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Abstract— We present an approach for localization and
semantic mapping in ambiguous scenarios by incrementally
maintaining a hybrid belief over continuous states and discrete
classification and data association variables. Unlike existing
incremental approaches we explicitly maintain data association
components over time, allowing us to deal with perceptual alias-
ing. Crucially, we utilize a viewpoint-dependent classifier model
over rich classifier outputs and leverage the coupling between
poses and semantic measurements both for disambiguating
data association and in pose estimation. We demonstrate in
simulation that incorporating semantic measurements with a
viewpoint-dependent classifier model enhances disambiguation
of both data association and localization over usage of only
geometric measurements or viewpoint independent models,
further contributing to the tractability of the approach in
practice, and providing better estimates.

I. INTRODUCTION

Localization and mapping in unknown and uncertain envi-
ronments is a fundamental capability in robotics, with numer-
ous applications, including search and rescue, autonomous
car navigation, indoor navigation, and surveillance. The cor-
responding problem is known as simultaneous localization
and mapping (SLAM) and has been extensively investigated
in the last two decades, e.g. see a recent review [1]. Seman-
tic perception and object-based SLAM have been actively
investigated by the research community. In particular, object-
based SLAM reasons about much fewer landmarks with
richer information than geometric SLAM, allowing for faster
computation and assistance in data association of features
and objects between images.

One of the key challenges in SLAM is a reliable and
robust operation in perceptually aliased environments. Data
association (DA) is particularly difficult in these scenarios,
as the measurement information can be interpreted in mul-
tiple ways, and DA errors may lead to critically incorrect
estimations. Existing approaches maintain data association
hypotheses, which is a computationally difficult problem on
its own. Semantic information can assist in disambiguation
of DA hypotheses. However, existing approaches that uti-
lize semantic observations for DA disambiguation typically
consider only most likely class measurements (e.g. [2]). Yet,
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different objects can appear visually similar when viewed
from certain viewpoints, and thus lead to erroneous most
likely class, which will cause these approaches to break. In
contrast, we utilize a richer classifier output in the form of
class probability vectors. Crucially, existing methods do not
exploit the viewpoint dependency embedded in the semantic
observations - indeed, the visual appearance of an object
(scene) changes when observed from different viewpoints.
We propose to exploit this viewpoint-dependency to assist
in the data association task within a semantic perception
framework, considering highly ambiguous scenarios.

In our approach the robot aims to localize itself and map
geometrically and semantically the observed environment
while reasoning about ambiguous data association. This
kind of inference requires maintaining a hybrid belief and
efficiently updating it with incoming information captured
online by the robot’s sensors. As our main contribution,
we utilize a viewpoint dependent classifier model for DA
disambiguation by leveraging the coupling between relative
viewpoint and classifier outputs. We rigorously incorporate
this viewpoint-dependent model within a recursive proba-
bilistic formulation, building upon the DA-BSP framework
by Pathak et al. [3], which however, considered only geomet-
ric observations. In addition, the proposed approach aids in
SLAM, leading to a more accurate inference. Further, while
DA-BSP assumes a single scene is observed per time step,
we deal with multiple object detections. We demonstrate the
strength of utilizing a viewpoint dependent classifier model
for DA disambiguation in simulation considering a highly
ambiguous environment.

II. RELATED WORK

An important early work on DA is joint probability data
association (JPDA) by Fortman et al. [4] which considers all
possible DA options, therefore being computationally slow.
Our approach utilizes semantic information and weight prun-
ing to reduce the number of DA options considered. Wong et
al. [5] presented a Dirichlet Process Mixture Model (DPMM)
for data association for a partially observed environment.
Sunderhauf and Protzel [6] proposed an approach to detect
faulty loop closures that lead to erroneous data association
in back-end optimization. Olson and Agarwal [7] proposed
a robust approach that uses max-mixture models. Carlone
et al. [8] classified measurements as coherent or not, thus
predicting if they will result in erroneous data association.
Indelman et al. [9] proposed a multi-robot framework for



SLAM with ambiguous data association. A recent work by
Pathak et al. [3] for data association aware belief space
planning (DA-BSP) targets perceptual aliasing by explicitly
reasoning about and probabilistically maintaining ambiguous
DA hypotheses, in both inference and belief space planning.
Yet, all of the above works are confined to geometric
measurements.

