
Multi-Robot Autonomous
Classification Under Uncertainty

Vladimir Tchuiev

Multi-Robot Autonomous
Classification Under Uncertainty

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Vladimir Tchuiev

Submitted to the Senate
of the Technion — Israel Institute of Technology

Iyar 5781 Haifa April 2021

This research was carried out under the supervision of Assoc. Prof. Vadim Indelman,
in the Faculty of Aerospace Engineering.

Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s doctoral
research period, the most up-to-date versions of which being:

V. Tchuiev and V. Indelman. Inference Over Distribution of Posterior Class Probabili-
ties For Reliable Bayesian Classification and Object-Level Perception. IEEE Robotics and
Automation Letters (RA-L), 3(4):4329–4336, 2018.
V. Tchuiev, Y. Feldman, V. Indelman. Data Association Aware Semantic Mapping and
Localization via a Viewpoint-Dependent Classifier Model. classificators. In IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS). 7742–7749, IEEE, October 2019.
V. Tchuiev and V. Indelman. Distributed Consistent Multi-Robot Semantic Localization
and Mapping. IEEE Robotics and Automation Letters (RA-L), 5(3):4649–4656, 2020.
V. Tchuiev and V. Indelman. Epistemic Uncertainty Aware Localization And Mapping For
Inference and Belief Space Planning. Submitted to Artificial Inteligence Journal (AIJ), 2021.

Acknowledgements

I would like to thank my advisor Assoc. Prof. Vadim Indelman for his guidance and
support in my 4 years of PhD research with his knowledge and insights, Yuri Feldman
for his contributions and insights for the paper presented in IROS 2019 conference,
Technion’s Aerospace Engineering faculty for it’s financial support during all this time,
the ANPL team for their part with insightful discussion that contributed to the research.
Finally, I would like to thank my parents Olga and Ivgeny Tchuiev for continual moral
support during my PhD work.

The Technion’s funding of this research is hereby acknowledged.

Contents

List of Figures

Abstract 1

1 Introduction 3
1.1 Motivation . 3
1.2 Thesis Contributions . 5
1.3 Thesis Outline . 6

2 Literature Survey 7
2.1 Classification and Deep Learning . 7
2.2 Single and Multi-Robot SLAM . 8
2.3 Active Classification Under Uncertainty 11

3 DA Aware SLAM Using a Viewpoint Dependent Classifier Model 15
3.1 Preliminaries . 15
3.2 Approach . 18

3.2.1 Conditional Belief Over Continuous Variables: b[Xk]Cβ1:k
. 19

3.2.2 Marginal Belief Over Discrete Variables: wCβ1:k
. 20

3.2.3 Overall Algorithm . 21
2.D Computational Complexity and Tractability 22

3.3 Experiments . 23

4 Distributed Semantic SLAM with Viewpoint Dependent Classifier
Model 29
4.1 Notations and Problem Formulation . 29
4.2 Approach . 31

2.A Local Hybrid Belief Maintenance 31
2.B Distributed Hybrid Belief Maintenance 32
2.C Communication Between Robots 37
2.D Double Counting of Discrete Random Variables 40

4.3 Experiments . 42
3.A Simulation Setting, Compared Approaches and Metrics 42

3.B Simulation Results . 44
3.C Experiment Setting . 48
3.D Experimental Results . 50

5 Model Uncertainty Aware Sequential Inference of Posterior Class
Probability 55
5.1 Notations and Problem Formulation . 55
5.2 Approach . 57

2.A Inference over the Posterior P(λk|z1:k) 59
2.B Sub-Sampling Inference . 61

5.3 Experiments . 61
3.A Simulated Experiment . 62
3.B Experiment with Real Images . 65

6 Epistemic Uncertainty Aware Semantic Localization and Mapping for
Inference and Belief Space Planning 71
6.1 Preliminaries . 72

1.A Simultaneous Localization and Mapping (SLAM) 72
1.B Distribution Over Class Probability Vector 73
1.C Distribution Over Posterior Class Probability Vector 74
1.D Belief Space Planning (BSP) . 76
1.E Problem Formulation . 77

6.2 Approach Overview . 77
6.3 Approach- Inference . 78

3.A Viewpoint Dependent Classifier Uncertainty Model 78
3.B Multi-Hybrid Inference . 80
3.C Joint Lambda Pose Inference . 86

6.4 Approach- Planning . 93
4.A Measurement Generation . 94
4.B Multi-Hybrid Planning (MH-BSP) 95
4.C Joint Lambda Pose Planning (JLP-BSP) 96
4.D Reward Functions Over b[λ,X] 99
4.E Information-Theoretic Reward Over b[λ] 100

6.5 Simulation and Experiments . 109
5.A Compared Approaches and Metrics 109
5.B Simulation . 110
5.C Experiment . 126

7 Conclusion and possible future research 131
7.1 Possible Future Research . 132

A Communication Tables for Distributed Semantic SLAM 133
A.1 Communication Table for Distributed Semantic SLAM Simulation . . . 133
A.2 Communication Table for Distributed Semantic SLAM Experiment . . . 135

Hebrew Abstract i

List of Figures

3.1 Viewpoint dependency of classification scores. 17
3.2 Hybrid belief factor graph toy example. 20
3.3 Ground truth paths for hybrid belief. 24
3.4 Simulation results for a single path; Pose estimations and DA hypotheses. 26
3.5 Weight entropy and pose estimation as a function of α parameter of

classifier model. 27

4.1 Example for double counting of discrete random variables. 42
4.2 Distributed hybrid-belief: simulation ground truth and pose estimation

results. 43
4.3 Distributed hybrid-belief: simulation MSDE, classification results and

continuous belief realizations. 44
4.4 Additional simulation results 1. 45
4.5 Additional simulation results 2. 46
4.6 Additional simulation results 3. 46
4.7 Additional simulation results 4. 47
4.8 Distributed hybrid-belief: computation time comparison. 47
4.9 Distributed hybrid belief: experiment images. 49
4.10 Distributed hybrid belief: Classifier models for class 1. 49
4.11 Distributed hybrid belief: Classifier models for class 2. 49
4.12 Distributed hybrid belief: Classifier models for class 3. 49
4.13 Distributed hybrid belief: experiment ground truth and pose estimation

results. 50
4.14 Distributed hybrid belief: experiment MSDE, classification results and

continuous belief realizations. 51
4.15 Additional experimental results 1. 51
4.16 Additional experimental results 2. 52
4.17 Additional experimental results 3. 52
4.18 Additional experimental results 4. 53
4.19 Distributed hybrid-belief: experiment computation time comparison. . . 53

5.1 Example case where posterior model uncertainty decreases with classifier
models. 60

5.2 Example case where posterior model uncertainty increases. 60
5.3 Classifier models used in posterior model uncertainty simulation. 63
5.4 Posterior class probability simulation results. 64
5.5 Simplex representation of posterior model uncertainty and class proba-

bility in simulation. 65
5.6 Image examples for posterior model uncertainty inference experiment. . 65
5.7 Simplex representation for the expriment classifier models. 67
5.8 Posterior class probability and model uncertainty experimental results. . 68
5.9 Computational time comparison between AP and SS, with SS accuracy

graph as a function of number of points. 69

6.1 Illustration of viewpoint dependency with epistemic uncertainty. 74
6.2 The four archetypes of belief over posterior class probability. 75
6.3 Classifier uncertainty model illustration. 80
6.4 Factor graph for MH, single object. 85
6.5 Factor graph for JLP. 90
6.6 Factor graph for MH, two objects. 92
6.7 A diagram of aspects considered in Sec. 6.4. 93
6.8 Entropy of Logistical Gaussian distribution. 106
6.9 Entropy of Dirichlet distribution. 107
6.10 Comparisons between Dirichlet and Logistical Gaussian distributions. . 108
6.11 The ground truth of the scenario in Sec. 5.B. 111
6.12 Classifier uncertainty model from Sec. 5.B 111
6.13 MSDE results for inference scenario. 113
6.14 Average MSDE and computational time comparisons for inference scenario.113
6.15 Sampled environments for inference statistical study. 113
6.16 Average MSDE and time comparisons for inference statistical study. . . 114
6.17 Visualization of classifier model where JLP assumption does not apply. . 115
6.18 PDF value in a case where the JLP assumption does not apply. 115
6.19 MSDE results for the case where JLP assumption doesn’t apply. 116
6.20 Empirical entropy reward study ground truth. 116
6.21 2D simplices, MH. 117
6.22 2D simplices, JLP. 118
6.23 Reward distribution, MH. 118
6.24 Reward distribution, JLP. 119
6.25 Single object planning: ground truth and motion primitives. 120
6.26 Single object planning: computed trajectories. 120
6.27 Single object planning: entropy comparison. 121
6.28 Single object planning: MSDE comparison. 121
6.29 Single object planning: bar graph of classification accuracy. 122
6.30 Single object planning: computational time comparison. 122

6.31 Multiple object planning: ground truth and motion primitives. 123
6.32 Multiple object planning: computed trajetories. 124
6.33 Multiple object planning: entropy comparison. 124
6.34 Multiple object planning: Average MSDE comparison. 125
6.35 Multiple object planning: bar graph for object classification accuracy. . 125
6.36 Multiple object planning: computation time. 125
6.37 Statistical study: entropy and MSDE results. 126
6.38 [Experiment: example images with bounding boxes.]Example images

of the Active Vision Dataset, home 005. The red boxes represent the
bounding boxes for the objects, and the notation Ox represent the x’th
object. 127

6.39 Experiment: BigBIRD dataset example images. 127
6.40 Experiment: paths created by planning. 128
6.41 Experiment: MSDE and entropy results. 129
6.42 Expriment: bar graph for the probability of correct class. 129
6.43 Experiment run time. 130

Abstract

Object classification is an important task in aerospace and robotics. Although in re-
cent years the field saw many advances with the introduction of deep-learning-based
approaches, reliable classification remains a challenge. In this thesis, we address two
challenges in object classification: classification aliasing for certain relative viewpoints
between object & camera, and the epistemic uncertainty of the classifier. We address
both of those challenges in four works. The first introduces a semantic SLAM approach
that maintains a hybrid belief over objects and classes, and leverages the coupling be-
tween them to assist in data association disambiguation and improve classification and
localization performance. In the second work we maintain a hybrid belief in a multi-
robot distributed setting while addressing double-counting for both continuous and
discrete states. The first two works model the coupling between poses and classes
via a viewpoint dependent classifier model. The third work proposes a sequential
classification approach that reasons about posterior epistemic, or model uncertainty,
to improve classification performance. The fourth work proposes two methods that
both address classification aliasing and posterior epistemic uncertainty: Multi-Hybrid
(MH) and the more computationally efficient Join Lambda Pose (JLP). Eventually,
we extend those methods to an active belief-space-planning setting, while utilizing an
information-theoretic cost for the posterior class probability. We used a viewpoint de-
pendent classifier uncertainty model that predicts epistemic uncertainty from different
viewpoints both for inference and planning. The methods are evaluated both in sim-
ulation and experiments and demonstrated increased performance in classification and
localization.

1

2

Chapter 1

Introduction

1.1 Motivation

Classification and object recognition is a fundamental problem in robotics and com-
puter vision, which plays a significant role in numerous problem domains and applica-
tions, including semantic mapping, object-level simultaneous localization and mapping
(SLAM), active perception and autonomous driving. Yet, reliable and robust classifica-
tion in uncertain and ambiguous scenarios is challenging, as object classification is often
viewpoint dependent, influenced by environmental visibility conditions such as lighting,
clutter and occlusions, and limited by the classifier’s training set. In recent years, with
modern implementation of deep learning methods, classification performance has vastly
improved from previously used methods. In closed testing environments the classifiers
perform even better than humans.

Despite the advancements, reliable classification still remains a challenge and the use
in real-life applications still remains unreliable. Once the classifier leaves the training
data it performs worse, especially when encountering unknown scenes and objects that
the training set did not account for. Quantifying this uncertainty opens the possibility
of safer classification, and eventually make decision making based of this classification
more reliably.

In this work, we focus on two key challenges for object classification. The first is
classification aliasing: object often appear different from certain viewpoints, with vary-
ing shapes and colors. Moreover, distinguishing between different object classes may
prove impossible for certain types of objects from particular relative viewpoints. In
addition, object and camera pose may be uncertain as well. A possible solution we con-
sider is modeling the classification scores given the object’s candidate class and relative
viewpoints between camera and object, where the poses are inferred probabilistically
via semantic SLAM. Another solution is integrating both classification and localization
data from multiple images into posterior data. We model this viewpoint dependency
via a viewpoint dependent classifier model; This model, in addition to assisting in
accurate classification, also assists in improving SLAM performance. Previous works

3

either used most-likely class semantic measurements, or utilized a viewpoint dependent
classifier model in a setting with solved localization. In contrast, we consider semantic
measurements of probability vectors in a setting with unknown poses, and infer both
the poses and the classes in an object based SLAM setting. We utilize this classifier
model both in a single robot scenario to assist in data association disambiguation, and
in a distributed multi-robot setting. By leveraging the coupling between poses and
classes via a hybrid belief, we improve classification and localization performance.

The second challenge is reasoning about test data that is not present in the classi-
fier’s training. As such, the classifier, in the presence of such data, provides unreliable
results that may induce catastrophic failures in systems that rely on accurate classifi-
cation, such as autonomous vehicles. Identifying when the classifier provides reliable
classification scores is crucial, and reasoning about the accumulated epistemic uncer-
tainty proves beneficial both for classification and subsequent decision making. While
existing works that reason about epistemic uncertainty in classification, are doing so
on a single image bases, while works that address sequential classification do not con-
sider epistemic uncertainty. In this work we bridge the gap and propose epistemic-
uncertainty-aware sequential classification methods; First for a focused case where we
do not reason about localization and do so for a single object, and then expand it to
a case with unknown localization, integrating epistemic uncertainty inference within a
semantic SLAM framework.

As we established, integrating information from multiple sources is highly beneficial.
Furthermore, autonomous vehicles are often not alone within the environment they are
operating with. Multiple agents within the environment may provide coverage that
a single vehicle is not able to. As such, integrating information collected from all the
vehicles proves beneficial and provides superior performance compared to using a single
vehicle. There are three common frameworks for multi-agent systems: centralized,
decentralized, and distributed. With centralized frameworks, all agent communicate
with a central processing unit that processes the information sent by every agent.
Decentralized systems spread the processing over multiple separate processing units.
In distributed systems each agent is independent and autonomously integrates and
processes the information it receives from other robots. While planning distributed
systems is a the most challenging, such systems provide greater robustness, as the
agents within require sharing the information they gathered with others only when the
opportunity arises. As robots communicate between each other in distributed systems,
it must not count measurements more than once. Otherwise, they risk double counting
information which may lead to erroneous and overconfident estimations. Most works
about distributed semantic SLAM consider only reason about continuous variables,
subsequently addressing double counting only for continuous variables. Other works
that do reason about semantic measurements in distributed SLAM do so with most-like-
class measurements. In this work, we maintain a hybrid belief over poses (continuous)
and classes (discrete) in a distributed setting while utilizing a class probability vector

4

semantic measurements. In addition, we address double counting for both continuous
and discrete random variables.

Up to this point, we discussed addressing uncertainties in classification in a passive
setting, where the robot actions are determined by an outside source. The autonomous
setting, where the robot determines its actions. Autonomous navigation is a widely
researched topic, extending many fields such as autonomous vehicles. In particular,
object classification is key for application that require exploration of the surrounding
environment. To be fully autonomous, it must be able to make decisions based on
its measurement history, while accounting for different sources of uncertainty. The
planning under uncertainty problem can be formulated as a partially observed Markov
decision process (POMDP). One common approach for solving the POMDP problem
is belief space planning (BSP), where a probability density function is maintained over
the states; Each candidate action is evaluated by the induced evolution of the belief,
and the best action is chosen such it optimizes an objective function. BSP utilizes
known models to infer the next best action without the need of prior experience, unlike
e.g. reinforcement learning. Existing active classification approaches do not use BSP,
instead using reinforcement learning or other methods. In addition, those methods to
not consider epistemic uncertainty of the classifier. We, on the other hand, consider
the epistemic-uncertainty-aware semantic SLAM methods we developed, and extend
those to an active setting, while also considering an epistemic-uncertainty-aware reward
function.

