2 , ...slnz }, (11)

where {sl1 , sl2 , ...slnz } represents the (generally different)
simplification levels of belief nodes bli+1 considered in the

expectation approximation in (10). We explain the reason to
define sj as such in Section V-B.2.

As earlier, we wish to decide which action a?i ∈ A
is optimal from belief node bi; the corresponding optimal
policy would then be π?i+ = {a?i , π?(i+1)+}, where π?(i+1)+

is the already-calculated optimal policy for belief node bli+1

that a?i leads to. See illustration in Fig. 3b.
Determining a?i requires eliminating all other candidate ac-

tions aj ∈ A, which involves comparing their corresponding
bounds (10). Importantly, the bounds are analytical, i.e. they
are valid for all simplification levels.

As earlier, we can compare bounds for different candidate
actions and if the bounds do not overlap, perform pruning.
For example, if for a1i , a

2
i ∈ A,

UBs
1

(bi, {a1i , π?(i+1)+}) < LB
s2(bi, {a2i , π?(i+1)+}), (12)

we can prune the a1i branch. If the bounds are sufficiently
tight and all branches but one were pruned, then the remain-
ing action, in this case a2i , is announced as a?i , and s2 is
announced as s?. Thus the above-mentioned optimal policy
π?i+ is constructed.

We now recall bi itself has an index in the belief tree, with
respect to the previous level. We denote it as bli, considering
the father node of bi is bi−1, and the lth corresponding
observation zli. At this point we get

UBs
l?(bli) = UBs

?

(bli, {a?, π?(i+1)+}), (13)

and the same for LBs
l?(bli). As in (9), (13) leads to bounds

over the objective function

LBs
l?(bli) ≤ J?(bli) ≤ UB

sl?(bli), (14)

where bli corresponds to the same notation as in (10),
recursively. In general, pruning as done in (12) will not
always hold, and we need to adapt level of simplification.
We discuss in the next section how we do this, including
re-use of calculations.

2) Adapting Simplification Level with Calculation Re-
Use: For some belief node bi in the belief tree, consider the
bounds UBs

j

(bi, {aji , π?(i+1)+}) and LBs
j

(bi, {aji , π?(i+1)+})
from (10) for different actions aji ∈ A, that partially
overlap and therefore could not be pruned. Each such action
aji can generally have its own simplification level sj . We
now iteratively increase the simplification level by 1. This
can be done for each of the branches, if sj is identical
for all branches, or only for the branch with the coarsest
simplification level. Consider now any such branch whose
simplification level needs to be adapted from sj to sj + 1.
Recall, that at this point, the mentioned bounds were already
calculated, thus their ingredients, in terms of ub(bsi , bi, a

j
i),

lb(bsi , bi, a
j
i) and {UBs

l?(bi+1),LBs
l?(bi+1)}nz

l=1, involved
in approximating the expectation in (10), are available.
Recall also sj , min{s, sl1 , sl2 , ...slnz } from (11), i.e. each
element in {s, sl1 , sl2 , ...slnz } is either equal or larger than
sj . We now discuss both cases, starting from the latter.

As we assumed bounds to improve monotonically as
simplification level increases, see Assump. 1, for any
sl > sj + 1 we already have readily available bounds
{UBs

l?(bi+1),LBs
l?(bi+1)} which are tighter than those

that would be obtained for simplification level sj + 1. Thus,
we can safely skip the calculation of the latter and use the
existing bounds from level sl as is.

For the former case, i.e. sl = sj , we now have to
adapt the simplification level to sj + 1 by calculating
the bounds {UB(sl+1)?(bi+1),LB(s

l+1)?(bi+1)}. Here, our
key insight is that, instead of calculating these bounds
from scratch, we can re-use calculations between differ-
ent simplification levels, in this case, from level sl. As
the bounds from that level are available, we can identify
only the incremental part that is “missing” to get from
simplification level sl to sl + 1, and update analytically
the existing bounds {UBs

l?(bi+1),LBs
l?(bi+1)} to recover

{UB(sl+1)?(bi+1),LB(s
l+1)?(bi+1)} exactly. The same ar-

gument applies also for bounds over momentary rewards.
In Section V-D.3 we apply this approach to a specific
simplification and reward function.