Milan et al. [10] presented a method based on LSTM
neural network forg data association, training it on the
MOTChallenge dataset. Farazi and Behnke [11] expended
on the above work to visually track and associate between
identical robots using an LSTM based approach. [10], [11]
are both deep learning based approaches, where a key
question is how far the deployment scenario is from the
training set, i.e. model uncertainty.

Several notable works utilized classifier models to improve
class inference. Omidshafiei et al. [12] proposed a sequential
classification algorithm that utilizes a classifier model that
models the classifier output as a Dirichlet distribution. This
model makes the algorithm robust to classification ambiguity,
but is independent of the relative viewpoint between camera
and object. Tchuiev and Indelman [13] maintained a dis-
tribution over posterior class probability, and in particular,
provided access to posterior classification uncertainty, by
incorporating model uncertainty within a sequential classi-
fication setting. A Dirichlet distributed classifier model was
used as well, also independent on relative viewpoint. Teacy et
al. [14], and Feldman and Indelman [15] utilized a Gaussian
process viewpoint dependent classifier model to assist in
classification tasks. Kopitkov and Indelman [16] utilized a
viewpoint dependent classifier model, learned offline via
deep learning, for probabilistic inference over robot trajec-
tory. In contrast to the above works, which either consider a
single object/scene or assume data association to be given
and perfect, we utilize the viewpoint dependent classifier
model to assist in data association disambiguation while
addressing a localization and semantic mapping problem.
Addressing this problem involves inference over a hybrid
belief over continuous and discrete variables.

The following are the most relevant works that present
approaches for hybrid belief inference. Segal and Reid [17]
proposed a message passing algorithm to optimize hybrid
factor graphs for inference. The discrete-continuous graphi-
cal model (DC-GM) approach by Lajoie et al. [18] performed
inference on a hybrid factor graph that produces near-optimal
estimates. Mu et al. [2] proposed a sampling based approach
that uses most likely class semantic measurements; this
approach performs batch inference using expectation maxi-
mization (EM). Bowman et al. [19] utilizes most likely class
and bounding box measurements, in addition to geometric
measurements, to perform SLAM and DA disambiguation
using EM as well. The above approaches consider only the
most likely class and do not reason about viewpoint depen-
dency of classification results. In contrast, we utilize richer
classifier output in conjunction with a viewpoint dependent
model to perform object level SLAM, while maintaining

classification and DA hypotheses.

III. NOTATIONS AND PROBLEM FORMULATION

Consider a robot operating in a partially known environ-
ment containing different, possibly perceptually similar or
identical, objects. The robot aims to localize itself, and map
the environment geometrically and semantically while rea-
soning about ambiguous data association (DA). We consider
a closed-set setting where each object is assumed to be one
of M classes. Moreover, in this work we consider the number
of objects in the environment is known. The objects are
assumed to be stationary.

Let xk denote the robot’s camera pose at time k, and
xon and cn represent the n-th object pose and class, respec-
tively. We denote the set of all object poses and classes by
X o .

= {xo1, ..., xoN} and C
.
= {c1, ..., cn}. To shorten nota-

tions, denote Xk
.
= {x0:k,X o}.

Further, we denote the data association realization at time
k as βk: given nk object observations at time k, βk ∈ Rnk ;
each element in βk corresponds to an object observation,
and is equal to an object’s identity label. For example, if
at time k the camera observes 2 objects with hypothesized
identity labels 4 in observation 1 and 6 in observation 2, then
βk = [βk,1, βk,2]T ∈ R2, and βk,1 = 4 and βk,2 = 6. Denote
Zk

.
= {zk,1, ..., zk,nk} as the set of nk measurements at time

k, and ak as the robot’s action at time k.
Each measurement zk,i ∈ Zk consists of two parts: a

geometric part zgeok,i , e.g. range or bearing measurements to
an object, and a semantic part zsemk,i . The set of all geometric
measurements for time k is denoted Zgeok , and similarly
for semantic measurements Zsemk , such that Zk = Zgeok ∪
Zsemk . We assume the geometric and semantic measurements
are independent from each other. In addition, we assume
independence between measurements at different time steps.

We consider standard motion and geomet-
ric observation Gaussian models, such that
P(xk+1|xk, ak) = N (f(xk, ak),Σw) and P(zgeok |xk, xo) =
N (hgeo(xk, x

o),Σgeov ). The process and geometric
measurement covariance matrices, Σw and Σgeov , as
well as the functions f(.), hgeo(.) are assumed to be known.