1.2 Thesis Contributions

In this thesis we investigate approaches for passive and active classification, while con-
sidering viewpoint dependency and epistemic uncertainty. The main contributions of
this thesis are formulated as follows:

1. We tackle classification aliasing and localization uncertainty via a semantic SLAM
approach that maintains a hybrid belief over poses and classes. We utilize seman-
tic measurements of class probability vectors, and leverage the coupling between
poses and classes via a viewpoints dependent classifier model. For a single robot,
we use the classifier model to assist in data association disambiguation, and after-
wards extend the approach to a distributed multi-robot setting, while addressing
double counting both for continuous and discrete random variables, poses and
classes respectively.

2. We address classifier epistemic uncertainty in classification. We present meth-
ods for sequential classification that reason about posterior epistemic uncertainty
in the passive case. First, we address sequential classification in a focused case
without localization, then present two methods for addressing classification un-

5

certainty via both classification aliasing and epistemic uncertainty in a semantic
SLAM setting.

3. We address classifier epistemic uncertainty and classification aliasing in a BSP
setting; By planning over a novel epistemic-uncertainty-aware reward function,
we improve classification scores over existing approaches that do not reason about
classifier epistemic uncertainty. We utilize a viewpoint dependent classifier un-
certainty model for generating predicted epistemic-uncertainty-aware semantic
measurements for planning.

1.3 Thesis Outline

First, we survey the relevant literature in Chapter 2. The main content of the thesis is
split into four chapters:

1. Chapter 3: Data association aware SLAM using a viewpoint dependent classifier
model.

2. Chapter 4: Distributed semantic SLAM with viewpoint dependent classifier model.

3. Chapter 5: Model uncertainty aware sequential inference of posterior class prob-
ability

4. Chapter 6: Posterior classifier epistemic uncertainty aware semantic inference and
belief space planning.

The first two chapters address the viewpoint dependency of classifier scores. In
Chapter 3 we present an approach for using a viewpoint dependent classifier model
to assist in data association disambiguation and improve classification and localization
performance. In Chapter 4 we expand the approach presented in the prior chapter to
a distributed multi-robot system framework. The next two chapters address classifier
epistemic uncertainty. In Chapter 5 we present an approach for sequential classification
of a single object that reasons about epistemic uncertainty without considering local-
ization. In Chapter 6 we present two approaches that address viewpoint dependency
and epistemic uncertainty simultaneously, first for inference, and then expanding to a
BSP setting. In Chapter 7 we conclude and present possible directions for future work.

6

Chapter 2

Literature Survey

2.1 Classification and Deep Learning

In recent years deep learning based convolutional neural networks (CNNs) since in-
troduction produced vastly superior performance than anything came before that. A
modern CNN was introduced first by Krizhevsky et al. [1], AlexNet, that outperformed
every other classification algorithm (such as SVM) before that. Since then, many vari-
ations of CNNs were introduced that improved classification performance even further.
Notable architectures include VGG by Simonyan et al. [2], GoogLeNet by Szegedy et
al. [3], ResNet by He et al. [4], and CapsNet by Sabour et al. [5]. Amini et al. [6] presents
a dropout-based method that uses spatial for inferring epistemic uncertainty. Malinin
and Gales. [7] presented Prior Networks (PN), an approach for estimating predictive
uncertainty: both epistemic and aleatoric. SCOD by Sharma et al. [8] utilizes local
curvature of deep neural networks to produce epistemic uncertainty estimations. These
algorithms classify objects on a single image basis, but for more accurate classification
in real environment multiple images may be required.

Several sequential classification algorithms were developed in recent years. Coates
and Y. Ng [9] proposed a method that updates a posterior class probability by mul-
tiplying prior class probability with a new classification measurement, considering an
object detection problem. Omidshafiei et al. [10] mentions the Static State Bayes Fil-
ter (SSBF) algorithm that extends the work by Coats and Y. Ng for multiple possible
classes. It assumes the prior, posterior and likelihood all categorically distributed.
Patten et al. [11] used a method similar to SSBF in the context of active classifica-
tion. Atanasov et al. [12] proposed a method that updates categorically distributed
posterior pairs of candidate object classes and orientations. This approach utilizes a
viewpoint dependent observation model. Pillai and Leonard [13] proposed a monoc-
ular SLAM-aware object classification system. Omidshafiei et al. [10] developed the
hierarchical Bayesian noise inference (HBNI) algorithm. At each time step, the algo-
rithm updates class probabilities with the likelihood of the soft-max classifier output
modeled by Dirichlet distribution, with a noise parameter for each possible class. Mu

7

et al. [14] utilizes a Dirichlet prior and most likely classifier observations, while ad-
dressing the challenging problem of data association. Teacy et al. [15], and Feldman
& Indelman [16] utilized a Gaussian process viewpoint dependent classifier model to
assist in classification tasks. Kopitkov and Indelman [17] utilized a viewpoint depen-
dent classifier model, learned offline via deep learning, for probabilistic inference over
robot trajectory. While the above works address sequential classification, none of them
reason about uncertainty of classification results and viewpoint dependency between
poses and classification scores.

Recently, several works developed methods for computing epistemic uncertainty
for deep learning applications. Paass et al. [18] proposed Bootstrapping, where mul-
tiple classifiers are trained on the same training set. Grimmett et al. [19] suggested
using normalized entropy of class probability as classification uncertainty. However
this approach does not consider how certain the class probability itself is. Gal and
Ghahramani [20] [21] proposed utilizing neural network dropout to estimate epistemic
uncertainty for an input of a single image. Kendal and Cipolla [22] build upon these
works, utilizing dropout to compute uncertainty in CNN-based camera relocalization.
Both infer epistemic uncertainty from a single image input only. Mishkov and Julier [23]
compare between multiple methods to predict uncertainty in classifier output, using Hy-
brid Monte Carlo (HMS) as a baseline. They found that Stochastic Gradient Langevin
Dynamics (SGLD) and Dropout (see [21]) methods performed the best in terms of ac-
curacy. Furthermore, Kendal and Gal [24] analyze the major two types of uncertainty:
epistemic uncertainty or model uncertainty, and aleatoric uncertainty that captures
noise inherent in observations. Yet, these works consider classification given a single
image frame, as opposed to Bayesian sequential classification given multiple images
that we consider herein.

A related problem to object classification is object detection - indeed, first, one has
to detect there is an object, e.g. in the captured image(s), and only then attempt to
infer its class. Viola and Jones [25] presented a machine learning approach for object
detection via a series of classifiers to detect and use critical features within the image.
This algorithm was tested for face detection. Felszenszwalb et al. [26] detected objects
via a mixture of multiscale deformable part models. In the last few years Regional
Convolutional Neural Network (RCNN) were on the rise for object detection. Girshick
et al. [27] first proposed the R-CNN, and later works [28–30] improved upon it by
making it computationally faster.

2.2 Single and Multi-Robot SLAM

Simultaneous localization and mapping (SLAM) is the computational problem of in-
ferring a robot’s location in an unknown environment, while mapping it (referred to
as Full SLAM), or only utilizing landmarks to produce relative pose constraints (Pose
SLAM, see [31]). State of the art SLAM approaches resort to a smoothing formulation,

8

often expressing the problem in terms of graphical models, such as a factor graph [32].
In the graph based SLAM paradigm the problem is usually divided into two parts:
graph construction (front-end, see for example [33]) and graph optimization (back-end,
see for example [34]). The front-end is entrusted with processing raw measurements
(e.g. images), detecting features and tracking them across different frames, i.e. solving
the data association problem. The back-end process formulates appropriate constraints
given the tracked features, constructs the corresponding factor graph and performs
probabilistic inference to recover the SLAM solution. Several (back-end) approaches
for computationally efficient optimization were developed in recent years, such as in-
cremental smoothing and mapping (iSAM) [35] and iSAM2 [36]. A typical assumption
in SLAM approaches is that data association, e.g. feature correspondences, is given
and outlier-free. Such an assumption is less realistic in many real-world scenarios that
exhibit some level of perceptual aliasing. Indeed, incorporating incorrect constraints
(due to outliers) within the optimization can lead to catastrophic results. Optimiza-
tion approaches that attempt to be resilient to outliers overlooked by the front-end,
or alternatively, that reason about data association within inference, are under active
development by the research community [37].

SLAM approaches that reason about objects as landmarks, instead of traditionally
used 3D points, are referred to as object-based SLAM (see [38]). This approach requires
the robot to detect objects, generate measurements, and associate these measurements
to unique object identifiers that can be acquired for example by classification. As such,
object based SLAM is a problem that is coupled with the object classification problem
(see [14]). Compared to traditional SLAM solutions that use low level primitives (such
as image point features that correspond to 3D landmarks), object-based SLAM is much
less memory intensive, as it tracks significantly less landmarks. Moreover, it provides a
richer and more useful map of the perceived environment, enabling for example high-
level task specification and planning. Kostavelis and Gasteratos [39] provided a recent
survey of semantic mapping. Recently Gawel et al. [40] proposed the X-View algorithm,
a multi-view semantic localization system, with a graph-based approach for semantic
topologies. Nakajima et al. [41] proposed an efficient semantic mapping method with
geometric based incremental segmentation. Josifovski et al. [42] presented an approach
for pose estimation using a classifier model that utilizes 3D models. Wu et al. [43]
presented an approach for relative pose estimation from images of objects using a
neural network that is trained on synthetic data.

Data association of features or objects between images is a complex and important
problem for a variety of autonomous system applications (e.g. SLAM). Naturally, many
approaches were proposed to deal with this problem. An important early work is the
joint probability data association (JPDA) approach by Fortmann et al. [44], which
considers all possible options, therefore it is computationally slow and not practical.
Sunderhauf and Protzel [45] proposed an approach to detect faulty loop closures that
lead to erroneous data association in back-end optimization. Wong et al. [46] presented

9

a Dirichlet Process Mixture Model (DPMM) for data association for a partially observed
environment. Olson and Agarwal [47] proposed a robust approach that uses max-
mixture models. [48] classified measurements as coherent or not, thus predicting if
they will result in erroneous data association. Pathak et al. [49, 50] proposed a data
association aware belief space planning algorithm that models the belief as a Gaussian
Mixture Model (GMM). Recently few works addressed data association problem with
deep neural networks, specifically Long Short Term Memory (LSTM). Milan et al. [51]
presented a method based on LSTM neural network for data association, training it on
the MOTChallenge dataset. Farazi and Behnke [52] expended on the above work to
visually track and associate between identical robots using an LSTM based approach.

More recent works about data association include: Doherty et al. [53] presented
a semantic SLAM approach that represents data association hypotheses as multiple
nodes in a non-Gaussian sensor model. Berneiter et al. [54] proposed a semantic SLAM
approach for solving data association using multiple hypothesis trees. MHJCBB by
Wang and Englot [55] is a multi-hypothesis approach for solving data association in
SLAM that uses a modified joint compatibility branch and bound approach. Localiza-
tion uncertainty will be also considered, thus leading to a hybrid belief over continuous
(localization) and discrete (classification) variables. Hsiao et al. [56] presented MH-
iSAM2: a modification of iSAM2 that addresses multiple data association hypotheses.
Ok et al. [57] proposed ROSHAN, a object-based SLAM approach that is specifically
designed for high-speed navigation, and represents objects as ellipsoids. We aim to
create a data association scheme for classification for multiple objects, including dif-
ferentiating between them even if their underlying class is the same. Previous works
utilize only most likely class classifier output to address data association; in contrast,
we consider richer classifier output, that can lead to more reliable data association (e.g.
address cases of multiple objects with the same class in the environment).

The following are the most relevant works that present approaches for hybrid be-
lief inference. Segal and Reid [58] proposed a message passing algorithm to optimize
hybrid factor graphs for inference. The discrete-continuous graphical model (DC-GM)
approach by Lajoie et al. [59] performed inference on a hybrid factor graph that pro-
duces near-optimal estimates. Mu et al. [14] proposed a sampling based approach that
uses most likely class semantic measurements; this approach performs batch inference
using expectation maximization (EM). Bowman et al. [60] utilizes most likely class
and bounding box measurements, in addition to geometric measurements, to perform
SLAM and DA disambiguation using EM as well. The above approaches consider only
the most likely class and do not reason about viewpoint dependency of classification
results. In contrast, we utilize richer classifier output in conjunction with a viewpoint
dependent model to perform object level SLAM, while maintaining classification and
DA hypotheses.

Generally, more information allows better SLAM accuracy. Multi-agent systems
can provide significant performance boost over utilizing a single robot. There are mul-

10

tiple works addressing multi-robot SLAM, both for centralized and distributed systems.
Choudhary et al. [61] proposed passive multi-robot object based SLAM by using RGBD
cameras and a CNN object classifier. Cunningham et al. [62] proposed DDF-SAM (dis-
tributed data fusion smoothing and mapping) to avoid double counting by keeping two
maps for each robot: one is self created, other is constructed from neighbouring robots’
data. Later Cunningham et al. [63] proposed DDF-SAM 2.0 in which each robot keeps a
single map and avoids double counting by information downdating. Indelman et al. [64]
proposed a graph based method for distributed consistency and double counting avoid-
ance. This approach was then used in [65] in the context of three-view geometry based
distributed localization in unknown environments. While many works about SLAM
assume known data association, Indelman et al. [66] proposed an approach for dis-
tributed multi-robot SLAM with unknown data association by choosing the most likely
hypothesis from multiple options. Walls et al. [67] proposed a distributed geometric
SLAM approach that communicates factors between robots. Other approaches for ge-
ometric SLAM include Extended Kalman Filter (such as [68]) or Particle Filter based
methods (such as [69]). Choudhary et al. [70] presented an approach for distributed
semantic SLAM which communicates relative poses between robots and uses object
class information for data association.

Consistent estimation is a key issue in a distributed setup, with multiple approaches
proposed to address it. Bahr et al. [71] proposed a distributed algorithm for under-water
vehicles, with an approach for using all measurements without information loss. Indel-
man et al. [64] proposed a graph based method that calculated cross-covariance terms
that represent the correlation between measurements from different robots, utilizing it
for consistent estimation. Cunningham et al. [62] presented the DDF-SAM distributed
SLAM algorithm that avoided double counting by creating two maps for each robot:
local and global. The global map is updated with condensed local maps. A later work
by Cunningham et al. [63] introduced DDF-SAM2, where each robot maintains only
the global map. To avoid double counting, the old information during communication
is filtered out via down-dating by each robot. Brooks et al. [72] address the problem
of distributed information fusion from sensors about classifying and tracking a target.
These approaches consider continuous random variables. In contrast, we reason about
discrete variables as well.

2.3 Active Classification Under Uncertainty

The active classification problem was studied extensively in the computer vision com-
munity. Earlier works include, for example, Aloimonos et al. [73] for active vision, and
Connolly [74] for next-best view planner. Wilkers and Tsotsos [75] utilized a decision
tree based approach with line segmentation to move a robotic arm around an object.
Gao and Koller [76] proposed an active classification approach that utilizes multiple
classifiers. Holinger et al. [77] proposed a Bayesian active classification scheme for

11

underwater applications. Singh et al. [78] proposed the eSIP planning algorithm for
multi-robot active classification. Works by Teacy et al. [15] and Velez et al. [79] pro-
pose approaches that utilize a viewpoint dependent classifier model to update posterior
class probability. Guruau et al. [80] proposed an approach that predicts the classifi-
cation failure probability for active planning. Other works incorporated probabilistic
models into active vision systems [81–83]. Liu et al. [84] proposed an approach that uti-
lizes both geometric and semantic measurements for planning using a sampling based
method. Wandzel et al. [85] proposed OO-POMDP for object-oriented planning, which
factorizes the robot’s belief into independent distributions, allowing for more efficient
planning. We note, however, that the above approaches do not consider localization
and epistemic uncertainty.

Several planning approaches that do reason about epistemic uncertainty were pro-
posed; Faddoul et al. [86] reasoned about epistemic uncertainty in MDP and POMDP
transition matrices, creating a framework for decision making. Hayashi et al. [87] pro-
posed an approach that actively trains uncertain dynamic models via neural network
priors. These works do not consider epistemic uncertainty in the context of classifica-
tion. Lutjens et al. [88] presented a reinforcement learning approach that reasons about
epistemic uncertainty for obstacle avoidance with known object poses. The approach
utilized both MC dropout and bootstrapping for extracting epistemic uncertainty from
measurements. On the other hand, we deal with classifier epistemic uncertainty with
unknown poses.