We can repeat iteratively the above process of increasing
the simplification level until we can prune all branches but
one. This means each subtree will be solved maximum once,
per simplification level. Since we assumed the simplification
converges to the original problem for the finest level sn,
see Assump. 2, we are guaranteed to eventually disqualify
all sub-optimal branches. Moreover, due to the discussed-
above calculation re-use, in the worst case, adapting the
simplification all the way up to the finest level sn, is roughly
equivalent to solving the original problem. We address this
aspect explicitly in Section V-D.3. For a detailed illustrative
example w.r.t. Fig. 3b see Sec. III in [19].

Algorithm 1 Simplified Information Theoretic Belief Space Planning

1: procedure FIND OPTIMAL POLICY(belief-tree: T)
2: s← s0
3: return ADAPT SIMPLIFICATION(T,s)
4: end procedure
5: procedure ADAPT SIMPLIFICATION(belief-tree: T, si)
6: if T is a leaf then
7: return {lb,ub} . Corresponds to immediate reward bounds (4).
8: end if
9: Set simplification level: s← si

10: for all subtrees T′ in T do
11: ADAPT SIMPLIFICATION(T′,s)
12: Calculate LBsj ,UBsj according to s and (10)
13: end for
14: Using {LBsj ,UBsj }|A|

j=1 and Alg. 2 prune branches
15: while not all T′ but 1 in T pruned do
16: Increase simplification level: s← s+ 1
17: ADAPT SIMPLIFICATION(T,s)
18: end while
19: Update {LBsj?,UBsj?} according to (13)
20: return optimal action branch that left a? and {LBsj?,UBsj?}.
21: end procedure

In the following sections, we present a specific sim-
plification along with derivations that show it holds the
mentioned mathematical properties. Our described approach
is summarized in Algs. 1 and 2.

Algorithm 2 Prune Branches

1: procedure PRUNE
2: Input: (belief-tree root, b; bounds of root’s children, {LBm,UBm}Cm=1)
. C is the number of child branches going out of b.

3: LB? ← max
m
{LBm}Cm=1

4: for all children of b do
5: if LB? > UBm then
6: prune child m from the belief tree
7: end if
8: end for
9: end procedure

C. Bounds

We now delve deeper to the bounds our chosen simplifi-
cation suggests.

1) Belief Representation and Chosen Simplification: As
mentioned, we use Particle Filter for belief update. This
means the belief is represented as a set of weighted particles,

b , {xi, wi}Ni=1, (15)

where N is a tune-able parameter specifying the desired
number of particles.

Suggested Simplification: Given the belief representation
(15), the simplified belief is a subset of Ns particles, sampled
from the original belief, where Ns ≤ N . More formally:

bsk,{(xi, wi) | i ∈ As
k, A

s
k ⊆ {1, 2, . . . , N},|As

k| =Ns
k}, (16)

where Ask is the set of particle indices comprising the
simplified belief bsk for time k.

Increasing the level of simplification is done incrementally.
Specifically, consider |As| = Ns and to get to the next
simplification level we add m particles with indices j ∈
B, |B| = m. Then the following holds: As∩B = ∅, As+1 =
As ∪B, Ns+1 = Ns +m.

2) Bounding the Differential Entropy: We consider a com-
mon reward function, the differential entropy. As one of our
key contributions, in this section we derive novel analytical
upper and lower bounds lb and ub considering this reward
function, assuming a sampling-based belief representation
(15) and the corresponding simplified belief (16). These
bounds can then be used within our general simplification
framework presented in Sections V-A and V-B.