For the semantic measurements, we utilize a (deep learn-
ing) classifier that provides a vector of class probabilities
where zsemk,i

.
= P(ci|Ik,i) given sensor raw observation Ik,i,

e.g. an image cropped from a bounding box of a larger
image taken by the camera of object i at time k. To
simplify notations we drop index i, as the measurements,
both semantic and geometric, apply to each bounding box.
Thus, zsemk ∈ RM with

zsemk
.
= [P(c = 1|Ik) · · · P(c = M |Ik)]

T
. (1)

A crucial observation, following [15], is that zsemk is de-
pendent on the camera’s pose relative to the object (see
Fig. 1). In this work we contribute an approach that leverages
this coupling to assist in inference and data association
disambiguation.
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Fig. 1: A classifier observing an object from multiple viewpoints will produce different
classification scores for each viewpoint.

Specifically, we model this dependency via a classifier
model P(zsemk |c = m,xk, x

o). The classifier model repre-
sents the distribution over classifier output, i.e. class proba-
bility vector zsemk , when an object with a class hypothesis
m is observed from relative pose xo 	 xk. Note that for M
classes we require M classifier models, one for each class.
The model can be represented with a Gaussian Process (see
[14], [15]) or a deep neural network (see [16]). In this work,
we use a Gaussian classifier model, given by

P(zsemk | c, xk, xo) = N (hc(xk, x
o),Σc(xk, x

o)), (2)

where the viewpoint-dependent functions hc(xk, x
o) and

Σc(xk, x
o) are learned offline. Note that unlike [14], [15]

we do not model correlations in classifier scores among
viewpoints. Conversely, we do not assume data association
is known.

We assume a prior on initial camera and object poses,
x0 and Xo respectively, and class realization probability
P(C). For simplicity, we assume independent variable priors
(although this assumption is not required by our approach,
and is not true in general, as e.g. some objects are more
likely to appear together than others), thus we can write the
prior as follows:

P(x0, X
o, C) = P(x0)

N∏
i=1

P(xoi )P(ci). (3)

In this paper we use a Gaussian prior for the continuous
variables, and uninformative (uniform) prior for the object
classes.

Problem formulation: We aim to efficiently maintain the
following hybrid belief

P(Xk, C, β1:k | Hk), (4)

with history Hk
.
= {Z1:k, a0:k−1}. The belief (4) is both

over continuous variables, i.e. robot and object poses Xk
(continuous variables), and over discrete variables, i.e. object
classes C and data association hypotheses thus far, β1:k. In
the following, we incorporate a viewpoint-dependent clas-
sifier model and develop a recursive formulation to update
that hybrid belief with incoming information captured by the
robot as it moves in the environment.

IV. APPROACH

In this section we develop a recursive scheme to compute
and maintain the hybrid belief from Eq. (4). We start by
factorizing using the chain rule as

P(Xk, C, β1:k|Hk)=P(Xk|C, β1:k,Hk)︸ ︷︷ ︸
b[Xk]Cβ1:k

P(C, β1:k|Hk)︸ ︷︷ ︸
wCβ1:k

, (5)

where b[Xk]Cβ1:k

.
= P(Xk | C, β1:k,Hk) is the

conditional belief over the continuous variables, and
wCβ1:k

.
= P(C, β1:k | Hk) is the marginal belief over the

discrete variables, and can be considered as the conditional
belief weight. Thus, each realization of the discrete
variables, i.e. data association and class hypotheses, has its
own probability (weight) and gives rise to a different belief
over the continuous variables.

Moreover, the factorization (5) facilitates computation of
marginal distributions that are of interest in practice. In
particular, the posterior over robot and object poses can be
calculated via

P(Xk | Hk) =
∑
β1:k

∑
C

wCβ1:k
b[Xk]Cβ1:k

, (6)

while the marginal distributions over object classes and data
association hypotheses are given by

P(C | Hk) =
∑
β1:k

wCβ1:k
, (7)

P(β1:k | Hk) =
∑
C

wCβ1:k
. (8)

The posterior P(Xk | Hk) in Eq. (6) is a mixture belief that
accounts for all hypotheses regarding data association and
classification. Without semantic observations, our approach
degenerates to passive DA-BSP. The term P(C | Hk) is the
distribution over classes of all objects while accounting for
both localization uncertainty and ambiguous data associa-
tion. As such, it is important for robust semantic percep-
tion. Finally, the posterior over data association hypotheses,
P(β1:k | Hk) accounts for all class realizations for all objects.