The problem of planning under uncertainty, and in particular in uncertain/unknown
environments, is an instantiation of a Partially Observable Markov Decision Process
(POMDP). Calculating an optimal global solution, however, is computationally in-
tractable [89]; thus, approaches that trade-off reduced computational complexity and
sub-optimal performance must be considered. A common approach is BSP, that typi-
cally considers state transition and observation models to be known. The environment
in general is only partially observable, thus due to stochasticity we must reason about
the ”belief space”, i.e. the space of all possible distributions over the state space. BSP
typically considers state transition and observation models to be given. Van Der Berg
et al. [90] proposed a locally optimal motion planning algorithm in the belief space.
While typically the belief states are assumed Gaussian, Platt et al. [91] presented an
approach that relaxes this assumption. Platt et al. [92] proposed a BSP algorithm
for an underactuated agent. Using the belief space, we can plan a trajectory that
minimizes a cost function, usually aiming for the most informative measurements. Re-
cently BSP was considered in the context of active SLAM, where the environment is
unknown or uncertainty a-priori. While previous approaches assumed a discrete action
space (e.g. [93]), maximum likelihood measurements, and a-priory known environment,
Indelman et al. [94] proposed a BSP scheme for continuous action space, measure-
ments modeled as random variables, and unknown environment. Atanasov et al. [12]
and Patten et al. [95] presented approaches for active classification using a viewpoint

12

dependent classifier mode using a sampling based method. In the former, the robot
and object poses are known, while in the later they are part of the state. Chaves et
al. [96] proposed a formulation that reasons whether measurements were actually ac-
quired. Another commonly used assumption in BSP is known data association; Pathak
et al. [49] proposed Data Association BSP (DA-BSP) that relaxes this assumption,
reasoning about data association within planning. This work enables autonomous dis-
ambiguations of data association hypotheses, that can relate to active classification.
Burks et al. [97] uses continuous state POMDP with hybrid beliefs over continuous
and discrete states.

Deep reinforcement learning (DRL) was first proposed by Mnih et al. [98], utilizing
a neural network to learn an action-value function (also known as Q-function) that
dictates the control policy. DRL provided promising results in several fields of study,
those include robot navigation. Zhelo et al. [99] proposed a curiosity driven reinforce-
ment learning method. Tai and Liu [100] presented a DRL based approach to navigate
a robot via depth measurements only in an unknown environment. Tai et al. [101]
showed that a robot can be trained via DRL in a virtual environment and perform well
in a real one.

There are several works about distributed multi-agent systems that utilize deep
reinforcement learning. Chen et al. [102] addressed multi-agent distributed collision
avoidance using deep reinforcement learning. Chen et al. [103] proposed a socially
aware DRL method for multi-agent navigation in an environment with many humans.
Foerster et al. [104] used DRL to learn a communication strategy between agents in
a distributed framework. Omidshafiei et al. [105] addressed the problem of multi-task
multi-robot DRL with partial observability.

13

14

Chapter 3

DA Aware SLAM Using a
Viewpoint Dependent Classifier
Model

In the approach presented in this chapter the robot aims to localize itself and map
geometrically and semantically the observed environment while reasoning about am-
biguous data association. This kind of inference requires maintaining a hybrid belief
and efficiently updating it with incoming information captured online by the robot’s
sensors. As our main contribution of this chapter, we utilize a viewpoint dependent
classifier model for DA disambiguation by leveraging the coupling between relative
viewpoint and classifier outputs. We rigorously incorporate this viewpoint-dependent
model within a recursive probabilistic formulation, building upon the DA-BSP frame-
work by Pathak et al. [50], which however, considered only geometric observations.
In addition, the proposed approach aids in SLAM, leading to a more accurate infer-
ence. Further, while DA-BSP assumes a single scene is observed per time step, we deal
with multiple object detections. We demonstrate the strength of utilizing a viewpoint
dependent classifier model for DA disambiguation in simulation considering a highly
ambiguous environment.

3.1 Preliminaries

Consider a robot operating in a partially known environment containing different, pos-
sibly perceptually similar or identical, objects. The robot aims to localize itself, and
map the environment geometrically and semantically while reasoning about ambiguous
data association (DA). We consider a closed-set setting where each object is assumed
to be one of M classes. Moreover, in this work we consider the number of objects in
the environment is known. The objects are assumed to be stationary.

Let xk denote the robot’s camera pose at time k; let xon and cn represent the n-th
object pose and class, respectively. We denote the set of all object poses and classes by

15

X o .= {xo1, ..., xoN} and C
.= {c1, ..., cn}. To shorten notations, denote Xk

.= {x0:k,X o}.
Further, we denote the data association realization at time k as βk: given nk ob-

ject observations at time k, βk ∈ Rnk ; each element in βk corresponds to an object
observation, and is equal to an object’s identity label. For example, if at time k the
camera observes 2 objects with hypothesized identity labels 4 in observation 1 and 6
in observation 2, then βk = [βk,1, βk,2]T ∈ R2, and βk,1 = 4 and βk,2 = 6. Denote
Zk

.= {zk,1, ..., zk,nk} as the set of nk measurements at time k, and ak as the robot’s
action at time k.

Each measurement zk,i ∈ Zk consists of two parts: a geometric part zgeok,i , e.g.
range or bearing measurements to an object, and a semantic part zsemk,i . The set of
all geometric measurements for time k is denoted Zgeok , and similarly for semantic
measurements Zsemk , such that Zk = Zgeok ∪ Zsemk . We assume the geometric and
semantic measurements are independent from each other. In addition, we assume
independence between measurements at different time steps.

We consider standard motion and geometric observation Gaussian models, such that
P(xk+1|xk, ak) = N (f(xk, ak),Σw) and P(zgeok |xk, xo) = N (hgeo(xk, xo),Σgeo

v). The
process and geometric measurement covariance matrices, Σw and Σgeo

v , as well as the
functions f(.), hgeo(.) are assumed to be known.

For the semantic measurements, we utilize a (deep learning) classifier that provides
a vector of class probabilities where zsemk,i

.= P(ci|Ik,i) given sensor raw observation Ik,i,
e.g. an image cropped from a bounding box of a larger image taken by the camera of
object i at time k. To simplify notations we drop index i, as the measurements, both
semantic and geometric, apply to each bounding box. Thus, zsemk ∈ RM with

zsemk
.= [P(c = 1|Ik) · · · P(c = M |Ik)]T . (3.1)

A crucial observation, following [16], is that zsemk is dependent on the camera’s pose
relative to the object (see Fig. 3.1). In this work we contribute an approach that
leverages this coupling to assist in inference and data association disambiguation.

Specifically, we model this dependency via a classifier model P(zsemk |c = m,xk, x
o).

The classifier model represents the distribution over classifier output, i.e. class proba-
bility vector zsemk , when an object with a class hypothesis m is observed from relative
pose xo⊖xk. Note that for M classes we require M classifier models, one for each class.
The model can be represented with a Gaussian Process (see [15, 16]) or a deep neural
network (see [17]). In this work, we use a Gaussian classifier model, given by

P(zsemk | c, xk, xo) = N (hc(xk, xo),Σc(xk, xo)), (3.2)

where the viewpoint-dependent functions hc(xk, xo) and Σc(xk, xo) are learned offline.
Note that unlike [15, 16] we do not model correlations in classifier scores among view-
points. Conversely, we do not assume data association is known.

16

0 10 20 30 40 50

X coordinate [m]

0

10

20

30

40

50

Y
 c

o
o
rd

in
a
te

 [
m

]
1 2 3

0.0

0.5

1.0

C
la

s
s
 P

ro
b
a
b
il
it

y

1 2 3
0.0

0.5

1.0

C
la

s
s
 P

ro
b
a
b
il
it

y

1 2 3
0.0

0.5

1.0

C
la

s
s
 P

ro
b
a
b
il
it

y

1 2 3
0.0

0.5

1.0

C
la

s
s
 P

ro
b
a
b
il
it

y

Figure 3.1: A classifier observing an object from multiple viewpoints will produce different classification scores
for each viewpoint.

We assume a prior on initial camera and object poses, x0 and Xo respectively,
and class realization probability P(C). For simplicity, we assume independent variable
priors (although this assumption is not required by our approach, and is not true in
general, as e.g. some objects are more likely to appear together than others), thus we
can write the prior as follows:

P(x0,X o, C) = P(x0)
N∏
i=1

P(xoi)P(ci). (3.3)

In this paper we use a Gaussian prior for the continuous variables, and uninformative
(uniform) prior for the object classes.

Problem formulation: We aim to efficiently maintain the following hybrid belief

P(Xk, C, β1:k | Hk), (3.4)

with history Hk
.= {Z1:k, a0:k−1}. The belief (3.4) is both over continuous variables,

i.e. robot and object poses Xk (continuous variables), and over discrete variables, i.e. ob-
ject classes C and data association hypotheses thus far, β1:k. In the following, we incor-
porate a viewpoint-dependent classifier model and develop a recursive formulation to
update that hybrid belief with incoming information captured by the robot as it moves
in the environment.

17

3.2 Approach

In this section we develop a recursive scheme to compute and maintain the hybrid belief
from Eq. (3.4). We start by factorizing using the chain rule as

P(Xk, C, β1:k|Hk)=P(Xk|C, β1:k,Hk)︸ ︷︷ ︸
b[Xk]C

β1:k

P(C, β1:k|Hk)︸ ︷︷ ︸
wC
β1:k

, (3.5)

where b[Xk]Cβ1:k

.= P(Xk | C, β1:k,Hk) is the conditional belief over the continuous vari-
ables, and wCβ1:k

.= P(C, β1:k | Hk) is the marginal belief over the discrete variables, and
can be considered as the conditional belief weight. Thus, each realization of the discrete
variables, i.e. data association and class hypotheses, has its own probability (weight)
and gives rise to a different belief over the continuous variables.

Moreover, the factorization (3.5) facilitates computation of marginal distributions
that are of interest in practice. In particular, the posterior over robot and object poses
can be calculated via

P(Xk | Hk) =
∑
β1:k

∑
C

wCβ1:k
b[Xk]Cβ1:k

, (3.6)

while the marginal distributions over object classes and data association hypotheses
are given by

P(C | Hk) =
∑
β1:k

wCβ1:k
, (3.7)

P(β1:k | Hk) =
∑
C

wCβ1:k
. (3.8)

The posterior P(Xk | Hk) in Eq. (3.6) is a mixture belief that accounts for all hypothe-
ses regarding data association and classification. Without semantic observations, our
approach degenerates to passive DA-BSP. The term P(C | Hk) is the distribution over
classes of all objects while accounting for both localization uncertainty and ambiguous
data association. As such, it is important for robust semantic perception. Finally, the
posterior over data association hypotheses, P(β1:k | Hk) accounts for all class realiza-
tions for all objects.

Next, we derive a recursive formulation for calculating the continuous and marginal
distributions in the factorization (3.5). As will be seen, semantic observations along
with the viewpoint-dependent classifier model (3.2) impact both of the terms in the
factorization (3.5), and as a result assist in inference of robot and objects poses (via
Eq. (3.6)) and helps in disambiguation between data association realizations (via Eq. (3.8)).
Furthermore, as discussed in Sec. 2.D, while the number of objects’ classes and data
association hypotheses (number of weights wCβ1:k

) is intractable, in practice many of

18

these are negligible and can be pruned.

3.2.1 Conditional Belief Over Continuous Variables: b[Xk]Cβ1:k

Using Bayes law we get the following expression:

b[Xk]Cβ1:k
≡ P(Xk | C, β1:k,Hk) ∝

P(Zk | Xk, C, βk) · P(Xk | C, β1:k−1,H−
k),

(3.9)

where H−
k

.= {Z1:k−1, a0:k−1}, the normalization constant is omitted as it does not
depend on Xk, and βk is dropped in the second term because it refers to association of
Zk which is not present.

The expression P(Zk | Xk, C, βk) in Eq. (3.9) is the joint measurement likelihood
for all geometric and semantic observations obtained at time k. Given classifications,
associations and robot pose at time k, history H−

k and past associations β1:k−1 can be
omitted. The joint measurement likelihood can be explicitly written as

P(Zk | Xk, C, βk) =
nk∏
i=1

P(zgeok,i | xk, x
o
βk,i

) · P(zsemk,i | xk, xoβk,i , cβk,i),
(3.10)

where xoβk,i and cβk,i are the object pose and class corresponding to the measurement
respectively, given DA realization βk and nk the number of measurements obtained
at time k as before. Note that the viewpoint-dependent semantic measurement term
above P(zsemk,i | xk, xoβk,i , cβk,i) couples between semantic measurement and robot pose
relative to object, making it useful for inference of both.

The term b−[Xk]Cβ1:k−1

.= P(Xk | C, β1:k−1,H−
k) in Eq. (3.9) is the propagated belief

over continuous variables, which, using chain rule, can be written as

b−[Xk]Cβ1:k−1
= P(xk|xk−1, ak−1)b[Xk−1]Cβ1:k−1

. (3.11)

Overall, the conditional belief (3.9) can be represented as a factor graph (Kschischang
et al. [106]). Note that each realization of β1:k has a different factor graph topology
(observation factors are affected, motion model factors are not). For a fixed β1:k with
different class assignments C the corresponding conditional belief factor graph topology
remains the same (geometric and semantic observation factors connect the same nodes),
but semantic factors change, according to class models.

Fig. 3.2 presents an example for 2 factor graphs, in which k = 2, N = 2, and
the DA hypothesis is that at time k = 1 the camera observes object 1 for the first
graph and 2 for the second, at time k = 2 the camera observes objects 1 and 2 for
both graphs. To efficiently infer Xk for every realization of C and β1:k, state of the art
incremental inference approaches, such as iSAM2 [36] can be used. The joint posterior
from Eq. (3.4) can thus be maintained following Eq. (3.5) as a set of continuous beliefs

19

x0 x1 x2

xo1 xo2

(a)

x0 x1 x2

xo1 xo2

(b)

Figure 3.2: A toy example for two factor graphs in our approach, each for a different data association realization.
The edges that connect between camera poses correspond to motion model P(xk|xk−1, ak−1). The edges that
connect directly between camera and object poses correspond to the measurement model (3.10) for both semantic
and geometric measurements. Thus a viewpoint-dependent semantic measurement model results in geometric
constraints on robot-to-object relative pose.

b[Xk]Cβ1:k
conditioned on the discrete variables β1:k and C each represented with a factor

graph, along with their corresponding component weights wCβ1:k
, describing the marginal

belief over discrete variables. In the next section, we describe how the latter can be
calculated.

3.2.2 Marginal Belief Over Discrete Variables: wC
β1:k

To compute the DA and class realization weight wCβ1:k
we marginalize over all continuous

variables:
wCβ1:k

≡P(C, β1:k | Hk) =
∫

Xk
P(Xk, C, β1:k|Hk)dXk. (3.12)

Using Bayes law, we can expand the above as follows:

P(Xk, C, β1:k | Hk)=
η · P(Zk | Xk, C, β1:k) · P(Xk, C, β1:k|H−

k)
(3.13)

where η = P(Zk | H−
k)−1 is a normalization constant and the joint measurement likeli-

hood P(Zk | Xk, C, β1:k) can be explicitly written as in Eq. (3.10).
We further expand P(Xk, C, β1:k|H−

k) using chain rule:

P(Xk, C, β1:k|H−
k) = P(βk|β1:k−1,Xk, C,H−

k) ·
· P(xk|xk−1, ak−1) · P(Xk−1, C, β1:k−1 | Hk−1),

(3.14)

where:
P(Xk−1, C, β1:k−1|Hk−1) = wCβ1:k−1

b[Xk−1]Cβ1:k−1
. (3.15)

Eq. (3.15) is the prior belief calculated at time k − 1 and represented as a continu-
ous belief component along with corresponding weight as described above. The term
P(βk|β1:k−1,Xk, C,H−

k) from Eq. (3.14) is the object observation model that represents
the probability of observing a scene given a hypothesis of camera and object poses. In
this paper we use a simple model that depends only on camera and object poses at
current time step, thus it can be written as P(βk | xk,X oβk), where X oβk

.= {xoβk,i}
nk
i=1. If

the model predicts observation of all objects corresponding to βk then P(βk | xk,X oβk)

20

is equal to a constant, otherwise it is zero.
Plugging the above into Eq. (3.12) yields a recursive rule for calculating component

weights at time k

wCβ1:k
= η ·

∫
Xk P(Zk|Xk, C, βk) · P(βk|xk,X oβk)·
·b−[Xk]Cβ1:k−1

wC1:k−1 dXk.
(3.16)

The normalization constant η (from Eq. (3.13)) does not depend on variables and
cancels out when weights are normalized to sum to 1. It is therefore dropped out in
subsequent calculations. Note that the realization weight from the previous time step
wCβ1:k−1

is independent from Xk, and thus can be taken out of the integral. Recalling
Eq. (3.10), the continuous variables participating in P(Zk | Xk, C, β1:k) are xk and X oβk .
Those variables are participating also in P(βk | xk, xok). As b−[Xk]Cβ1:k−1

is Gaussian,
all other continuous variables can be marginalized easily. On the other hand, xk and
X oβk must be sampled because of the object observation model P(βk | xk,X ok), which is
commonly not Gaussian. If the observation model predicts that the objects will not be
observed for most of the samples, then wCβ1:k

will be small and likely to be pruned. We
can express the realization weight as follows:

wCβ1:k
∝ wCβ1:k−1

∫∫
xk,X o

βk

P(Zk | xk,X oβk , C, β1:k) ·

· P(βk | xk,X oβk) b−[xk,X oβk]Cβ1:k−1
dxk dX oβk ,

(3.17)

where:

b−[xk,X oβk]Cβ1:k−1

.= P(xk,X oβk |C, β1:k−1,H−
k) =∫

X −
k

\{xk,X o
βk

}
b−[Xk]Cβ1:k−1

d
{
X−
k \ {xk,X

o
βk
}
}
.