Under this setting approximating differential entropy of
the belief is not an easy task. To calculate H(b[xk]) =
−
∫
b[xk] · log (b[xk]) dxk, one must have access to the

manifold representing the belief. Several approaches exist.
One of them is using Kernel Density Estimation as done,
e.g., by [7]. Here, we consider the method proposed by [20]:

Ĥ(bk+1) , log

[∑
i

P(zk+1 | xik+1)w
i
k

]
︸ ︷︷ ︸

(a)

(17)

−
∑
i

wi
k+1 · log

[
P(zk+1 | xik+1)

∑
j

P(xik+1 | xjk, ak)w
j
k

]
︸ ︷︷ ︸

(b)

,

where i indexes particles and their corresponding weight
as in (15) and (16).One can observe this method requires
access to samples representing both bk and bk+1; thus, this

corresponds to an information-theoretic reward of the form
r(bk, bk+1). Utilizing the chosen simplification (16) we can
now upper and lower bound 17. We do so below by bounding
term (b) which is the source of complexity. First, as the
models are known, we define m , max{P(xk+1 | xk, ak)},
the max value the given motion model can assume.

Theorem 1. Term (b) in (17) can be upper and lower
bounded via simplification as

(b) ≥ −
∑

i∈¬As
k+1

wi
k+1 · log

[
m · P(zk+1 | xik+1)

]

−
∑

i∈As
k+1

wi
k+1 · log

[
P(zk+1 | xik+1)

∑
j

P(xik+1 | xjk, ak)w
j
k

]

(b) ≤ −
∑
i

wi
k+1 · log

 ∑
j∈As

k

P(zk+1 | xik+1)P(xik+1 | xjk, ak)w
j
k

See proof in Supplementary [19] Sec. I.
Finally, bounding (17) using Theorem 1 corresponds, in

our general framework from Sections V-A and V-B, to (5).
Note we consider simplified and non-simplified belief nodes
pairs for the bounds calculations which still settles with (5).

D. Bounds Analysis

1) Convergence: We now analyze convergence of the
simplification described in Section V-C.1. Since simplifying
to the level of sn means the simplified belief is just the
original belief, we get: Ns = N ⇒ b = bs ⇒ r(bs, a) =
r(b, a). Furthermore, if Ns = N then ¬As = ∅ and the first
term of the lower bound is zero. Further, As = {1, 2, ..., N}
and thus the upper and lower bounds in Theorem 1 coincide
and equal to term (b) from (17). Meaning, under our chosen
simplification, the bounds converge to the original rewards
for the non-simplified original belief. Where we consider as
lower bounds term (a) from (17) with lower bound to term
(b), and similarly we build the upper bounds

2) Complexity Analysis: The original formulation of [20]
suggests complexity of O(N2) where N is as in (15). The
derivations in Section V-C.2 suggest complexity of O(Ns ·
N), where Ns is the maximal number of particles needed
for pruning, for some belief node. Altogether, time saved for
all belief nodes in the tree will result in the total speedup of
our approach.

3) Re-use of Calculations: The unique structure of the
simplification allows us to cache the calculation from a
previous simplification level. Specifically, moving from sim-
plification level s to level s+ 1, corresponds to adding some
m additional particles to bs in order to get bs+1. For the
lower bound in Theorem 1 we can just cache the final result
and augment the sums with the calculations corresponding to
the m missing particles. For the upper term in Theorem 1, we
need to cache the inner sums of the log, augment them with
the missing m particles calculations, and re-weight it using
the outer sum weights. Note space complexity remains the
same since we are already caching the particles and weights
for each belief. This re-use of calculations results in time
complexity, going up from simplification level s0 to level sn

being the same order as solving the original problem in the
first place. Thus, making simplification is worthwhile always
(up to some constant overhead).

VI. EXPERIMENTAL SETTING AND RESULTS

We consider an autonomous navigation to goal scenario
with continuous state and observation spaces. First, we exper-
iment with a passive case, i.e. a given policy, to demonstrate
our novel entropy bounds behavior. Second, we show how the
bounds can use us to speed up POMDP planning as explained
in Section V. All experiments were conducted on a laptop
with Intel i7-9850H CPU 2.59GHz with 16 GB RAM.