Next, we derive a recursive formulation for calculating
the continuous and marginal distributions in the factorization
(5). As will be seen, semantic observations along with the
viewpoint-dependent classifier model (2) impact both of
the terms in the factorization (5), and as a result assist in
inference of robot and objects poses (via Eq. (6)) and helps
in disambiguation between data association realizations (via
Eq. (8)). Furthermore, as discussed in Sec. 4.D, while the
number of objects’ classes and data association hypotheses
(number of weights wCβ1:k

) is intractable, in practice many of
these are negligible and can be pruned.

A. Conditional Belief Over Continuous Variables: b[Xk]Cβ1:k

Using Bayes law we get the following expression:

b[Xk]Cβ1:k
≡ P(Xk | C, β1:k,Hk) ∝

P(Zk | Xk, C, βk) · P(Xk | C, β1:k−1,H−k ),
(9)



where H−k
.
= {Z1:k−1, a0:k−1}, the normalization constant

is omitted as it does not depend on Xk, and βk is dropped in
the second term because it refers to association of Zk which
is not present.

The expression P(Zk | Xk, C, βk) in Eq. (9) is the joint
measurement likelihood for all geometric and semantic ob-
servations obtained at time k. Given classifications, asso-
ciations and robot pose at time k, history H−k and past
associations β1:k−1 can be omitted. The joint measurement
likelihood can be explicitly written as

P(Zk | Xk, C, βk) =
nk∏
i=1

P(zgeok,i | xk, x
o
βk,i

) · P(zsemk,i | xk, xoβk,i , cβk,i),
(10)

where xoβk,i and cβk,i are the object pose and class corre-
sponding to the measurement respectively, given DA real-
ization βk and nk the number of measurements obtained at
time k as before. Note that the viewpoint-dependent semantic
measurement term above P(zsemk,i | xk, xoβk,i , cβk,i) couples
between semantic measurement and robot pose relative to
object, making it useful for inference of both.

The term b−[Xk]Cβ1:k−1

.
=P(Xk | C, β1:k−1,H−k ) in Eq. (9)

is the propagated belief over continuous variables, which,
using chain rule, can be written as

b−[Xk]Cβ1:k−1
= P(xk|xk−1, ak−1)b[Xk−1]Cβ1:k−1

. (11)

Overall, the conditional belief (9) can be represented as
a factor graph (Kschischang et al. [20]). Note that each
realization of β1:k has a different factor graph topology
(observation factors are affected, motion model factors are
not). For a fixed β1:k with different class assignments C
the corresponding conditional belief factor graph topology
remains the same (geometric and semantic observation fac-
tors connect the same nodes), but semantic factors change,
according to class models.

Fig. 2 presents an example for 2 factor graphs, in which
k = 2, N = 2, and the DA hypothesis is that at time k = 1
the camera observes object 1 for the first graph and 2 for the
second, at time k = 2 the camera observes objects 1 and 2 for
both graphs. To efficiently infer Xk for every realization of C
and β1:k, state of the art incremental inference approaches,
such as iSAM2 [21] can be used. The joint posterior from
Eq. (4) can thus be maintained following Eq. (5) as a set
of continuous beliefs b[Xk]Cβ1:k

conditioned on the discrete
variables β1:k and C each represented with a factor graph,
along with their corresponding component weights wCβ1:k

,
describing the marginal belief over discrete variables. In the
next section, we describe how the latter can be calculated.

B. Marginal Belief Over Discrete Variables: wCβ1:k

To compute the DA and class realization weight wCβ1:k
we

marginalize over all continuous variables:

wCβ1:k
≡P(C, β1:k | Hk) =

∫
Xk

P(Xk, C, β1:k|Hk)dXk. (12)

x0 x1 x2

xo1 xo2

(a)

x0 x1 x2

xo1 xo2

(b)

Fig. 2: A toy example for two factor graphs in our approach, each for a different data
association realization. The edges that connect between camera poses correspond to
motion model P(xk|xk−1, ak−1). The edges that connect directly between camera
and object poses correspond to the measurement model (10) for both semantic and
geometric measurements. Thus a viewpoint-dependent semantic measurement model
results in geometric constraints on robot-to-object relative pose.

Using Bayes law, we can expand the above as follows:

P(Xk, C, β1:k | Hk)=
η · P(Zk | Xk, C, β1:k) · P(Xk, C, β1:k|H−k )

(13)

where η = P(Zk | H−k )−1 is a normalization constant and
the joint measurement likelihood P(Zk | Xk, C, β1:k) can be
explicitly written as in Eq. (10).