(3.18)

The viewpoint dependent classifier model contributes to data association disambigua-
tion by acting as reinforcement or contradiction to the geometric model. If both ’agree’
on the poses’ hypothesis, wCβ1:k

will be large relative to cases where both ’disagree’.
Next, we provide an overview of the inference scheme, then address computational

aspects.

3.2.3 Overall Algorithm

The proposed scheme is outlined in Alg. 3.1. For every time step we are input the prior
belief P(Xk−1, C, β1:k−1 | Hk−1) represented following Eq. (3.5) as a set of weights
wCβ1:k−1

.= P(C, β1:k−1 | Hk−1) and corresponding continuous (Gaussian) belief compo-
nents b[Xk−1]Cβ1:k−1

.= P(Xk−1 | C, β1:k−1,Hk−1). In our implementation we maintain a
separate factor graph for each such component. We also obtain an action ak−1 and ob-
servations Zk, separated into geometric Zgeok , and semantic Zsemk . We propagate each

21

prior belief component using the motion model P(xk | xk−1, ak−1) (step 3). Each com-
ponent then splits to a number of subcomponents, one for each possible assignments of
data associations βk at current time (generally a vector of length nk). Procedure Prop-
Weights at step 5 computes the normalized weight of each subcomponent via Eq. (3.17)
as a product of the component (prior) weight wCβ1:k−1

with an update term comprising
the measurement likelihood P(Zk | xk,X oβk , C, β1:k) (both geometric and semantic, see
Eq. (3.10)) and object observation model P(βk | xk,X oβk), averaged over the propagated
belief b−[xk,X oβk]Cβ1:k−1

from Eq. (3.18). In step 7 we prune low-weight subcomponents
by setting their weights to 0 and re-normalizing remaining weights to 1, in an approx-
imation to true posterior (other pruning strategies are equally possible). In step 11 we
update the posterior for non-zero weight subcomponents using current measurements.
Finally, we return posterior as a set of Gaussian components and corresponding weights.

We next address aspects of computational tractability of the scheme.

2.D Computational Complexity and Tractability

With M candidate classes, and N objects, the number of possible class realizations,
and consequently initial number of belief components, is MN . At time step k each prior
component splits into up to Nnk subcomponents as each measurement can in general be
associated to any scene object. The maximum number of components at time k is thus
MN ·

∏k
j=1N

nj = O
(
MN ·Nψ·k

)
if ψ is an upper bound on nk, making the approach

computationally intractable in theory without pruning. In practice, as observed by [50],
the number of components that need to be accounted for is limited by the belief, and
is much smaller than the theoretical maximum, with the rest getting negligible weights
that can be safely pruned under any scheme. Further, our empirical results suggest
that semantic information added through the viewpoint-dependent factors leads to
even stronger disambiguation than observed in DA-BSP (which uses only geometric
information), both in data association and localization, resulting in smaller number of
non-negligible weights.

Additionally, we hypothesize that in practice classification uncertainty is usually
limited to only a few classes, and thus would not cause a computational bottleneck
even with numerous candidate classes. Further, we avoid explicitly maintaining the
initially exponential number of components (MN) by noting that the classes of objects
that were not observed yet under an association hypothesis β1:k do not participate in
the inference process for that belief component, and thus do not need to be maintained
separately. That is, for two class realizations C and C ′, if Cβ1:k = C ′

β1:k
with Cβ1:k

.=
{∀1≤j≤k, i cβj,i} (i.e. classifications for all associated objects are the same) and C¬β1:k ̸=
C ′

¬β1:k
(i.e. realizations differ on classifications for objects that do not participate in

β1:k), then wC
′

β1:k
= wCβ1:k

(assuming uninformative prior on classes) and b[Xk]Cβ1:k
=

b[Xk]C
′

β1:k
(always), without need to compute or maintain those separately.

Finally we note that parts of Alg. 3.1 can be readily parallelized (’embarrassingly

22

parallel’), thanks to computations being independent across components and wide avail-
ability of massively parallel processors (e.g. GPUs), contributing to its practical appli-
cability.

3.3 Experiments

In this section we evaluate the performance of our approach in a 2D simulation and
demonstrate the advantage of using a viewpoint dependent classifier model for disam-
biguating between DA realizations and improving inference accuracy. Our implemen-
tation uses the GTSAM library [107] with a Python wrapper; all experiments were run
on an Intel i7-7700 CPU running at 2800 GHz and with 16GB RAM.

We consider a scenario where the robot navigates in an uncertain perceptually
aliased environment represented by a set of scattered objects of the same class, i.e. ob-
jects differ in their position and orientation. In this scenario M = 2 and N = 6, thus
the number of possible class realizations is MN = 64. Fig. 3.3a shows the ground truth
object poses and robot trajectory.

The prior (3.3) comprises a highly uncertain initial robot pose, and an uninformative
prior on object classes. Object poses are assumed to be known up to a certain accuracy
(i.e. uncertain map). The prior covariance of the objects is Σo = diag(0.05, 0.05, 0.5 ·
10−3), and initial robot pose is Σp = diag(100, 100, 0.04). The process and geometric
measurement covariance matrices are Σw = diag(0.75 · 10−3, 0.75 · 10−3, 0.25 · 10−3)
(corresponds to spatial coordinates and orientation), and Σgeo

v = diag(0.1, 0.05) (corre-
sponds to range and bearing).

The semantic measurement model (3.2) is defined as:

hc(c = 1, θ) =
[
α sin2(θ/2) + (1− α)
α− α sin2(θ/2)

]
(3.19)

where θ is the relative angle from the object to camera, calculated from the relative
pose xrelk

.= xk ⊖ xo. This chosen model represents a mirror symmetrical object (e.g. a
car) with a parameter α that corresponds to the viewpoint dependency ’strength’, i.e.
∂hc
∂θ values are larger when α increases (for computation details, see [17]). We assume

the classifier scores are independent from camera-to-object range as the observations
are cropped from bounding boxes, and unless the camera is very close to the object the
perspective distortion is negligible. In practice, the classifier model can be learned from
images of an object from different viewpoints with corresponding classifier outputs via a
neural network or GP for example. The measurement covariance matrix Σc

.= (RTR)−1

is defined as R = K

[
1 −0.5
0 1

]
. We note that in general, also Σc can be viewpoint-

dependent [16,17]. The parameters α and K are constants and take the values α = 0.25
and K = 15 by default. We sample measurements from our motion, geometric, and
semantic models.

23

Further, we sample 1000 sets of xk and xoβk for each computation of wCβ1:k
, see

procedure PropWeights in Alg. 3.1, and compute them as shown in Eq. (3.17). At
each time k we prune components with weight w below threshold {wk}max

150 ≤ w, where
{wk}max is the highest weight component at time k.

We compare performance of our approach that utilizes semantic observations along
with a viewpoint-dependent classifier model against an alternative that does not use
this information, with the latter roughly corresponding to the passive instance of DA-
BSP [50]. To quantify performance as a function of α we compare between the following
metrics:

1. Entropy over data association weights: for Nk non-pruned weights {wi}Nki=1 we
compute the entropy H(w) with H(w) .= −

∑Nk
i=1wi log(wi).

2. Determinant of position covariance det(Σ) of xk for the highest weight realization
at each time k.

3. Estimation error x̃wmax , which is the Euclidean distance from ground truth to
highest weight estimation for the last pose.

4. Estimation error x̃w−avg, which is the weighted average of all estimation errors
for the last pose.

(a) (b)

Figure 3.3: (a) An example scenario with ground truth camera trajectory, represented in terms of camera poses
(green line is the camera heading) and objects O1 to O6 (green dots indicate position, orientation is indicated
by green lines from the dots). (b) Multiple sampled paths for the statistical study, each path realization is
presented with different color.

Fig. 3.4 shows results of an example scenario for different time steps, comparing
between using the viewpoint-dependent classifier model (middle row) and without se-
mantic information (upper row), essentially utilizing passive DA-BSP [50]. At each
time k, the plots show the mixture posterior P(xk|Hk) over camera pose xk, calcu-
lated from (3.6), where each component is a Gaussian, thus represented by mean and
covariance. Estimated camera poses are shown in red and blue lines, where the blue
line represents the camera orientation. Components with higher weight are shown with
thicker covariance ellipse lines. To reduce clutter, the posterior over the rest of the con-
tinuous variables, i.e. object poses and past robot poses, is not shown. Additionally,

24

the plots show the ground truth trajectory (from Fig. 3.3a) of the robot. The bottom
row reports the probabilities of DA hypotheses from (3.8) for different time instances
for both compared cases. The correct association is marked with a green circle.

As seen from the upper row of Fig. 3.4, inference without incorporating viewpoint-
dependent semantic information results in the first time steps in multiple DA realiza-
tions with similar weights. The reason is that given only geometric range and bearing
measurements without observing all the objects, inference results can be interpreted in
multiple ways, i.e. perceptually aliased (see Fig. 3.4i). Only at time k = 25 the DA
was disambiguated once the camera observed objects O1 and O2.

In contrast, utilizing a viewpoint-dependent classifier model admits faster DA dis-
ambiguation, as shown in the bottom row of Fig. 3.4. In particular, already at time
k = 1 the posterior P(xk|Hk) has only two non-negligible components, while at time
k = 5 there is a single DA realization with significant weight. This shows an improve-
ment over Fig. 3.4b where there are multiple DA realizations with significant weight
when not using the classifier model.

The bottom row in Fig. 3.4 presents the realization weights for the times k =
1, 5, 15, 25, and compare between weights without and with classifier model. For each
realization β1:k, we present P(β1:k | Hk) after pruning without classifier model as a
blue bar, and with as a red bar. If the bar is missing, then P(β1:k | Hk) = 0. In all
sub-figures the classifier model reduces the number of non pruned DA realizations, and
for time k = 15 and k = 25 the DA is disambiguated with the classifier model. We
observe more DA realizations when the classifier model is not used, and at time k = 15
the DA with a classifier model fully disambiguated.

Further, we quantify the performance improvement due to the viewpoint-dependent
classifier model in a statistical study by sampling multiple ground truth tracks in the
scenario, while keeping the same landmarks. The sampled tracks are shown in Fig. 3.3b.
For this study, we sampled 50 different tracks with 10 time steps of path length, and
performed a statistical analysis on the performance parameters. In all paths, the start-
ing position is identical.

The results of this study are shown in Fig. 3.5, which shows average over each of the
mentioned metrics (H(w), det(Σ), x̃wmax , x̃w-avrg). In that figure we also study sensi-
tivity to α, which controls the level of viewpoint-dependency in the considered classifier
model (3.19). The plots show a significant improvement of utilizing a classifier model,
both for DA disambiguation and inference where the estimation error (Fig. 3.5c, 3.5d)
and uncertainty (Fig. 3.5b) are lower when the model is utilized. From all the plots,
the most notable performance increase occurs for DA disambiguation (Fig. 3.5a), where
stronger viewpoint dependence assists more significantly; Overall, Fig. 3.5 presents a
strong advantage for utilizing a viewpoint classifier model in the presented scenario.

25

(a) k = 1, no classifier (b) k = 5, no classifier (c) k = 15, no classifier

(d) k = 25, no classifier (e) k = 5, with classifier (f) k = 15, with classifier

(g) k = 15, with classifier (h) k = 25, with classifier (i) k = 1

(j) k = 5 (k) k = 15 (l) k = 25

Figure 3.4: (a) - (h): Posterior over robot poses of all non-pruned realizations for times k = 1, 5, 15, 25, without
(first row) and with a classifier model (second row). Bolder lines correspond to higher weights. Ground truth
trajectory is shown in each of the plots (in terms of camera poses). (i)-(l): Corresponding posterior over data
association hypotheses, P(β1:k | Hk), at each time. Blue bars are without classifier model, red bars are with.
Green circles represent ground truth data associations.

26

2 4 6 8 10

Time step

0

0.2

0.4

0.6

0.8

1

1.2

H
(w

)

No classifier

=0.05

=0.15

=0.25

=0.35

=0.45

(a) H(w)

2 4 6 8 10

Time step

0

0.005

0.01

0.015

0.02

d
e

t(
)

No classifier

=0.05

=0.15

=0.25

=0.35

=0.45

(b) det(Σ)

2 4 6 8 10

Time step

0

0.5

1

1.5

2
No classifier

=0.05

=0.15

=0.25

=0.35

=0.45

(c) x̃wmax

2 4 6 8 10

Time step

0

0.5

1

1.5

2

2.5
No classifier

=0.05

=0.15

=0.25

=0.35

=0.45

(d) x̃w−avg

Figure 3.5: Effects of different α values on DA disambiguation ability, estimation uncertainty and accuracy in
terms of the metrics (H(w), det(Σ), x̃wmax , and x̃w−avg), averaged over 50 sampled tracks (see Fig. 3.3b).

27

Algorithm 3.1 Data Association-Aware Mapping and Localization. Inference at time
k

Input: Prior belief P(Xk−1, C, β1:k−1 | Hk−1), observations Zk = (Zgeo,Zsem), action
ak−1

1: for every component β1:k−1, C s.t. wCβ1:k−1
> 0 do

2: ▷ Propagate component according to motion model
3: b[X−

k]Cβ1:k−1
← P(xk|xk−1, ak−1) · b[Xk−1]Cβ1:k−1

4: ▷ Propagate weights Eq. (3.16), Eq. (3.17)
5: wCβ1:k

← PropW.
(
b[X−

k]Cβ1:k−1
, wCβ1:k−1

,Zk
)

6: ▷ Prune low-probability components
7: wCβ1:k

← PruneAndNormalize(wCβ1:k
)

8: ▷ Propagate non-zero weight components
9: for β1:k, C s.t. wCβ1:k

> 0 do
10: ▷ Add observation factors, Eqs. (3.9), and (3.10)
11: b[Xk]Cβ1:k

← b[X−
k]Cβ1:k−1

· P(Zk | Xk, C, βk)
12: end for
13: end for
14: return P(Xk, C, β1:k | Hk) ≡ {(b[Xk]Cβ1:k

, wCβ1:k
)}

1: procedure PropWeights(b[X−
k]Cβ1:k−1

, wCβ1:k−1
,Zk)

2: for every possible assignment of βk do
3: ▷ Sample current poses by Eq. (3.18)
4: Sample {x(i)

k ,X oβk
(i)}nsi=1 ∼ b−[xk,X oβk]Cβ1:k−1

5: ▷ Calculate update factor and propagate Eq. (3.17)
6: ψ ←(1/ns)·

ns∑
i=1

P(Zk, βk |x
(i)
k ,X oβk

(i), C, β1:k−1)

7: w̃Cβ1:k
← wCβ1:k−1

· ψ
8: end for
9: ▷ Normalize weights and return

return wCβ1:k
← w̃Cβ1:k

/
∑
βk
w̃Cβ1:k

10: end procedure

1: procedure PruneAndNormalize(wCβ1:k
)

2: for β1:k, C s.t. wCβ1:k
< threshold do

3: w̃Cβ1:k
← 0

4: end for
return wCβ1:k

← w̃Cβ1:k
/
∑
βk
w̃Cβ1:k

5: end procedure

28

Chapter 4

Distributed Semantic SLAM
with Viewpoint Dependent
Classifier Model

In this chapter our main contributions are as follows. (i) we contribute a multi-robot
approach that maintains a hybrid belief over robot and object poses, and object classes
in a distributed setting, while addressing the coupling between semantic and geometric
information via viewpoint-dependent classifier model; (ii) we address estimation con-
sistency aspects considering both continuous and discrete random variables; (iii) we
demonstrate the strength of this approach in simulation and real-world experiment,
comparing to single robot and distributed multi-robot with double counting.