A. Experimental Setting - 2D Continuous Light-Dark

We consider a 2D continuous Light-Dark problem. The
robot starts at some unknown point x0 ∈ R2. In this world,
there are spatially scattered beacons with known locations.
Near the beacons, the attained observations are less ‘noisy’.
The goal is to get to the goal xt ∈ R2 (upper right corner
of the world). Initial belief is b[x0] = N (x0, I · σ0), motion
and observation models are T = P(x′ | x, a) = N (x+ a, I ·
σT), O = P(z | x) = N (x − xb, I · σO · max{r, rmin})
respectively, where r is the robot’s distance to the nearest
beacon whose known location is xb, and rmin is a tune-able
parameter. For all experiments, the belief is approximated
by a set of N weighted samples as in (15). This setting
implies the belief at each time step is Gaussian and can
be inferred exactly using Kalman Filter (KF). Thus, the
differential entropy has a closed-form and can be calculated
across the simulation. Note we consider this Gaussian case
only as a reference point and our approach is applicable to
any distribution.

B. Differential Entropy Approximations

To verify our bounds behavior we consider a passive
scenario over the setting described in VI-A. The robot
moves diagonally to the goal (Fig. 4a). Along the way, it
passes close by two beacons. Consequentially, the robot’s
uncertainty decreases. In Fig 5a we plot the bounds along
with the original approximation (17), a KDE approximation
(as done by [7]), the actual differential entropy and naive ap-
proximation using discrete entropy of the particles weights:
h(b) = −

∑
i w

i · logwi. We experiment with a changing
number of particles and it is clear the bounds converge to
the original reward (differential entropy approximation) (17).
C. Planning in 2D environment

We demonstrate the simplification speedup when planning
in a continuous 2D scenario. The setting is as in Section VI-
A. However, now the robot is given the ability to plan a
parametric number of L steps into the future. After the plan-
ning session is done, the robot executes the first action out
of the calculated optimal policy, acquires a new observation,
updates the belief, and performs planning again (and so on).
The reward function is −r(b, a) = E

x∼b
{‖x− xt‖1}+ Ĥ(b),

where the first term is the expected distance to goal, and
Ĥ(bk) is the approximation of the differential entropy (17).

(a) (b)
Fig. 4: (a) Localization with a predefined policy in an environment represented by
known landmarks. Particles are colored according to weight (high-red, small-yellow).
Blue ellipses correspond to estimated uncertainty covariance by a KF. (b) Planning
simulation, setting II. At each time step the robot is planning L step into the future
and then executes the first action from the calculated optimal policy. The plot shows
belief evolution in terms of particles sets along the actual trajectory taken by the robot.

We apply our approach considering different tree struc-
tures. Specifically, we evaluate our approach on a POMCP-
like tree (deep and sparse) [2], DESPOT-like sparse tree (
[15]), and on a shallow and ’thick’ tree like the one generated
by [22]. We provide a full explanation of how these trees are
built in the caption of Table I. The reported results in Table I
are the mean planning time (in seconds) of our approach,
compared to calculating the objective using original rewards.
We experiment with a changing number of particles and
planning horizon.

We consider two settings: ‘I’ and ‘II’. Setting ‘II’, illus-
trated in Fig. 4b, is more complex as the robot needs to
move from the bottom left corner to the top right and the
action space is {left, right, up, down}. Setting ‘I’ is easier:
The robot needs to move from an initial point x0 to the
same height point xL, which means the optimal path is just
a straight line, while the action space is {left, right}. This
easy setting allows the robot to utilize simplification to its
full extent. Empty cells in Table I correspond to runs that
planning session (for a regular objective) took longer than
35 [sec] and was stopped. Initial simplification level was set
to s0 = 0.1, i.e., Ns0 = 0.1 · N and specifically the levels
are si ∈ {0.1, 0.2, 0.4, 0.8, 1.0}.

It is clear from Table I, using our suggested simplification
is a favorable approach, leading to speedup in all of the
conducted experiments when compared to the Sparse Sam-
pling baseline. Since the simplification bounds are analytical
and used for eliminating branches in the belief tree of the
original problem, the same optimal action is obtained with or
without our simplification. In other words, we demonstrate
a significant speedup while obtaining the same solution.

In Fig. 5 we can get a glimpse into how our adaptive
simplification performing in the tree depth for Settings I and
II. The shown plots are histograms that tell us what are
the levels of simplification in the tree needed for pruning.
It can be seen that indeed for Setting I the simplification
is performing extremely well thus saving a lot of time 5b.
In the more difficult Setting II, indeed higher simplification
levels are more common 5c. Nevertheless, as seen in Table
I, we still get a significant speedup, while the speedup for
Setting I is even more drastic. This implies our simplification
can identify by itself situations where we can save resources
(computation time) and all this without compromising on the
accuracy of the desired solution.