We further expand P(Xk, C, β1:k|H−k ) using chain rule:

P(Xk, C, β1:k|H−k ) = P(βk|β1:k−1,Xk, C,H−k ) ·
· P(xk|xk−1, ak−1) · P(Xk−1, C, β1:k−1 | Hk−1),

(14)

where P(Xk−1, C, β1:k−1|Hk−1) =∑
wCβ1:k−1

b[Xk−1]Cβ1:k−1
is the prior belief calculated

at time k − 1 and represented as a set of continuous belief
components along with corresponding weights as described
above. The term P(βk|β1:k−1,Xk, C,H−k ) from Eq. (14) is
the object observation model that represents the probability
of observing a scene given a hypothesis of camera and
object poses. In this paper we use a simple model that
depends only on camera and object poses at current time
step, thus it can be written as P(βk | xk,X oβk), where
X oβk

.
= {xoβk,i}

nk
i=1. If the model predicts observation of all

objects corresponding to βk then P(βk | xk,X oβk) is equal
to a constant, otherwise it is zero.

Plugging the above into Eq. (12) yields a recursive rule
for calculating component weights at time k

wCβ1:k
= η ·

∫
Xk P(Zk|Xk, C, βk) · P(βk|xk,X oβk)·
·b−[Xk]Cβ1:k−1

wC1:k−1 dXk.
(15)

The normalization constant η (from Eq. (13)) does not
depend on variables and cancels out when weights are
normalized to sum to 1. It is therefore dropped out in
subsequent calculations. Note that the realization weight
from the previous time step wCβ1:k−1

is independent from Xk,
and thus can be taken out of the integral. Recalling Eq. (10),
the continuous variables participating in P(Zk | Xk, C, β1:k)
are xk and X oβk . Those variables are participating also
in P(βk | xk, xok). As b−[Xk]Cβ1:k−1

is Gaussian, all other
continuous variables can be marginalized easily. On the other
hand, xk and X oβk must be sampled because of the object
observation model P(βk | xk,X ok ), which is commonly not
Gaussian. If the observation model predicts that the objects
will not be observed for most of the samples, then wCβ1:k



will be small and likely to be pruned. We can express the
realization weight as follows:

wCβ1:k
∝ wCβ1:k−1

∫∫
xk,Xoβk

P(Zk | xk,X oβk , C, β1:k) ·

· P(βk | xk,X oβk) b−[xk,X oβk ]Cβ1:k−1
dxk dX oβk ,

(16)

where:

b−[xk,X oβk ]Cβ1:k−1

.
= P(xk,X oβk |C, β1:k−1,H−k ) =∫

X−k \{xk,Xoβk}
b−[Xk]Cβ1:k−1

d
{
X−k \ {xk,X

o
βk
}
}
.

(17)

The viewpoint dependent classifier model contributes to data
association disambiguation by acting as reinforcement or
contradiction to the geometric model. If both ’agree’ on the
poses’ hypothesis, wCβ1:k

will be large relative to cases where
both ’disagree’.

Next, we provide an overview of the inference scheme,
then address computational aspects.

C. Overall Algorithm

The proposed scheme is outlined in Alg. 1. For every time
step we are input the prior belief P(Xk−1, C, β1:k−1 | Hk−1)
represented following Eq. (5) as a set of weights
wCβ1:k−1

.
= P(C, β1:k−1 | Hk−1) and corresponding con-

tinuous (Gaussian) belief components b[Xk−1]Cβ1:k−1

.
=

P(Xk−1 | C, β1:k−1,Hk−1). In our implementation we main-
tain a separate factor graph for each such component. We
also obtain an action ak−1 and observations Zk, sepa-
rated into geometric Zgeok , and semantic Zsemk . We prop-
agate each prior belief component using the motion model
P(xk | xk−1, ak−1) (step 3). Each component then splits to
a number of subcomponents, one for each possible assign-
ments of data associations βk at current time (generally a
vector of length nk). Procedure PropWeights at step 5
computes the normalized weight of each subcomponent via
Eq. (16) as a product of the component (prior) weight wCβ1:k−1

with an update term comprising the measurement likelihood
P(Zk | xk,X oβk , C, β1:k) (both geometric and semantic, see
Eq. (10)) and object observation model P(βk | xk,X oβk),
averaged over the propagated belief b−[xk,X oβk ]Cβ1:k−1

from
Eq. (17). In step 7 we prune low-weight subcomponents
by setting their weights to 0 and re-normalizing remaining
weights to 1, in an approximation to true posterior (other
pruning strategies are equally possible). In step 11 we up-
date the posterior for non-zero weight subcomponents using
current measurements. Finally, we return posterior as a set
of Gaussian components and corresponding weights.