4.1 Notations and Problem Formulation

Consider a group of robots operating in an unknown environment represented by object
landmarks. All of the robots aim to localize themselves, and map the environment
geometrically and semantically within a distributed multi-robot framework. In this
chapter we consider a closed-set setting, where each of the objects is of one of M
possible classes. The number of objects in the environment prior to the scenario is
unknown.

We denote states inferred by robot r with a superscript □r. Set R is the set of all
robots communicating with robot r (including itself), either directly, or relayed through
other robots. Note that R can increase its size with time. Let xk denote robot pose at
time k, xon and cn denote the n’th object pose and class respectively. Let X o .= {xon}n
and C

.= {cn}n denote poses and classes of objects, and Xk
.= {x0:k,X ok } denotes all

poses up to time k. Subscript new, k representing the objects newly observed at k.
Let Zrk be the set of measurements robot r receives at time k by its own sensors. Zrk

is composed of geometric and semantic measurements Zgeo,rk , and Zsem,rk respectively.
We assume independence between geometric and semantic measurements, as well as

29

Table 4.1: Main notations used in the chapter.

Parameters
x Robot pose
xon, cn n’th object pose and class
X o
k Poses of objects observed up to time k

X o
new,k Poses of objects newly observed at time k

Xk Robot and object poses up to time k
Ck Object seen up to time k class realization
Cnew,k Classes of objects newly observed at time k
Zk Measurements at time k including geometric and semantic
Mk Motion model from xk−1 to xk
Lk Measurement likelihood of Zk
Hk History of measurements and action up to time k
bk Conditional continuous belief at time k
wk Discrete weight at time k
ξk Continuous object marginal belief at time k
ϕk Discrete marginal belief at time k
Nk(·) Number of objects observed by a robot or a group up to time k
Superscripts
r States of robot r
R States of robots communicating with r, directly and indirectly, including itself

between different time steps.

We assume Gaussian and known identical motion Mk
.= P(xk|xk−1, ak−1) and ge-

ometric P(zgeo,rk |xrk, xo,r) models for all robots. At each time step, there is a subset of
object poses involved in the geometric and classifier model that is determined by data
association (DA). Unlike chapter 3, herein, DA is assumed to be externally determined.

Additionally, we use a viewpoint-dependent classifier model that ”predicts” classifi-
cation scores (a vector of class probabilities). This model couples classifier scores with
viewpoint dependency between object and camera; this coupling can be used to improve
pose inference performance (see Chapter 3). The viewpoint dependency is modeled as
a Gaussian with parameters that depend on the relative viewpoint from the camera to
the object xo,r ⊖ xrk and object’s class c:

P(zsem,rk |xrk, xo, c)=N (hc(xrk, xo,r),Σc(xrk, xo,r)), (4.1)

where hc(·) and Σc(·) can be learned offline via a Gaussian Process (GP) [16] or a
deep neural network [17]. Note that for M candidate classes, M viewpoint-dependent
models have to be learned.

Let Lrk
.= P(Zrk |X rk , Crk) be the local measurement likelihood of r that consists of

geometric and classifier models:

Lrk
.=
∏

xo,r,cr
P(Zgeo,rk |xrk, xo,r)P(Zsem,rk |xrk, xo,r, cr), (4.2)

where xo,r ∈ X o,rβk and cr ∈ Crβk ; the term βk represents the local DA of robot r at time
k, i.e. the correspondences between observations and object IDs. Denote X o,rβk the set
of all poses of objects that observed by r at time k, and similarly denote Crβk for object
classes. For the reader’s convenience, Table 4.1 presents the important notations used
in the paper, some will be defined in the next section.

30

Problem formulation For each robot r we aim to maintain the following hybrid
belief:

P(XRk , CR|HRk), (4.3)

where HRk
.= {Zr′

1:k, a
r′
0:k−1}r′∈R is the history of measurements of robot r itself and

transmitted information to r, as well as actions from all robots in R. The belief in
Eq. (4.3) is a hybrid belief over both continuous (camera and object poses), and discrete
(object classes) random variables. We aim to update this hybrid belief per each robot
in a recursive manner, using both local measurements and information sent from other
robot in the neighborhood, as well as sending information by itself. We aim to keep
estimation consistency by avoiding double counting, i.e. using every measurement only
once.

4.2 Approach

We present a framework for distributed classification, localization, and mapping. As
with many multi-robot distributed frameworks, over-confident estimations, due to dou-
ble counting, is a key issue; We propose a framework that simplifies the book-keeping
that allows relaying of information (e.g. robot 1 sends information to robot 2, then 2
sends to 3 information that also includes the received from robot 1). This framework
requires the maintenance of a local belief P(X rk , Cr|Hrk) per each robot that can be sent
and relayed to other robots. From multiple local beliefs a distributed belief can be
constructed. The local beliefs are stored by each robot, and updated accordingly when
new information arrives, and the receiving robot filters out the old information, thus
avoiding double counting.

In the next sections we derive a recursive formulation for maintenance of the local
belief, the distributed hybrid belief, and the information stack each robot holds and
transmits.

2.A Local Hybrid Belief Maintenance

Our formulation for maintaining local hybrid beliefs builds upon our previous work in
Chapter 3, with the main differences being that here we assume the DA is solved, and
the number of objects is unknown a-priori. In this section we present an overview of
this approach.

We maintain the hybrid belief of robot r only from local information. This belief
can be split into continuous and discrete parts as in:

P(X rk , Crk |Hrk) = P(X rk |Crk ,Hrk)︸ ︷︷ ︸
br
k

P(Crk |Hrk)︸ ︷︷ ︸
wr
k

. (4.4)

To maintain this hybrid belief, we must maintain a set of continuous beliefs conditioned

31

on the class realization of all objects observed in the scene by robot r thus far.
The continuous part can be updated as follows:

brk ∝ brk−1 · Lrk · Mr
k · P(X o,rnew,k), (4.5)

where P(X o,rnew,k) = P(X o,r
k

)
P(X o,r

k−1) is the prior over object poses newly observed at time k. As
opposed to Chapter 3, this formulation also supports an increasing number of objects
known at each time step, with both X o,rk and Crk increasing in dimension. Note that in
general brk is different for each class realization, as models (4.1) are different for each
class.

The discrete part is the weight associated to its corresponding continuous belief.
As our measurement models depend on continuous variables, we use Bayes rule on
P(Crk |Hrk) and marginalize the measurement likelihood as follows:

wrk ∝ wrk−1P(Crnew,k)
∫

X r
k

Lrk · brk−1 · Mr
kdX rk , (4.6)

where P(Crnew,k) = P(Crk)
P(Cr

k−1) is the prior over classes of new objects locally observed
by r at time k. We compute the integral in Eq. (4.6) by sampling the continuous
variables that participate in P(Zrk |X rk , Crk), i.e. the last robot pose xrk and the poses of
observed objects X o,rβk at time k. These variables are sampled from the propagated belief
brk−1 · Mr

k. Variables that do not participate in Lrk can be marginalized analytically.

2.B Distributed Hybrid Belief Maintenance

In this section we extend the formulation presented in Sec. 2.A to include updates
from other robots, considering a distributed multi-robot setting. As will be seen, our
formulation uses each measurement only once, thus keeping estimation consistency and
avoiding double counting. Similarly to (4.4), we factorize the distributed hybrid belief
(4.3)

P(XRk , CRk |HRk) = P(XRk |CRk ,HRk)︸ ︷︷ ︸
bR
k

P(CRk |HRk)︸ ︷︷ ︸
wR
k

. (4.7)

As in the single robot case, maintaining this belief requires managing multiple hypothe-
ses of class realizations. Compared to the single robot case, the number of objects
observed will be equal or greater for distributed belief, therefore the number of possible
realizations increases as well. Importantly, information transmitted by other robots im-
pacts both bRk and wRk . Furthermore, the classifier viewpoint-dependent model induces
coupling between localization uncertainty and classification of different robots.

We present a recursive formulation for maintaining each of the parts in (4.7). The
distributed measurement history HRk can be split to a prior part, and a new part,
defined as ∆HRk , that consists of measurements and actions from time k, s.t: HRk =
HRk−1 ∪ ∆HRk . Similarly, let Hrk

.= Hrk−1 ∪ {Zrk , ark−1} for the single robot case. Note

32

information in ∆HRk transmitted by other robots can potentially be from earlier time
instances (as each robot during communication transmits to robot r its own stack of
local beliefs of other robots, see Section 2.C). Crucially, each measurement must be used
once to avoid double counting. We also denote history without local measurements and
action at time k as

HR−
k

.=HRk \{Zrk , ark−1} , ∆HR−
k

.=∆HRk \{Zrk , ark−1}. (4.8)

Using the above notations, one can observe HR−
k = HRk−1 ∪ ∆HR−

k . Next, we detail
our approach for maintaining both the conditional continuous part bRk and the discrete
part wRk recursively for a realization of object classes CRk .

Maintaining bRk

First, we present a relation that is used in equation derivation; Let A be a random
variable conditioned on the set {Bi} of random variables Bi that are independent from
each other. By using Bayes Law, we can split the conditional probability P(A|{Bi}) to
a product of conditional probabilities:

P(A|{Bi}) = P({Bi}|A)P(A)
P({Bi})

=
∏
i P(Bi|A)∏
i P(Bi)

P(A). (4.9)

Using Bayes Law again on each element in the product, we reach the following expres-
sion:

P(A|{Bi}) =
∏
i

(P(A|Bi)
P(A)

)
P(A). (4.10)

This allow to express a random variable as a multiplication of conditionals, which will
be useful to separate local and external measurements.

Using Bayes rule, we rewrite bRk as:

bRk = η · Lrk · bR−
k (4.11)

where η .= P(Zrk |Crk ,HRk \Zrk)−1 is a normalization constant the does not participate in
inference of the continuous belief. The local measurement likelihood, Lrk, is defined in
Eq. (4.2).

The term bR−
k

.= P(XRk |CRk ,HRk \Zrk) is the distributed propagated belief that is
conditioned on information transmitted by other robots at time k, and on the latest
action of robot r but not on its local measurement. During update, bR−

k is saved to be
used in maintenance of wRk , as seen in the next subsection. Using chain rule, we can
extract the motion model of the latest action as well:

bR−
k =Mr

k · P(XRk \xrk|CRk ,H
R−
k). (4.12)

We can express P(XRk \xrk|CRk ,H
R−
k) in terms of the distributed continuous prior bRk−1

.=

33

P(XRk−1|CRk−1,HRk−1), and the new information received from other robots:

P(XRk \xrk|CRk ,HR−
k) = bRk−1 ·

P(X o,Rk |C
o,R
k ,∆HR−

k)
P(X o,Rk−1)

(4.13)

Recall splittingHR−
k into prior historyHRk−1 and non-local measurements & actions:

HR−
k = HRk−1 ∪∆HR−

k . (4.14)

We then use the above definition and relation (4.10) to split P(XRk \xrk|CRk ,H
R−
k) into

a product of two beliefs, one that depends on prior history, and one that depends on
external new measurements:

P(XRk \xrk|CRk ,HR−
k) = P(XRk \xrk|CRk)lP(XRk \xrk|CRk ,∆H

R−
k)

P(XRk \xrk|CRk)
P(XRk \xrk|CRk ,HRk−1)

P(XRk \xrk|CRk)
.

(4.15)
This formulation allows us to isolate the new information sent by other robots at time
k, from information already used for inference at previous times. Next, we have to
address that not all known objects are present in the sent local beliefs. Because the
priors are assumed independent between poses and classes, P(XRk \xrk|CRk) = P(XRk \xrk).
From P(XRk \xrk|CRk ,HRk−1) we can split XRk \xrk into poses of objects that are involved
in HRk−1 and ones that do not as:

P(XRk \xrk|CRk ,HRk−1) = P(X o,Rnew,k|C
R
new,k,HRk−1)P(XRk−1|CRk ,HRk−1). (4.16)

Poses of objects that r wasn’t aware of at time k − 1 are independent of HRk−1, and
without measurements, X o,Rnew,k are independent of CRnew,k as well. In addition, XRk−1 is
independent of classes of objects that are observed only at time k, thus we can write:

P(XRk \xrk|CRk ,HRk−1) = P(X o,Rnew,k) · P(XRk−1|CRk−1,HRk−1), (4.17)

which is the prior for poses of newly known objects at time step k, multiplied by the
conditional continuous belief for objects already known. Similarly to Eq. (4.17), the
prior for XRk \xrk is separated to previously known and new objects:

P(XRk \xrk) = P(X o,Rnew,k)P(XRk−1), (4.18)

therefore we can write:

P(XRk \xrk|CRk ,HRk−1)
P(XRk \xrk|CRk)

=
bRk−1

P(XRk−1)
, (4.19)

and substitute it into the rightmost fracture in Eq. (4.15). Then we cancel out P(XRk \xrk|CRk)

34

and proceed to remove r’s poses from the prior by:

P(XRk \xrk|CRk ,∆H
R−
k)

P(XRk−1)
=

P(X o,Rk |CRk ,∆H
R−
k)

P(X o,Rk−1)
, (4.20)

as robot r’s poses up until time k − 1 are independent from the new external mea-
surements. Finally, after factoring out P(XRk \xrk|CRk), and Eq. (4.19) and (4.20) with
Eq. (4.15) we reach the following expression that is used in the chapter:

P(XRk \xrk|CRk ,HR−
k) = bRk−1 ·

P(X o,Rk |C
o,R
k ,∆HR−

k)
P(X o,Rk−1)

(4.21)

Finally, we substitute Eq. (4.20) to Eq. (4.12) and in turn to Eq. (4.11), and get
the following recursive formulation:

bRk ∝ bRk−1 · Lrk · Mr
k · P(X o,Rnew,k)

P(X o,Rk |C
o,R
k ,∆HR−

k)
P(X o,Rk)

, (4.22)

where the measurement likelihood Lrk accounts for the new local measurement, Mr
k

accounts for the latest action of robot r, and P(X o,Rk |C
o,R
k ,∆HR−

k) (shown in blue)
accounts for new information sent to r by other robots in R at time k. This pdf
is only over object poses (X o,Rk), while the other robots’ poses are marginalized out.
Thus, robots communicate the environment states, which are implicitly affected by the
robots’ pose estimation. Computation of the blue part is further discussed in Sec. 2.C.
Compared to the local belief update (4.5), the blue part is the main difference. The
expression P(X o,Rnew,k) represents pose prior of objects newly known by r at time k.

The distributed belief has at worst MNk(R) continuous beliefs with corresponding
weights, where the number of objects Nk(R) known by r can increase with time. Nat-
urally, a multi-robot system will observe more objects than a single robot, therefore
the computational burden for distributed belief will be larger than for the local belief.
Therefore, the significance of pruning beliefs with small weight grows. We set a thresh-
old for the ratio between a weight and the largest weight in the distributed hybrid
belief.

Maintaining wRk

To maintain wRk , we use a similar derivation to the weight update via local information
only, presented in Sec. 2.A. We use Bayes rule to extract the last local measurement
likelihood:

wRk = η · wR−
k · P(Zrk |CRk ,HRk \Zrk), (4.23)

where wR−
k

.= P(CRk |HRk \Zrk) is the posterior distributed weight without accounting for
the latest local measurements, and η

.= P(Zrk |HRk \Zrk)−1 is a normalization constant
that is identical in all realizations of CRk , thus does not participate in weight inference.

35

As we use a viewpoint dependent classifier model that utilizes the coupling between
relative viewpoint and object class, we need to marginalize P(Zrk |CRk ,HRk \Zrk) over
the involved poses in this likelihood: the last robot pose xrk, and poses of objects
observed at time k. We denote the latter by X o,rβk , and to shorten notations denote
X rinv,k

.= {xrk,X
r,k
βk
}, and by ¬X rinv,k. Thus, P(Zrk |CRk ,HRk \Zrk) is marginalized as

P(Zrk |CRk ,HRk \Zrk) =
∫

X r
inv,k

Lrk · P(X rinv,k|Crk ,HRk \Zrk)dX rinv,k, (4.24)

where P(X rinv,k|Crk ,HRk \Zrk) is computed by marginalizing bR−
k over the uninvolved vari-

ables ¬X rinv,k, with XRk = X rinv,k ∪ ¬X rinv,k, as

P(X rinv,k|Crk ,HRk \Zrk) =
∫

¬X r
inv,k

bR−
k d¬X rinv,k. (4.25)

The propagated distributed belief bR−
k is given to us from the continuous belief with

Eq. (4.12), and includes the external information, shown in blue.
In practice, we sample the involved variables X rinv,k in the current measurement like-

lihood and compute its value. As bRk and Lrk are Gaussian, η does not play a role in the
sampling process. Despite the classifier outputs being modeled as Gaussian, we inte-
grate over poses; In the general case, expectation and covariance of the classifier model
are a function of the relative viewpoint, thus we need to sample X rinv,k as presented in
Sec. 2.A at Eq. (4.6).