(a) (b) (c)
Fig. 5: (a) Differential entropy approximations and bounds. Calculations were done using N = 200 particles. From left to right: Simplification is Ns = {0.1, 0.5, 0.9} ·N .
(b) and (c) show simplification level histograms vs. tree depth for entire simulation (10 planning sessions). (b) Setting I using N = 50 and Horizon of 4. (c) Setting II using
N = 20 and Horizon of 3. x-axis corresponds to tree nodes of some depth in the belief tree. y-axis corresponds to the simplification level needed to achieve pruning. The scale
of the circles corresponds to how many nodes were in that category. Circle scales are normalized since the number of nodes grows exponentially going down the tree.

TABLE I: Mean time per planning session. Each table entry is (original objective time/simplified approach time). Results are in Seconds. The second row indicates the number
of particles used. DESPOT-like belief tree [15] was built by expanding all actions in every level of the tree but only making a single observation in each level, i.e. nz = 1.
POWSS-like tree [22] was built by expending each belief node for all actions, and generating an observation for each particle of the belief, i.e. number of observations when
branching is as the number of particles. POMCP-like tree [2] was built using five ‘rollout’s starting from the root of the tree. In each rollout down the tree, we randomly choose
if to expand a new node by taking an action that was not taken previously from that node or to go down the tree using nodes that were already expanded from previous rollouts.

Simulation Horizon [15] Tree Horizon [22] Tree Horizon [2] Tree
20 50 100 10 20 30 20 50 100

Setting I
1 0.124/0.043 0.741/0.192 2.892/0.667 1 0.554/0.287 4.065/1.437 12.908/3.953 5 1.13/0.776 6.625/2.008 28.19/7.232
2 0.364/0.129 2.196/0.584 8.616/2.042 2 11.02/5.386 - - 10 2.648/2.555 15.342/8.214 -
3 0.853/0.339 5.059/1.324 19.899/4.658 3 - - - 15 4.2/3.677 26.205/20.174 -

Setting II

1 0.245/0.099 1.513/0.4 5.855/2.018 1 1.112/0.953 8.501/5.143 26.375/11.977 5 1.383/0.733 8.417/3.864 33.244/10.97
2 1.209/0.738 7.195/3.821 30.638/13.49 2 - - - 10 2.985/2.112 17.293/6.092 -
3 5.027/3.212 31.515/18.288 - 3 - - - 15 4.53/3.701 27.712/11.385 -

VII. CONCLUSION

In this paper we have introduced SITH-BSP, an algorith-
mic paradigm able to speedup calculations when performing
online POMDP planning, considering general distributions
and belief-dependent rewards. The lion part of our approach,
definition of simplification over sparse sampling planning,
is mathematically formulated in a general manner. It can
be easily extended to many directions and may prove to
be applicable for existing or future approaches. The more
specific aspects of our approach (assuming Particle Filter for
belief approximation) provides novel derivations for bounds
over the differential entropy approximation and may be taken
to other areas in the vast field of robotics. We have shown
how the approach assumes an adaptive form, while re-using
calculations and thus gives the exact optimal solution to the
original problem in an effective manner.

REFERENCES

[1] C. Papadimitriou and J. Tsitsiklis, “The complexity of markov decision
processes,” Mathematics of operations research, vol. 12, no. 3, pp.
441–450, 1987.

[2] D. Silver and J. Veness, “Monte-carlo planning in large pomdps,” in
Advances in Neural Information Processing Systems (NIPS), 2010, pp.
2164–2172.

[3] T. Smith and R. Simmons, “Heuristic search value iteration for
pomdps,” in Conf. on Uncertainty in Artificial Intelligence (UAI),
2004, pp. 520–527.

[4] Z. Sunberg and M. Kochenderfer, “Online algorithms for pomdps with
continuous state, action, and observation spaces,” in Proceedings of
the International Conference on Automated Planning and Scheduling,
vol. 28, no. 1, 2018.