We next address aspects of computational tractability of
the scheme.

D. Computational Complexity and Tractability

With M candidate classes, and N objects, the number of
possible class realizations, and consequently initial number
of belief components, is MN . At time step k each prior

Algorithm 1 Data Association-Aware Mapping and Local-
ization. Inference at time k
Input: Prior belief P(Xk−1, C, β1:k−1 | Hk−1),

observations Zk = (Zgeo,Zsem), action ak−1

1: for every component β1:k−1, C s.t. wCβ1:k−1
> 0 do

2: . Propagate component according to motion model
3: b[X−k ]Cβ1:k−1

← P(xk|xk−1, ak−1) · b[Xk−1]Cβ1:k−1

4: . Propagate weights Eq. (15), Eq. (16)
5: wCβ1:k

← PROPW.
(
b[X−k ]Cβ1:k−1

, wCβ1:k−1
,Zk

)
6: . Prune low-probability components
7: wCβ1:k

← PRUNEANDNORMALIZE(wCβ1:k
)

8: . Propagate non-zero weight components
9: for β1:k, C s.t. wCβ1:k

> 0 do
10: . Add observation factors, Eqs. (9), and (10)
11: b[Xk]Cβ1:k

← b[X−k ]Cβ1:k−1
· P(Zk | Xk, C, βk)

12: end for
13: end for
14: return P(Xk, C, β1:k | Hk) ≡ {(b[Xk]Cβ1:k

, wCβ1:k
)}

1: procedure PROPWEIGHTS(b[X−k ]Cβ1:k−1
, wCβ1:k−1

,Zk)
2: for every possible assignment of βk do
3: . Sample current poses by Eq. (17)
4: Sample {x(i)

k ,X oβk
(i)}nsi=1 ∼ b−[xk,X oβk ]Cβ1:k−1

5: . Calculate update factor and propagate Eq. (16)

6: ψ ←(1/ns)·
ns∑
i=1

P(Zk, βk |x(i)
k ,X oβk

(i), C, β1:k−1)

7: w̃Cβ1:k
← wCβ1:k−1

· ψ
8: end for
9: . Normalize weights and return

return wCβ1:k
← w̃Cβ1:k

/
∑
βk
w̃Cβ1:k

10: end procedure

1: procedure PRUNEANDNORMALIZE(wCβ1:k
)

2: for β1:k, C s.t. wCβ1:k
< THRESHOLD do

3: w̃Cβ1:k
← 0

4: end for
return wCβ1:k

← w̃Cβ1:k
/
∑
βk
w̃Cβ1:k

5: end procedure

component splits into up to Nnk subcomponents as each
measurement can in general be associated to any scene
object. The maximum number of components at time k
is thus MN ·

∏k
j=1N

nj = O
(
MN ·Nψ·k) if ψ is an

upper bound on nk, making the approach computation-
ally intractable in theory without pruning. In practice, as
observed by [3], the number of components that need to
be accounted for is limited by the belief, and is much
smaller than the theoretical maximum, with the rest getting
negligible weights that can be safely pruned under any
scheme. Further, our empirical results suggest that semantic
information added through the viewpoint-dependent factors
leads to even stronger disambiguation than observed in DA-
BSP (which uses only geometric information), both in data
association and localization, resulting in smaller number of
non-negligible weights.



Additionally, we hypothesize that classification uncertainty
is in practice usually limited to only a few classes, and
thus would not cause a computational bottleneck even with
numerous candidate classes. One can further avoid explicitly
maintaining the initially exponential number of components
(MN ) by noting that the classes of objects that were not
observed yet under an association hypothesis β1:k do not
participate in the inference process for that belief component,
and thus do not need to be maintained separately. That
is, for two class realizations C and C ′, if Cβ1:k

= C ′β1:k

with Cβ1:k

.
= {∀1≤j≤k, i cβj,i} (i.e. classifications for all

associated objects are the same) and C¬β1:k
6= C ′¬β1:k

(i.e.
realizations differ on classifications for objects that do not
participate in β1:k), then wC

′

β1:k
= wCβ1:k

(assuming uninfor-
mative prior on classes) and b[Xk]Cβ1:k

= b[Xk]C
′

β1:k
(always),

without need to compute or maintain those separately.
Finally we note that parts of Alg. 1 can be readily par-

allelized (”embarrasingly parallel”), thanks to computations
being independent across components and wide availability
of massively parallel processors (e.g. GPUs), contributing to
its practical applicability.