The other term we will address from Eq. (4.23) is wR−
k . We express wR−

k in terms
of wRk−1:

wR−
k ∝ wRk−1 · P(CRk−1)−1 · P(CRk |∆H

R
k \Zrk). (4.26)

Finally, we substitute Eq. (4.24) and (4.26) to Eq. (4.23) to reach our final recursive
form for the discrete belief update:

wRk ∝ wRk−1 · P(CRnew,k)
P(CRk |∆HR

k \Zr
k)

P(CR
k

)
∫

X r
inv,k
Lrk·

·P(X rinv,k|Crk ,HRk \Zrk)dX rinv,k,
(4.27)

with P(X rinv,k|Crk ,HRk \Zrk) computed via Eq. (4.25). This is a recursive formulation that
includes the discrete prior wRk−1, external updates for the class probability from other
robots (shown in red), and the external updates for the continuous belief contained
within the integral.

Dependency Between Object Classes

One might be tempted to infer the class of each object separately, but it is not accurate
due to the coupling between relative viewpoint and object class, as each object class
is possibly implicitly dependent on all poses: robot and objects. We present a simple
example where c1 and c2 be the underlying classes of objects 1 and 2 respectively. Let

36

HR be the total measurement history, including semantic measurements zsem1 and zsem2

for objects 1 and 2 respectively. Recall that measurements are assumed independent
from each other. Using the Bayes Law:

P(c1, c2|HR) ∝ P(c1, c2|HR\zsem1 , zsem2)P(zsem1 |c1)P(zsem2 |c2). (4.28)

We use a viewpoint dependent classifier model, so we must marginalize P(zsem1 |c1)P(zsem2 |c2)
by the corresponding relative viewpoints, denoted xrel1 and xrel2 respectively:

P(zsem1 |c1)P(zsem2 |c2) =
∫
xrel1 ,xrel2

P(zsem1 |c1, x
rel
1)P(zsem2 |c2, x

rel
2)P(xrel1 , xrel2 |HR)dxrel1 dxrel2 .

(4.29)
From the above equation, the condition for c1 and c2 to be independent is that xrel1

and xrel2 must be independent, which is not true in the general case, thus c1 and c2 are
dependent.

2.C Communication Between Robots

In Sec. 2.B we presented a framework to maintain a hybrid belief of r given information
obtained from other robots in R. That information was represented by the continuous
blue expression in Eq. (4.22) and implicitly in Eq. (4.27), and the discrete red expression
in Eq. (4.27). In this section, we present our approach for computing these parts,
thus describing the management of this information and what each robot sends when
communicating. We aim to achieve two goals:

1. Simple double counting prevention when maintaining the distributed belief with-
out complex bookkeeping.

2. Distributed belief inference also via data not directly transmitted (e.g. robot r1

sends data to r2, r2 to r3, and r3 is using data from r1).

As will be shown next, the blue and red terms in Eqs. (4.22) and (4.27) can be expressed
via local information transmitted by different robots in R to robot r. To that end, each
robot r maintains and broadcasts a stack of local hybrid beliefs of other robots it is
aware of. In contrast to (4.4), these local beliefs are marginal beliefs over object poses
and classes, i.e. robot poses are marginalized out.

Each slot for robot r′ in the stack of robot r contains Nk(r′) continuous and discrete
marginal beliefs (defined below as ξr,r

′

k and ϕr,r
′

k), one pair per class realization, following
a factorization similar to (4.4). Additionally, each slot includes a time-stamp that
indicates on what data the local hybrid belief is conditioned upon. All in all, every
stack contains ∑|R|

i=1Nk(ri) continuous and discrete beliefs. Eq. (4.30) presents the
stack of robot r as a set of slots, where each slot contains a hybrid belief of a particular

37

robot ri ∈ R over object poses and classes, normalized by their priors.

Srk
.=
{(

P(X o,riki
|Criki ,H

ri
ki

)P(Criki |H
ri
ki

)
P(X o,riki

)P(Criki)
, ki

)}
ri∈R

, (4.30)

where ki is the time-stamp when robot r received information about ri. In general,
time ki is not synchronized with k. The marginal continuous and discrete beliefs that
robot r has about robot ri ∈ R are denoted ξr,rik

.= P(X o,riki
|Criki ,H

ri
ki

)/P(X o,riki
) for the

continuous part, and ϕr,rik
.= P(Criki |H

ri
ki

)/P(Criki) for the discrete part.

With these definitions of ξr,rik and ϕr,rik , it is possible to show that the blue part in
Eq. (4.22) can be expressed as:

P(X o,Rk |CRk ,∆H
R−
k)

P(X o,Rk)
=
∏
ri∈R

ξr,rik

ξr,rik−1
(4.31)

Similarly, the red term in Eq. (4.27) can be expressed as:

P(CRk |∆H
R
k \Zrz)

P(CRk)
=
∏
ri∈R

ϕr,rik

ϕr,rik−1
. (4.32)

Eqs. (4.31) and (4.32) present the external update as a product of local beliefs, with
only the updates from k−1 for robot r are present. The full derivation of these expres-
sion is shown in the next two subsections. This formulation avoids double counting by
removing old information, ξr,rik−1 and ϕr,rik−1, in each communication and uses measure-
ments only once. Specifically for ξr,rik−1, we use the approach presented in [63]. Doing
so by maintaining stacks of individual information does not require complex book-
keeping, only time-stamps for each slot; Thus we fulfill the first goal. Robots can also
relay information transmitted to them, thus the distributed belief can be updated by
information from robots that did not transmit to the inferring robot, thus fulfilling the
second goal.

Robot ri sends the entire stack during information broadcast. When robot r receives
information, it integrates the broadcast in as follows: recall that ri’s stack is divided to
slots, with a time stamp per each slot. Robot r compares time stamps with the received
information per slot, and replaces the information within the slot if the received time
stamps is newer. If r receives information from more than one other robot at the same
time, it will select the newest information per slot. This procedure is dependent on the
relations between time-stamps, thus it is not necessary to synchronize time between
the robots.

38

Derivation of P(X o,R
k

|CRk ,∆HR−
k

)
P(X o,R

k
)

(Continuous Belief Update)

Using the relation (4.10) we can split the blue part by separating the new measurements
and actions per robot, excluding r itself as it is not present in ∆HR−

k :

P(X o,Rk |C
R
k ,∆HR−

k) =
∏

k′,r′∈R\r

(
P(X o,Rk′ |Cr

′
k′ ,∆Hr

′
k′)

P(X o,Rk′)

)
P(X o,Rk). (4.33)

From that, we will address every element in the product. Poses of objects that r′

doesn’t observe locally can be canceled out as follows, leaving only the object poses
that r′ observed:

P(X o,Rk′ |Cr
′
k′ ,∆Hr

′
k′)

P(X o,Rk′)
=

P(X o,r
′

k′ |Cr
′
k′ ,∆Hr

′
k′)

P(X o,r
′

k′)
. (4.34)

Then, using relation (4.10) again, we can expand P(X o,r
′

k′ |Cr
′
k′ ,Hr

′
k′) to separate between

known prior and new measurements:

P(X o,r
′

k′ |Cr
′
k′ ,Hr

′
k′) = P(X o,r

′

k′)
P(X o,r

′

k′ |Cr
′
k′ ,Hr

′
k′−l′)

P(X o,r
′

k′)
P(X o,r

′

k′ |Cr
′
k′ ,∆Hr

′
k′)

P(X o,r
′

k′)
, (4.35)

with l′ being the time difference between subsequent slots of r (that can be 0 if the
slot isn’t updated). Then we take out all the poses that aren’t dependent on the prior
information, and we reach the definition of ξr,r

′

k−1, i.e. the marginal object poses at the
previous time.

P(X o,r
′

k′ |Cr
′
k′ ,Hr

′
k′−l′)

P(X o,r
′

k′)
=

P(X o,r
′

k′−l′ |Cr
′
k′−l′ ,Hr

′
k′−l′)

P(X o,r
′

k′−l′)
.= ξr,r

′

k−1. (4.36)

With the definition of ξr,r
′

k , and by substituting Eq. (4.36) into Eq. (4.35) we reach the
expression for a single element of the product in Eq. (4.33):

P(X o,r
′

k′ |Cr
′
k′ ,∆Hr

′
k′)

P(X o,r
′

k′)
=
ξr,r

′

k

ξr,r
′

k−1
. (4.37)

Finally, substituting Eq. (4.37) we reach the expression for the external continuous
update belief:

P(X o,Rk |CRk ,∆H
R−
k)

P(X o,Rk)
=
∏
r′∈R

ξr,r
′

k

ξr,r
′

k−1
. (4.38)

Derivation of P(CRk |∆HR−
k

)
P(CR

k
) (Discrete Belief Update)

The discrete belief update is similar to the continuous in its derivation, with probability
over class realization, rather than object poses. Again, using the relation (4.10) we can
split the red part by separating the new measurements and actions per robot, excluding

39

r itself as it is not present in ∆HR−
k :

P(CRk |∆HR−
k) =

∏
k′,r′∈R\r

(
P(CRk′ |∆Hr

′
k′)

P(CRk′)

)
P(CRk′) (4.39)

From that, we will address every element in the product. Classes of objects that r′

doesn’t observe locally can be canceled out as follows, leaving only the classes of object
that r′ observed:

P(CRk′ |∆Hr
′
k′)

P(CRk′)
= P(Cr′

k′ |∆Hr
′
k′)

P(Cr′
k′)

. (4.40)

Then, using relation (4.10) again, we can expand P(Cr′
k′ |Hr

′
k′) to separate between known

prior and new measurements:

P(Cr′
k′ |Hr

′
k′) = P(Cr′

k′)
P(Cr′

k′ |Hr
′
k′−l′)

P(Cr′
k′)

P(Cr′
k′ |∆Hr

′
k′)

P(Cr′
k′)

, (4.41)

with l′ being the time difference between subsequent slots of r (that can be 0 if the
slot isn’t updated). Then we take out all the classes of objects that not appear in prior
information, and we reach the definition of ϕr,r

′

k−1, i.e. the marginal object poses at the
previous time.

P(Cr′
k′ |Hr

′
k′−l′)

P(Cr′
k′)

=
P(Cr′

k′−l′ |Hr
′
k′−l′)

P(Cr′
k′−l′)

.= ϕr,r
′

k−1 (4.42)

With the definition of ϕr,r
′

k , and by substituting Eq. (4.42) into Eq. (4.41) we reach the
expression for a single element of the product in Eq. (4.39):

P(Cr′
k′ |∆Hr

′
k′)

P(Cr′
k′)

=
ϕr,r

′

k

ϕr,r
′

k−1
(4.43)

Finally, substituting Eq. (4.43) we reach the expression for the external continuous
update belief:

P(CRk |∆H
R−
k)

P(CRk)
=
∏
r′∈R

ϕr,r
′

k

ϕr,r
′

k−1
. (4.44)

In the following section we discuss double counting aspects of discrete random
variables, corresponding to Eq. (4.44).

2.D Double Counting of Discrete Random Variables

Double counting leads to over-confident estimations, and if an erroneous measurement
is counted multiple times, it may lead to a large error in the state’s estimation in turn.
While the implications of double counting on continuous random variables (e.g. camera
poses and objects) have been investigated, it is not so for discrete random variables.
Both cases have a common thread: measurements counted multiple times will ’push’
the posterior estimation to a certain direction while leading to lower uncertainty than

40

when double counting is appropriately avoided (i.e. each measurement is used at most
once). In the continuous Gaussian case, it manifests in a covariance matrix with smaller
eigenvalues. Comparatively, in the discrete case the highest probability category will
have its probability increase while the probability of not being in this category decreases.

To illustrate the above, consider an example with a categorical random variable c; we
receive two sets of data Za = {z1, z2}, and Zb = {z2, z3}, with a common measurement
z2. Considering a measurement likelihood P(z|c), the posterior over c is (see e.g. Bailey
et al. [108]):

P(c|Za, Zb)∝P(c)P(Za, Zb|c)=P(c)P(z1|c)P(z2|c)2P(z3|c)
P(z2|c)

. (4.45)

If the common data (measurement z2) is not removed via the denominator in Eq. (4.45),
it will be double counted. Compared to Eq. (4.44), the above nominator and denomi-
nator correspond, respectively, to the terms ϕr,rik and ϕr,rik−1.

Denote P(z2|c = i) .= ai, and to shorten the notations P(c = i)P(z1|c = i)P(z3|c = i) .=
Li. The normalized posterior can be written as:

P(c = i|Za, Zb) = aiLi∑m
j=1 ajLj

= a2
iLi∑m

j=1 ajLj · ai
(4.46)

where m is the number of candidate categories. Double counting, i.e. without the
denominator in Eq. (4.45), gives after normalization a2

iLi∑m

j=1 a
2
jLj

.

The largest ai is denoted amax, with imax being the category corresponding to amax,
and subsequently the product of all other terms for imax is denoted Lmax. Double
counting of P(z2|ci) will increase the probability of imax:

P(c = imax|Za, Zb) = a2
maxLmax∑m

j=1 ajLj · amax
≤ a2

maxLmax∑m
j=1 a

2
jLj

. (4.47)

Similarly, it can be shown that with higher power (i.e. counting the data more) can
increase the posterior probability even further; In addition, the reverse can be shown for
the lowest probability in a. This increase in influence can be disastrous if the category
of the highest probability likelihood is not correct, possibly leading to pruning of the
correct class hypothesis when maintaining the hybrid belief (4.3).

A visualization can be seen in Fig. 4.1, where there are 4 categories with uninformed
prior and a measurement likelihood; in Figs. 4.1a, 4.1b and 4.1c the likelihood is counted
once, twice and thrice respectively. Evidently, the strongest category’s probability (cat.
3) is increased when counted more times while all other have their probability diminish.

41

1 2 3 4
0

0.2

0.4

0.6

0.8

1

(a)

1 2 3 4
0

0.2

0.4

0.6

0.8

1

(b)

1 2 3 4
0

0.2

0.4

0.6

0.8

1

(c)

Figure 4.1: Conceptual demonstration of the effects of double counting on discrete random variables. Consider
4 possible categories with an uninformative prior over them. (a) is the measurement likelihood for the categories.
Considering the uninformative prior, it is the posterior distribution as well. (b) and (c) counts the same
likelihood twice and thrice respectively.

4.3 Experiments

We evaluated our approach in a multi-robot SLAM simulation and with real-world
data where we consider an environment comprising several scattered objects observed
by multiple mobile cameras from different viewpoints. Fig. 4.2a and Fig. 4.13a present
the ground truth for simulation and experiment respectively. Our implementation uses
the GTSAM library [107] with a python wrapper. The hardware used is an Intel i7-
7700 processor running at 2.8GHz and 16GB RAM, with GeForce GTX 1050Ti with
4GB RAM.

3.A Simulation Setting, Compared Approaches and Metrics

Consider 3 robots, denoted r1, r2, and r3, moving in a 2D environment represented by
N = 15 scattered objects. We consider a closed-set setting and assume, for simplicity,
M = 2 classes, where each object can be one of the two. In this scenario the maximum
number of possible class realizations is MN = 32768.

Our approach is evaluated for both classification, and pose inference accuracy, as we
maintain a hybrid belief. We consider an ambiguous scenario where the classifier model
cannot distinguish between the two classes from a certain viewpoint, thus requiring
additional viewpoints to correctly disambiguate between the two classes. The robots
communicate between themselves, increasing performance for discrete and continuous
variables, i.e. classification and SLAM. Additionally, the distributed setting extends the
sensing horizon, allowing robots to reason about objects that are not directly observed,
while keeping estimation consistency.

Each robot only communicates with robots within a 10 meter communication range,
relaying the local information stored in its stack. In particular, initially r2 and r3 share
information with each other, then r1 and r2, relaying information from r3 through r2.
For a complete table of communication in the considered scenario, see Appendix A.1.
Further, we assume the robots share a common reference frame (this assumption can be
relaxed as in [66]). We simulate relative pose odometry and geometric measurements,
and we crafted a classifier model that simulates perceptual aliasing.

42

In the evaluation we compare between three approaches: local estimations, our
approach, and our approach with double counting, i.e. ξr,rik−1 = 1 and ϕr,rik−1 = 1 in
Eq. (4.31) and (4.32) respectively. In all benchmarks we average the results for each
robot.