[5] N. P. Garg, D. Hsu, and W. S. Lee, “Despot-α: Online pomdp planning
with large state and observation spaces,” in Robotics: Science and
Systems (RSS), 2019.

[6] M. H. Lim, C. J. Tomlin, and Z. N. Sunberg, “Voronoi progres-
sive widening: Efficient online solvers for continuous space mdps
and pomdps with provably optimal components,” arXiv preprint
arXiv:2012.10140, 2020.

[7] J. Fischer and O. S. Tas, “Information particle filter tree: An online
algorithm for pomdps with belief-based rewards on continuous do-
mains,” in Intl. Conf. on Machine Learning (ICML), Vienna, Austria,
2020.

[8] V. Thomas, G. Hutin, and O. Buffet, “Monte carlo information-
oriented planning,” arXiv preprint arXiv:2103.11345, 2021.

[9] C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based
exploration using Rao-Blackwellized particle filters,” in Robotics:
Science and Systems (RSS), 2005, pp. 65–72.

[10] A. Singh, A. Krause, C. Guestrin, and W. Kaiser, “Efficient informative
sensing using multiple robots,” J. of Artificial Intelligence Research,
vol. 34, pp. 707–755, 2009.

[11] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algorithm
for near-optimal planning in large markov decision processes,” Ma-
chine learning, vol. 49, no. 2, pp. 193–208, 2002.

[12] M. Hoerger, H. Kurniawati, and A. Elfes, “Multilevel monte-carlo for
solving pomdps online,” in Proc. International Symposium on Robotics
Research (ISRR), 2019.

[13] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”
in European conference on machine learning. Springer, 2006, pp.
282–293.

[14] M. Kochenderfer, T. Wheeler, and K. Wray, Algorithms for Decision
Making. MIT Press, 2022.

[15] N. Ye, A. Somani, D. Hsu, and W. S. Lee, “Despot: Online pomdp
planning with regularization,” JAIR, vol. 58, pp. 231–266, 2017.

[16] N. Roy, G. J. Gordon, and S. Thrun, “Finding approximate pomdp
solutions through belief compression,” J. Artif. Intell. Res.(JAIR),
vol. 23, pp. 1–40, 2005.

[17] K. Elimelech and V. Indelman, “Simplified decision making in the
belief space using belief sparsification,” Intl. J. of Robotics Research,
2021, accepted.

[18] M. Shienman, A. Kitanov, and V. Indelman, “Ft-bsp: Focused topo-
logical belief space planning,” IEEE Robotics and Automation Letters
(RA-L), vol. 6, no. 3, pp. 4744–4751, July 2021.

[19] O. Sztyglic and V. Indelman, “Speeding up pomdp planning
via simplification - supplementary material,” Technion - Israel
Institute of Technology, Tech. Rep., 2022. [Online]. Available:
https://tinyurl.com/3h945vrk

[20] Y. Boers, H. Driessen, A. Bagchi, and P. Mandal, “Particle filter
based entropy,” in 2010 13th International Conference on Information
Fusion, 2010, pp. 1–8.

[21] O. Sztyglic, A. Zhitnikov, and V. Indelman, “Simplified belief-
dependent reward mcts planning with guaranteed tree consistency,”
Technion - Israel Institute of Technology, Tech. Rep., 2021.

[22] M. H. Lim, C. Tomlin, and Z. N. Sunberg, “Sparse tree search
optimality guarantees in pomdps with continuous observation spaces,”
in Intl. Joint Conf. on AI (IJCAI), 7 2020, pp. 4135–4142.

https://tinyurl.com/3h945vrk

	Introduction
	Related Work
	Contribution
	Background
	Our Approach
	Simplification
	Adaptive Simplification
	Comparing Bounds with Different Simplification Levels
	Adapting Simplification Level with Calculation Re-Use

	Bounds
	Belief Representation and Chosen Simplification
	Bounding the Differential Entropy

	Bounds Analysis
	Convergence
	Complexity Analysis
	Re-use of Calculations

	Experimental Setting and Results
	Experimental Setting - 2D Continuous Light-Dark
	Differential Entropy Approximations
	Planning in 2D environment

	Conclusion
	References