V. EXPERIMENTS

In this section we evaluate the performance of our ap-
proach in a 2D simulation and demonstrate the advantage
of using a viewpoint dependent classifier model for disam-
biguating between DA realizations and improving inference
accuracy. Our implementation uses the GTSAM library [22]
with a Python wrapper; all experiments were run on an Intel
i7-7700 CPU running at 2800 GHz and with 16GB RAM.

We consider a scenario where the robot navigates in an
uncertain perceptually aliased environment represented by a
set of scattered objects of the same class, i.e. objects differ
in their position and orientation. In this scenario M = 2
and N = 6, thus the number of possible class realizations is
MN = 64. Fig. 3a shows the ground truth object poses and
robot trajectory.

The prior (3) comprises a highly uncertain initial robot
pose, and an uninformative prior on object classes. Object
poses are assumed to be known up to a certain accuracy
(i.e. uncertain map). The prior covariance off the objects
is Σo = diag(0.05, 0.05, 0.5 · 10−3), and initial robot pose
is Σp = diag(100, 100, 0.04). The process and geometric
measurement covariance matrices are Σw = diag(0.75 ·
10−3, 0.75 · 10−3, 0.25 · 10−3) (corresponds to spatial co-
ordinates and orientation), and Σgeov = diag(0.1, 0.05)
(corresponds to range and bearing).

The semantic measurement model (2) is defined as:

hc(c = 1, θ) =

[
α sin2(θ/2) + (1− α)
α− α sin2(θ/2)

]
(18)

where θ is the relative angle from the object to camera,
calculated from the relative pose xrelk

.
= xk 	 xo. This

chosen model represents a mirror symmetrical object (e.g. a
car) with a parameter α that corresponds to the viewpoint
dependency ’strength’, i.e. ∂hc

∂θ values are larger when α

increases (for computation details, see [16]). We assume the
classifier scores are independent from range from camera
to object as the observations are cropped from bounding
boxes, and unless the camera is very close to the object the
perspective distortion is negligible. In practice, the classifier
model can be learned from images of an object from different
viewpoints with corresponding classifier outputs via a neural
network or GP for example. The measurement covariance

matrix Σc
.
= (RTR)−1 is defined as R = K

[
1 −0.5
0 1

]
.

We note that in general, also Σc can be viewpoint-dependent
[15], [16]. The parameters α and K are constants and take
the values α = 0.25 and K = 15 by default. We sample
measurements from our motion, geometric, and semantic
models.

Further, we sample 1000 sets of xk and xoβk for each
computation of wCβ1:k

, see procedure PROPWEIGHTS in
Alg. 1, and compute them as shown in Eq. (16). At each
time k we prune components with weight w below thresh-
old {wk}max

150 ≤ w, where {wk}max is the highest weight
component at time k.

We compare performance of our approach that utilizes
semantic observations along with a viewpoint-dependent
classifier model against an alternative that does not use this
information, with the latter roughly corresponding to the
passive instance of DA-BSP [3]. To quantify performance as
a function of α we compare between the following metrics:

1) Entropy over data association weights: for Nk non-
pruned weights {wi}Nki=1 we compute the entropy
H(w) with H(w)

.
= −

∑Nk
i=1 wi log(wi).

2) Determinant of position covariance det(Σ) of xk for
the highest weight realization at each time k.

3) Estimation error x̃wmax , which is the Euclidean dis-
tance from ground truth to highest weight estimation
for the last pose.

4) Estimation error x̃w−avg , which is the weighted aver-
age of all estimation errors for the last pose.
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Fig. 3: (a) An example scenario with ground truth camera trajectory, represented in
terms of camera poses (green line is the camera heading) and objects O1 to O6 (green
dots indicate position, orientation is not shown). (b) Multiple sampled paths for the
statistical study, each path realization is presented with different color.