We consider a motion model with noise covariance Σw = diag(0.003, 0.003, 0.001),
and geometric model with noise covariance Σgeo

v = diag(0.1, 0.1, 0.01), both correspond-
ing to position coordinates in meters and orientation in radians.

Our semantic model parameters are defined as:

hc(c = 1, ψ) .= [0.25 · sin(ψ) + 0.75, 0.25(1− sin(ψ))]T

hc(c = 2, ψ) .= [0.25(1− sin(ψ)), 0.25 · sin(ψ) + 0.75]T ,

where hc(c = i, ψ) ∈ RM is the predicted probability vector given object class c
is i. Recall that our semantic measurements zsem,rk are probability vectors as well. ψ
is the relative orientation between robot and object, computed from the relative pose
xrelk

.= xo⊖xk. The measurement covariance is defined via the square root information

matrix, such that Σc
.= (RTR)−1, and R =

[
1.5 −0.75
0 1.5

]
. Both the geometric and

semantic measurements are limited to 10 meters from the robot’s pose. The highest
probability for ambiguous class measurements is at ψ = −90◦, where hc = [0.5, 0.5]T

for both classes.

− 8 − 6 − 4 − 2 0 2

X axis [m]

− 7.5

− 5.0

− 2.5

0.0

2.5

5.0

7.5

Y
 a

x
is

 [
m

]

O1

O2

O3
O4

O5
O6

O7

O8

O9

O10
O11

O12

O13

O14

O15

R1

O1

O2

O3
O4

O5
O6

O7

O8

O9

O10
O11

O12

O13

O14

O15

R2

O1

O2

O3
O4

O5
O6

O7

O8

O9

O10
O11

O12

O13

O14

O15

R3

(a) Ground Truth

0 20 40 60

Time step

0

0.2

0.4

0.6

0.8
No communication

Distributed

Double Counting

(b) Robot position

0 20 40 60

Time step

0.1

0.2

0.3

0.4

0.5

0.6
No communication

Distributed

Double Counting

(c) Object position

0 20 40 60

Time step

0

0.01

0.02

0.03

0.04
No communication

Distributed

Double Counting

(d) Robot covariance

0 10 20 30 40

Time step

0

0.01

0.02

0.03

0.04

0.05

0.06
No communication

Distributed

Double Counting

(e) Object covariance

Figure 4.2: Simulation figures; (a) present the ground truth of the scenario. Red points represent the initial
position of the robots, with different colored lines represent different robots. The green points represent the
object poses. (b) and (c) represent the average x̃wavg for robot and object position respectively as a function
of time. (d) and (e) present the corresponding square-root of the position covariance for the robot and object
average respectively.

43

0 20 40 60

Time step

0

0.02

0.04

0.06

0.08

0.1

0.12
M

S
D

E
No communication

Distributed

Double Counting

(a) MSDE

− 10 − 5 0 5
X axis [m]

− 5

0

5

Y
 a

x
is

 [
m

]

O1

O2

O3
O4

O5
O6

O7

O8

O9

O10
O11

O12

O13

O14

O15

(b) Local

O
b
je

c
t

7

O
b
je

c
t

8

O
b
je

c
t

1

O
b
je

c
t

1
3

O
b
je

c
t

5

O
b
je

c
t

1
4

O
b
je

c
t

1
0

O
b
je

c
t

1
1

O
b
je

c
t

1
5

O
b
je

c
t

3

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

X X X X X X X

X X

X

(c) Local

− 10 − 5 0 5
X axis [m]

− 5

0

5

Y
 a

x
is

 [
m

]

O1

O2

O3
O4

O5
O6

O7

O8

O9

O10
O11

O12

O13

O14

O15

(d) Distributed

O
b
je

c
t

7

O
b
je

c
t

8

O
b
je

c
t

1

O
b
je

c
t

4

O
b
je

c
t

2

O
b
je

c
t

3

O
b
je

c
t

1
3

O
b
je

c
t

1
5

O
b
je

c
t

1
2

O
b
je

c
t

1
1

O
b
je

c
t

9

O
b
je

c
t

5

O
b
je

c
t

1
4

O
b
je

c
t

6

O
b
je

c
t

1
0

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

X X X X

X

X X

X

X

X X

X X

X

X

(e) Distributed

Figure 4.3: (a) presents average MSDE for the robots over 100 runs with different measurements. The rest are
figures for time k = 60 of r1. (b) and (d) represent multiple SLAM hypotheses for local and distributed setting
respectively; Black dots with gray ellipse represent object pose estimation, red & blue signs with red ellipse
represent robot pose estimation. Green and red points represent ground truth for object and robot positions
respectively. (c) and (e) represent class probabilities for c = 1 for objects observed thus far for local and
distributed respectively. The X notations represent ground truth (1 for class c = 1, 0 for class c = 2).

As explained in Sec. 2.D, when double counting occurs, the posterior class probabil-
ity will converge to extreme results quicker, and may result on either completely right
or wrong classifications. Therefore, reasoning about a single run is insufficient, and a
statistical study is required. To quantify classification accuracy, we sample 100 times
different geometric and semantic measurements, and perform a statistical study over
the results. For that, we use mean square detection error (MSDE) averaged over all
objects, robots, and runs (also used by Teacy et al. [15] and Feldman & Indelman [16]).
We define MSDE per robot and object as follows:

MSDE
.= 1
m

m∑
i=1

(Pgt(c = i)− P(c = i|HRk))2, (4.48)

where Pgt(c = i) represents the classification ground truth and can be either 1 for
the correct class or 0 for all other classes. Therefore MSDE = 1 for completely
incorrect classification, thus allowing us to perform statistical study of the effects of
double counting of discrete random variables. To quantify localization accuracy, we use
estimation error x̃wavg which is the weighted average of Euclidean distance between the
estimated and ground truth poses.

3.B Simulation Results

Fig. 4.2 presents results for continuous variables, i.e. robot and object poses. Figs. 4.2b
and 4.2c show a clear advantage to our approach, where the localization error is the
smallest for robots and objects respectively after the first 10 time steps. In Figs. 4.2d

44

and 4.2e the estimation covariance is presented, where the double counted approach
has the smallest values as expected. Fig. 4.2e shows ’spikes’ in the average objects’
position covariance; these correspond to new object detections where the localization
uncertainty is still high.

Fig. 4.3 visualizes classification and estimations at time k = 60 for local only and
for distributed beliefs of robot r2. At that time, robot r2 communicated earlier with
r3, and for the first time communicates with r1. When comparing Fig. 4.3b (local) to
Fig. 4.3d (distributed), the number of possible class realizations is reduced. In addition,
the estimate of r2’s pose, as well as the objects, is more certain and accurate. When
comparing Figs. 4.3c and 4.3e, the latter presents a larger map, i.e. more objects
observed, and the class estimations (classification) are closer to the ground truth.

Fig. 4.3a presents the average MSDE over 100 runs, where as a whole our approach
shows lower MSDE values, i.e. statistically stronger classification results. In supple-
mentary material [109, Sec. 8] we present additional classification and SLAM results.

In Fig. 4.4, 4.5, 4.6, and 4.7 we show the beliefs at various stages of the path.

− 10 − 5 0 5
X axis [m]

− 5

0

5

Y
 a

x
is

 [
m

]

O1

O2

O3
O4

O5
O6

O7

O8

O9

O10
O11

O12

O13

O14

O15

(a) Local SLAM r2

O
b
je

c
t

4

O
b
je

c
t

2

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

X

X

(b) Local classification r2

− 10 − 5 0 5
X axis [m]

− 5

0

5

Y
 a

x
is

 [
m

]

O1

O2

O3
O4

O5
O6

O7

O8

O9

O10
O11

O12

O13

O14

O15

(c) Local SLAM r3

O
b
je

c
t

3

O
b
je

c
t

4

O
b
je

c
t

2

O
b
je

c
t

1
2

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

X X

X

X

(d) Local classification r3

Figure 4.4: Figures for robot r2 and r3, local beliefs for time k = 15 and k = 20 respectively. (a) and (b)
show results for r2, (c) and (d) for r3. (a) and (c) present SLAM results, (b) and (d) present classification
results.

The results of all the graphs support the paper results, where both classification
and SLAM in general are more accurate for the distributed belief. In addition, the
robots inferring the distributed belief take into account objects that they didn’t observe
directly.

In Fig. 4.8 we show the time each inference time-step takes to compute for the
distributed case, without and with double-counting. In general, computation time is
influenced by the number of class realizations that aren’t pruned, and is higher when
robots communicate between each other. For each newly observed object the algorithm

45

− 10 − 5 0 5
X axis [m]

− 5

0

5

Y
 a

x
is

 [
m

]

O1

O2

O3
O4

O5
O6

O7

O8

O9

O10
O11

O12

O13

O14

O15

(a) Dis. SLAM r2

O
b
je

c
t

4

O
b
je

c
t

3

O
b
je

c
t

2

O
b
je

c
t

7

O
b
je

c
t

8

O
b
je

c
t

1

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

X X

X

X X X

(b) Dis. classification r2

− 10 − 5 0 5
X axis [m]

− 5

0

5

Y
 a

x
is

 [
m

]

O1

O2

O3
O4

O5
O6

O7

O8

O9

O10
O11

O12

O13

O14

O15

(c) Dis. SLAM r3

O
b
je

c
t

3

O
b
je

c
t

4

O
b
je

c
t

2

O
b
je

c
t

7

O
b
je

c
t

8

O
b
je

c
t

1

O
b
je

c
t

1
3

O
b
je

c
t

1
5

O
b
je

c
t

1
2

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

X X

X

X X X X

X

X

(d) Dis. classification r3

Figure 4.5: Figures for robot r2 and r3, distributed beliefs for time k = 15 and k = 20 respectively. (a) and
(b) show results for r2, (c) and (d) for r3. (a) and (c) present SLAM results, (b) and (d) present classification
results.

− 10 − 5 0 5
X axis [m]

− 5

0

5

Y
 a

x
is

 [
m

]

O1

O2

O3
O4

O5
O6

O7

O8

O9

O10
O11

O12

O13

O14

O15

(a) Local SLAM r2

O
b
je

c
t

4

O
b
je

c
t

2

O
b
je

c
t

3

O
b
je

c
t

1
5

O
b
je

c
t

1
1

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

X

X

X

X X

(b) Local classification r2

− 10 − 5 0 5
X axis [m]

− 5

0

5

Y
 a

x
is

 [
m

]

O1

O2

O3
O4

O5
O6

O7

O8

O9

O10
O11

O12

O13

O14

O15

(c) Local SLAM r1

O
b
je

c
t

7

O
b
je

c
t

8

O
b
je

c
t

1

O
b
je

c
t

1
3

O
b
je

c
t

5

O
b
je

c
t

1
4

O
b
je

c
t

1
0

O
b
je

c
t

1
1

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

X X X X X X X

X

(d) Local classification r1

Figure 4.6: Figures for robot r2 and r1, local beliefs for time k = 25 and k = 50 respectively. (a) and (b)
show results for r2, (c) and (d) for r1. (a) and (c) present SLAM results, (b) and (d) present classification
results.

46

− 10 − 5 0 5
X axis [m]

− 5

0

5

Y
 a

x
is

 [
m

]

O1

O2

O3
O4

O5
O6

O7

O8

O9

O10
O11

O12

O13

O14

O15

(a) Dis. SLAM r2

O
b
je

c
t

4

O
b
je

c
t

3

O
b
je

c
t

2

O
b
je

c
t

7

O
b
je

c
t

8

O
b
je

c
t

1

O
b
je

c
t

1
5

O
b
je

c
t

1
3

O
b
je

c
t

1
2

O
b
je

c
t

1
1

O
b
je

c
t

9

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

X X

X

X X X

X

X X

X X

(b) Dis. classification r2

− 10 − 5 0 5
X axis [m]

− 5

0

5

Y
 a

x
is

 [
m

]

O1

O2

O3
O4

O5
O6

O7

O8

O9

O10
O11

O12

O13

O14

O15

(c) Dis. SLAM r1

O
b
je

c
t

7

O
b
je

c
t

8

O
b
je

c
t

1

O
b
je

c
t

4

O
b
je

c
t

2

O
b
je

c
t

3

O
b
je

c
t

1
3

O
b
je

c
t

1
5

O
b
je

c
t

1
2

O
b
je

c
t

1
1

O
b
je

c
t

9

O
b
je

c
t

5

O
b
je

c
t

1
4

O
b
je

c
t

6

O
b
je

c
t

1
0

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

X X X X

X

X X

X

X

X X

X X

X

X

(d) Dis. classification r1

Figure 4.7: Figures for robot r2 and r1, distributed beliefs for time k = 25 and k = 50 respectively. (a) and
(b) show results for r2, (c) and (d) for r1. (a) and (c) present SLAM results, (b) and (d) present classification
results.

must consider all realizations for the said object, thus the computation time ”spikes”
at the first step the new object is observed.

0 20 40 60

Time step

0

0.5

1

1.5

2

2.5

C
o

m
p

.
ti
m

e
 p

e
r

s
te

p
 [

s
]

Distributed

Double Counting

Figure 4.8: Calculation time as a function of the time step in seconds.

47

3.C Experiment Setting

In our scenario 3 robots are moving within an environment with multiple objects within
it. We scattered 6 chairs within the environment and photographed them using a
camera on a stand, keeping a constant height. The chairs were detected with YOLO3
DarkNet detector [110], which provided bounding boxes, and then each bounding box
was classified using a ResNet50 convolutional neural network [4]. We considered 3
candidate classes out of 1000: ’barber chair’, ’punching bag’, and ’traffic light’, as c =
1, 2, 3 respectively with c = 1 being the ground truth class. We trained three viewpoint-
dependent classifier models using three sets of relative pose and class probability vector
pairs, with the spatial parameters being the yaw and pitch angles from camera to object;
For the ground truth class we photographed an objects from multiple viewpoints, and
then classified it using ResNet 50. For the other two classifier models, we sampled class
probability vectors with larger probability for the corresponding class of the model,
and used the same relative poses as the first model.

In the experiment (deployment phase), we utilized both geometric and semantic
measurements, using the corresponding (learned) measurement likelihood models. Rel-
ative pose geometric measurements for odometry and between camera and objects were
generated by corrupting ground truth with Gaussian noise, while the semantic mea-
surements are provided by YOLO3 and ResNet from real images. The same metrics as
the simulation are used here.

We consider a motion model with noise covariance Σw = diag(0.0003, 0.0003, 0.0001),
and geometric model with noise covariance Σgeo

v = diag(0.04, 0.04, 0.005), both corre-
sponding to position coordinates in meters and orientation in radians. We simulated
noisy odometry and geometric measurements, while using YOLO3 to create object pro-
posals and a classifier to classify them. The communication radius in this scenario is 3
meters. The robot’s and chair ground truth was measured via motion capture cameras
with OptiTrack. The chairs’ center of mass is used as a frame of reference for relative
poses.

The classifier used in our experiment is the Pytorch implementation of ResNet 50,
pre-trained on ImageNet dataset [111]. We trained three classifier models, one per each
class. Class c = 1 is ’Barber Chair’ and is considered our ground truth. Class c = 2 is
’Punching Bag’ and class c = 3 is ’Traffic Light’. We trained the classifiers using pairs
of relative pose and probability vectors; for c = 1, we used images of a chair used in
the experiment, while for c = 2 and c = 3, we sampled measurements from Dirichlet
Distribution with parameters α = [5, 15, 3] and α = [5, 3, 15] respectively. Each relative
pose was parametrized by the relative yaw angle ψ, and the relative θ, with the camera
being viewed from the object’s frame of reference.

Fig. 4.9 presents 4 of the images used in the experiment, with bounding boxes for
the chairs. Fig. 4.10, Fig 4.11, and 4.12 present the trained expected probability values
for each relative ψ and θ values, i.e. P(zsem|c = i, ψ, θ) for each figure with different i.

48

Each subfigure (a) to (c) representing measurement probability of class c = 1 to c = 3
respectively.

Figure 4.9: Four of the experiment images shown with corresponding bounding boxes.

ψ[rad]

−3 −2 −1 0 1 2 3
θ[ra

d]

0.2
0.4

0.6
0.8

1.0
1.2

Pr
ed

ict
ed

 p
ro
ba

bi
lit
y

0.5

0.6

0.7

0.8

0.9

(a) c = 1 model, c = 1 prob.

ψ[rad]

−3
−2

−1
0

1
2

3
θ[ra

d]

0.2
0.4

0.6
0.8

1.0
1.2

Pr
ed

ict
ed

 p
ro
ba

bi
lit
y

0.1
0.2

0.3

0.4

0.5

(b) c = 1 model, c = 2 prob.

