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This document provides supplementary material to [2]. Therefore, it should not be considered a self-contained document,
but instead regarded as an appendix of [2]. Throughout this report, all notations and definitions are with compliance to the
ones presented in [2].

I. PROOF FOR THEOREM 1
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II. PRUNING TREE BRANCHES USING REWARD BOUNDS

Usually when planning into the future a planning tree, or a belief tree in the more general case, is built in some manner.
This tree approximates the expectation of cumulative future rewards given different possible policies. In order to decide
which action should be taken at the root of the tree, rewards should be summed bottom up (leafs to root). This weighted
summation for the different routes in the tree, is nothing but the objective function (1). Once the rewards are propagated
up the tree, the action (at the root) that present greater future cumulative reward should be chosen, i.e. choose the most
promising subtree of the original tree (illustration in Fig. 2a). Due to the recursive nature of (1), (3) this formulation is also
recursive and is applied in each belief node of the belief tree. I.e., in each node we propagate up the action that has the
biggest corresponding subtree cumulative reward. Thus we get the optimal policy.

A possible way to improve this setting is bounding the tree branches. Meaning, each belief node bk+j in the belief tree
has children subtrees corresponding to the different actions that can be taken from bk+j . Each child subtree has it’s own
upper and lower bound {LBm,UBm}|A|m=1 that we somehow got. So, according to the bounds, when some actions (subtrees)
seem to be less promising than their sibling action, we can avoid expanding this tree branch in the first place. Though
this approach is sub optimal according to [1]. An alternative way to speedup the process is eliminating existing branches
(subtrees or actions) according to these bounds. It becomes possible when for two sibling subtrees m′,m′′ corresponding
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to two different actions, we get LBm′ > UBm′′ or LBm′′ > UBm′ . E.g., in Fig. 2c the lower bound of π′′′′ is higher than
all other actions upper bounds. However this becomes problematic if (a) the bounds are not cheaper to calculate than the
original objective of some tree. (b) We cannot eliminate all actions but one since the bounds are not tight enough. E.g. in
Fig. 2b one cannot say for sure that policy π′′′′ is better than policy π′′ since the latter upper bound is higher than the
former lower bound.

III. ADAPTIVE SIMPLIFICATION ILLUSTRATIVE EXAMPLE

Consider Fig. 3b and assume the subtrees to b1i were solved using simplification levels that hold s2 = s1+1, s2 < s3, s4.
Further assume the immediate reward simplification is s = s1. According to definitions above this means that for b1i ,
sj=1 = min{s1, sl=1, sl=2} and sj=2 = min{s1, sl=3, sl=4}. Now, we consider the case the existing bounds of the subtrees
were not tight enough to prune, we adapt simplification level of the tree starting from b1i : s1 → s1+1. Since s1 < s1+1 we
re-simplify the subtree corresponding to simplification level of s1 to simplification level s1+1, i.e. to a finer simplification.

However we do not need to re-simplify subtrees corresponding to s2, s3, s4: The tree corresponding to s2 is already
simplified to the currently desired level thus we can use its existing bounds. For the two other trees, their current simplification
levels, s3 and s4, are higher (finer) than the desired s1 + 1 level, and since the bounds are tighter as simplification level
increases we can use their existing tighter bounds without the need to ’go-back’ to a coarser level of simplification. If we can
now prune one of the actions, we keep pruning up the tree. If pruning is still not possible, we need to adapt simplification
again with simplification level s1 + 2.



IV. ADDITIONAL ENTROPY RESULTS

Fig. 1: Differential Entropy Approximations ans Bounds. Calculations were done using 100 particles. From left to right: Simplification is Ns = {0.1, 0.5, 0.9} ·N

Fig. 2: Differential Entropy Approximations ans Bounds. Calculations were done using 50 particles. From left to right: Simplification is Ns = {0.1, 0.5, 0.9} ·N

Fig. 3: Differential Entropy Approximations ans Bounds. Calculations were done using 20 particles. From left to right: Simplification is Ns = {0.1, 0.5, 0.9} ·N
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