Fig. 4 shows results of an example scenario for differ-
ent time steps, comparing between using the viewpoint-
dependent classifier model (middle row) and without seman-
tic information (upper row), essentially utilizing passive DA-
BSP [3]. At each time k, the plots show the mixture posterior
P(xk|Hk) over camera pose xk, calculated from (6), where



each component is a Gaussian, thus represented by mean
and covariance. Estimated camera poses are shown in red
and blue lines, where the blue line represents the camera
orientation. Components with higher weight are shown with
thicker covariance ellipse lines. To reduce clutter, the poste-
rior over the rest of the continuous variables, i.e. object poses
and past robot poses, is not shown. Additionally, the plots
show the ground truth trajectory (from Fig. 3a) of the robot.
The bottom row reports the probabilities of DA hypotheses
from (8) for different time instances for both compared cases.
The correct association is marked with a green circle.

As seen from the upper row of Fig. 4, inference with-
out incorporating viewpoint-dependent semantic information
results in the first time steps in multiple DA realizations
with similar weights. The reason is that given only geometric
range and bearing measurements without observing all the
objects, inference results can be interpreted in multiple ways,
i.e. perceptually aliased (see Fig. 4i). Only at time k = 25
the DA was disambiguated once the camera observed objects
O1 and O2.

In contrast, utilizing a viewpoint-dependent classifier
model admits faster DA disambiguation, as shown in the
bottom row of Fig. 4. In particular, already at time k = 1 the
posterior P(xk|Hk) has only two non-negligible components,
while at time k = 5 there is a single DA realization with
significant weight. This shows an improvement over Fig. 4b
where there are multiple DA realizations with significant
weight when not using the classifier model.

The bottom row in Fig. 4 presents the realization weights
for the times k = 1, 5, 15, 25, and compare between weights
without and with classifier model. For each realization β1:k,
we present P(β1:k | Hk) after pruning without classifier
model as a blue bar, and with as a red bar. If the bar is
missing, then P(β1:k | Hk) = 0. In all sub-figures the
classifier model reduces the number of non pruned DA
realizations, and for time k = 15 and k = 25 the DA is
disambiguated with the classifier model. We observe more
DA realizations when the classifier model is not used, and
at time k = 15 the DA with a classifier model fully
disambiguated.

Further, we quantify the performance improvement due to
the viewpoint-dependent classifier model in a statistical study
by sampling multiple ground truth tracks in the scenario,
while keeping the same landmarks. The sampled tracks are
shown in Fig. 3b. For this study, we sampled 50 different
tracks with 10 time steps of path length, and performed
a statistical analysis on the performance parameters. In all
paths, the starting position is identical.

The results of this study are shown in Fig. 5, which shows
average over each of the mentioned metrics (H(w), det(Σ),
x̃wmax , x̃w-avrg). In that figure we also study sensitivity
to α, which controls the level of viewpoint-dependency
in the considered classifier model (18). The plots show a
significant improvement of utilizing a classifier model, both
for DA disambiguation and inference where the estimation
error (Fig. 5c, 5d) and uncertainty (Fig. 5b) are lower

when the model is utilized. From all the plots, the most
notable performance increase occurs for DA disambiguation
(Fig. 5a), where stronger viewpoint dependence assists more
significantly; Overall, Fig. 5 presents a strong advantage
for utilizing a viewpoint classifier model in the presented
scenario.

VI. CONCLUSIONS

We presented a recursive Bayesian approach for local-
ization and semantic mapping in ambiguous environments,
which maintains and updates incrementally a hybrid belief
over camera and object poses, and classification and data
association hypotheses. As a key contribution, we incor-
porated semantic observations and a viewpoint dependent
classifier model within the probabilistic formulation and
showed these contribute both to data association disam-
biguation and inference over continuous variables (camera
and objects poses). Our simulation results demonstrate the
improved performance due to using the viewpoint-dependent
classifier model in highly aliased scenarios, yielding faster
data association disambiguation, improved localization ac-
curacy and lower estimation uncertainty. Future work will
examine the proposed method in larger scenarios and real
world experiments.
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(i) k = 1 (j) k = 5 (k) k = 15 (l) k = 25

Fig. 4: (a) - (h): Posterior over robot poses of all non-pruned realizations for times k = 1, 5, 15, 25, without (first row) and with a classifier model (second row). Bolder lines
correspond to higher weights. Ground truth trajectory is shown in each of the plots (in terms of camera poses). (i)-(l): Corresponding posterior over data association hypotheses,
P(β1:k | Hk), at each time. Blue bars are without classifier model, red bars are with. Green circles represent ground truth data associations.
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Fig. 5: Effects of different α values on DA disambiguation ability, estimation
uncertainty and accuracy in terms of the metrics (H(w), det(Σ), x̃wmax , and
x̃w−avg), averaged over 50 sampled tracks (see Fig. 3b).
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