ψ[rad]

−3
−2

−1
0

1
2

3
θ[ra

d]

0.2
0.4

0.6
0.8

1.0
1.2

Pr
ed

ict
ed

 p
ro
ba

bi
lit
y

0.1

0.2

0.3

0.4

(c) c = 1 model, c = 3 prob.

Figure 4.10: Classifier model for c = 1, trained on real images: probabilities of classes 1 to 3 depending on
relative yaw and pitch angles presented i (a) to (c) respectively. Higher surfaces go have bluer color.

ψ[rad]

−3
−2

−1
0

1
2

3
θ[rad

]

0.2
0.4

0.6
0.8

1.0
1.2

Pr
ed

ict
ed

 p
ro
ba

bi
lit
y

0.17
0.18
0.19
0.20
0.21
0.22
0.23

(a) c = 2 model, c = 1 prob.

ψ[rad]

−3
−2

−1
0

1
2

3
θ[ra

d]

0.2
0.4

0.6
0.8

1.0
1.2

Pr
ed

ict
ed

 p
ro
ba

bi
lit
y

0.68
0.70
0.72
0.74
0.76
0.78

(b) c = 2 model, c = 2 prob.

ψ[rad]

−3 −2
−1

0
1

2
3

θ[ra
d]

0.2
0.4

0.6
0.8

1.0
1.2

Pr
ed

ict
ed

 p
ro
ba

bi
lit
y

0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11

(c) c = 2 model, c = 3 prob.

Figure 4.11: Classifier model for c = 2, trained on real images: probabilities of classes 1 to 3 depending on
relative yaw and pitch angles presented i (a) to (c) respectively. Higher surfaces go have bluer color.

ψ[rad]

−3 −2 −1 0 1 2 3
θ[rad

]
0.2

0.4
0.6

0.8 1.0 1.2

Pr
ed

ict
ed

 p
ro
ba

bi
lit
y

0.16

0.18

0.20

0.22

0.24

(a) c = 3 model, c = 1 prob.

ψ[rad]

−3 −2 −1 0 1 2 3 θ[rad
]

0.2
0.4

0.6
0.8

1.0 1.2

Pr
ed

ict
ed

 p
ro
ba

bi
lit
y

0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13

(b) c = 3 model, c = 2 prob.

ψ[rad]

−3
−2

−1
0

1
2

3
θ[rad

]
0.2

0.4
0.6

0.8
1.0

1.2

Pr
ed

ict
ed

 p
ro
ba

bi
lit
y

0.68
0.70

0.72

0.74

0.76

(c) c = 3 model, c = 3 prob.

Figure 4.12: Classifier model for c = 3, trained on real images: probabilities of classes 1 to 3 depending on
relative yaw and pitch angles presented i (a) to (c) respectively. Higher surfaces go have bluer color.

49

− 1 0 1

X axis [m]

− 2

− 1

0

1

2
Y
 a

x
is

 [
m

]

O1
O2

O3

O4
O5

O6

R1

O1
O2

O3

O4
O5

O6

R2

O1
O2

O3

O4
O5

O6

R3

(a) Ground Truth

0 10 20 30 40

Time step

0

0.05

0.1

0.15

0.2

0.25

0.3
No communication

Distributed

Double Counting

(b) Robot position

0 10 20 30 40

Time step

0

0.05

0.1

0.15

0.2

0.25

0.3

No communication

Distributed

Double Counting

(c) Object position

0 10 20 30 40

Time step

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
No communication

Distributed

Double Counting

(d) Robot covariance

0 10 20 30 40

Time step

0

0.01

0.02

0.03

0.04

No communication

Distributed

Double Counting

(e) Object covariance

Figure 4.13: Experiment figures; (a) present the ground truth of the scenario. Red points represent the initial
position of the robots, with different colored lines represent different robots. The green points represent the
object poses. (b) and (c) represent the average x̃wavg for robot and object positions respectively as a function
of time for the experiment. (d) and (e) present the corresponding square-root of the position covariance for the
robot and object average respectively.

3.D Experimental Results

Fig. 4.13 presents SLAM results for the same benchmarks as in Fig. 4.2. Figs. 4.13b
and 4.13c present an average x̃wavg over all robots for robot and object positions, re-
spectively. In general, the advantage of our approach is evident with lower errors. In
addition, Figs. 4.13d and 4.13e present a similar pattern to Figs. 4.2d and 4.2e, respec-
tively, where the covariance of our approach is smaller than the single robot case, but
larger than the over-confident double counting case.

For classification results, Fig. 4.14a shows the average MSDE per robot as a function
of time step, where eventually our approach out-performs both the single robot and
the double counting cases, with higher probability for the correct class realization. In
Fig. 4.14, SLAM and classification results for Robot 2 at time step k = 35 are presented,
showing similar resulting trends to Fig. 4.3. Comparing Fig. 4.14b and Fig. 4.14d, the
later shows more accurate SLAM compared to the former, with less class realizations.
In addition, compared to Fig. 4.14e, Fig. 4.14c shows more accurate classification with
an additional object classified.

The results of all the graphs support the paper results as well, where both classifi-
cation and SLAM in general are more accurate for the distributed belief. In addition,
the robots inferring the distributed belief take into account objects that they didn’t
observe directly.

In Fig. 4.19 we show the time each inference time-step takes to compute for the
distributed case, without and with double-counting. In general, computation time is
influenced by the number of class realizations that aren’t pruned, and is higher when

50

0 10 20 30 40

Time step

0

0.05

0.1

0.15

0.2

M
S

D
E

No communication

Distributed

Double Counting

(a) MSDE

− 3 − 2 − 1 0 1 2 3
X axis [m]

− 3

− 2

− 1

0

1

2

3

Y
 a

x
is

 [
m

]

O1
O2O3

O4
O5

O6

(b) Local

O
b
je

c
t

5

O
b
je

c
t

1

O
b
je

c
t

4

O
b
je

c
t

6

O
b
je

c
t

3

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

(c) Local

− 3 − 2 − 1 0 1 2 3
X axis [m]

− 3

− 2

− 1

0

1

2

3

Y
 a

x
is

 [
m

]

O1
O2O3

O4
O5

O6

(d) Distributed

O
b
je

c
t

5

O
b
je

c
t

3

O
b
je

c
t

1

O
b
je

c
t

4

O
b
je

c
t

6

O
b
je

c
t

2

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

(e) Distributed

Figure 4.14: (a) presents average MSDE for the robots over 100 runs with different measurements. The rest
are figures for time k = 35 of r2. (b) and (d) represent multiple SLAM hypotheses for local and distributed
setting respectively; Black dots with gray ellipse represent object pose estimation, red & blue signs with red
ellipse represent robot pose estimation. Green and red points represent ground truth for object and robot poses
respectively. (c) and (e) represent class probabilities for c = 1 and c = 2 for objects observed thus far for local
and distributed respectively, with blue and orange for classes 1 and 2 respectively. In this case, the ground truth
class of all objects is c = 1.

− 3 − 2 − 1 0 1 2 3
X axis [m]

− 3

− 2

− 1

0

1

2

3

Y
 a

x
is

 [
m

]

O1
O2O3

O4
O5

O6

(a) Local SLAM r3

O
b
je

c
t

1

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

(b) Local classification r3

− 3 − 2 − 1 0 1 2 3
X axis [m]

− 3

− 2

− 1

0

1

2

3

Y
 a

x
is

 [
m

]

O1
O2O3

O4
O5

O6

(c) Local SLAM r2

O
b
je

c
t

5

O
b
je

c
t

1

O
b
je

c
t

4

O
b
je

c
t

6

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

(d) Local classification r2

Figure 4.15: Figures for robot r3 and r2, local beliefs for time k = 15 and k = 20 respectively. (a) and (b)
show results for r3, (c) and (d) for r2. (a) and (c) present SLAM results, (b) and (d) present classification
results.

51

− 3 − 2 − 1 0 1 2 3
X axis [m]

− 3

− 2

− 1

0

1

2

3

Y
 a

x
is

 [
m

]

O1
O2O3

O4
O5

O6

(a) Dis. SLAM r3

O
b
je

c
t

1

O
b
je

c
t

5

O
b
je

c
t

3

O
b
je

c
t

4

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

(b) Dis. classification r3

− 3 − 2 − 1 0 1 2 3
X axis [m]

− 3

− 2

− 1

0

1

2

3

Y
 a

x
is

 [
m

]

O1
O2O3

O4
O5

O6

(c) Dis. SLAM r2

O
b
je

c
t

5

O
b
je

c
t

3

O
b
je

c
t

1

O
b
je

c
t

4

O
b
je

c
t

6

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

(d) Dis. classification r2

Figure 4.16: Figures for robot r2 and r1, distributed beliefs for time k = 15 and k = 20 respectively. (a) and
(b) show results for r3, (c) and (d) for r2. (a) and (c) present SLAM results, (b) and (d) present classification
results.

− 3 − 2 − 1 0 1 2 3
X axis [m]

− 3

− 2

− 1

0

1

2

3

Y
 a

x
is

 [
m

]

O1
O2O3

O4
O5

O6

(a) Local SLAM r1

O
b
je

c
t

1

O
b
je

c
t

3

O
b
je

c
t

5

O
b
je

c
t

6

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

(b) Local classification r1

− 3 − 2 − 1 0 1 2 3
X axis [m]

− 3

− 2

− 1

0

1

2

3

Y
 a

x
is

 [
m

]

O1
O2O3

O4
O5

O6

(c) Local SLAM r3

O
b
je

c
t

5

O
b
je

c
t

3

O
b
je

c
t

1

O
b
je

c
t

4

O
b
je

c
t

2

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

(d) Local classification r3

Figure 4.17: Figures for robot r3 and r1, local beliefs for time k = 35 and k = 40 respectively. (a) and (b)
show results for r3, (c) and (d) for r1. (a) and (c) present SLAM results, (b) and (d) present classification
results.

52

− 3 − 2 − 1 0 1 2 3
X axis [m]

− 3

− 2

− 1

0

1

2

3

Y
 a

x
is

 [
m

]

O1
O2O3

O4
O5

O6

(a) Dis. SLAM r3

O
b
je

c
t

1

O
b
je

c
t

5

O
b
je

c
t

3

O
b
je

c
t

4

O
b
je

c
t

6

O
b
je

c
t

2

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

(b) Dis. classification r3

− 3 − 2 − 1 0 1 2 3
X axis [m]

− 3

− 2

− 1

0

1

2

3
Y
 a

x
is

 [
m

]

O1
O2O3

O4
O5

O6

(c) Dis. SLAM r1

O
b
je

c
t

5

O
b
je

c
t

3

O
b
je

c
t

1

O
b
je

c
t

4

O
b
je

c
t

6

O
b
je

c
t

2

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
w

e
ig

h
t

(d) Dis. classification r1

Figure 4.18: Figures for robot r3 and r1, distributed beliefs for time k = 35 and k = 40 respectively. (a) and
(b) show results for r3, (c) and (d) for r1. (a) and (c) present SLAM results, (b) and (d) present classification
results.

robots communicate between each other. For each newly observed object the algorithm
must consider all realizations for the said object, thus the computation time ”spikes” at
the first step the new object is observed. Because the classifier model in the experiment
uses deep neural networks, the computation is slower than in the simulation where hand
crafted models were used.

0 10 20 30 40

Time step

0

1

2

3

4

5

6

C
o

m
p

.
ti
m

e
 p

e
r

s
te

p
 [

s
] Distributed

Double Counting

Figure 4.19: Calculation time as a function of the time step in seconds.

53

54

Chapter 5

Model Uncertainty Aware
Sequential Inference of Posterior
Class Probability

In this chapter we propose to maintain a distribution over posterior class probabilities
while accounting for model uncertainty. This distribution enables reasoning about
uncertainty in posterior classification, which is crucial for robust classification, and for
safe autonomy in general. In particular, we derive equations to sequentially update the
distribution over posterior class probabilities. We evaluate our approach in simulation,
and using real images fed into a deep learning classifier.

5.1 Notations and Problem Formulation

Consider a robot observing a single object from multiple viewpoints, aiming to infer its
class while quantifying uncertainty in the latter. Each class probability vector is γk

.=[
γ1
k · · · γik · · · γMk

]
, where M is the number of candidate classes. Each element

γik is the probability of object class c being i given image zk, i.e. γik ≡ P(c = i|zk), while
γk resides in the (M − 1) simplex such that

γik ⩾ 0 ||γk||1 = 1. (5.1)

Existing Bayesian sequential classification approaches do not consider model uncer-
tainty, and thus maintain a posterior distribution λk for time k over c,

λk
.= P(c|γ1:k), (5.2)

given history γ1:k obtained from images z1:k. In other words, λk is inferred from a
single sequence of γ1:k, where each γt for t ∈ [1, k] corresponds to an input image zt.
However, the posterior class probability λk by itself does not provide any information

55

regarding how reliable the classification result is due to model uncertainty. For example,
a classifier output γk may have a high score for a certain class, but if the input is far
from the classifier training set the result is not reliable and may vary greatly with small
changes in the scenario and classifier weights.

In this chapter we wish to reason about model uncertainty, i.e. quantify how “far”
an image input zt is from the training set D by modeling the distribution P(γt|zt, D).
Given a training set D and classifier weights w, the output γt is a deterministic function
of input zt for all t ∈ [1, k]:

γt = fw(zt), (5.3)

where the function fw is a classifier with weights w. However, w are stochastic given
D, thus inducing a probability P(w|D) and making γt a random variable. Gal and
Ghahramani [21] showed that an input far from the training set will produce vastly
different classifier outputs for small changes in weights. Unfortunately, P(w|D) is not
given explicitly. To combat this issue, Gal and Ghahramani [21] proposed to approxi-
mate P(w|D) via dropout, i.e. sampling w from another distribution closest to P(w|D)
in a sense of KL divergence. Practically, we run an input image zt through a classifier
with dropout multiple times to get many different γt’s for corresponding w realizations,
creating a point cloud of class probability vectors. Note that every distribution in this
chapter is dependent on the training set D, so we omit it from further expressions to
avoid clutter.

In this chapter, a class-dependent likelihood P(γk|c = i), referred as a classifier
model, is utilized. We use a Dirichlet distributed classifier model with a different
hyperparameter vector θi ∈ RM×1 per class i ∈ [1,M], rewriting P(γk|c = i) as:

P(γk|c = i) = Dir(γk; θi). (5.4)

This distribution is the conjugate prior of the categorical distribution, thus it sup-
ports class probability vectors, particularly γk. Sampling from Dirichlet distribution
necessarily satisfies conditions (5.1), unlike other distributions such as Gaussian. The
probability density function (PDF) of the above distribution is as follows:

Dir(γk; θi) = C(θi)
M∏
j=1

(
γjk

)θji−1
, (5.5)

where C(θi) is a normalizing constant dependent on θi, and θji is the j-th element of
vector θi. To shorten notation, we will write this likelihood as:

P(γk|c = i) .= Li(γk), P(·|c = i) .= Li. (5.6)

We denote the likelihood vector as L(γk)
.=
[
L1(γk) · · · LM (γk)

]
. For simplicity, we

consider these hyperparameter vectors to be known or inferred. Furthermore, in this

56

chapter we assume an uninformative prior P(c = i) = 1/M .
We must distinguish between the classifier model Li(γk), and the model uncertainty

derived from P(γk|zk) for class i and time step k. The classifier model Li(γk) is the
likelihood of a single γk given a class hypothesis i; it is computed prior to the scenario
for each class from the training set, and it is assumed constant within the scenario. On
the other hand, P(γk|zk) is the probability of γk given an image zk, and is computed
during the scenario. Note that if the true object class is i and it is “close” to the
training set, the probabilities P(γk|zk) and Li(γk) will be “close” to each other as well.

A key observation is that λk is a random variable, as it depends on γ1:k (see Eq. (5.2))
while each γt, with t ∈ [1, k], is a random variable distributed according to P(γt|zt, D).
Thus, rather than maintaining the posterior Eq. (5.2), our goal is to maintain a distri-
bution over posterior class probabilities for time k, i.e.

P(λk|z1:k). (5.7)

This distribution allows to calculate the posterior class distribution, P(c|z1:k), via ex-
pectation

P(c = i|z1:k) =
∫
λi
k
P(c = i|λik, z1:k)P(λik|z1:k)dλik

=
∫
λi
k
P(c = i|λik)P(λik|z1:k)dλik = E[λik],

(5.8)

where we utilized the identity P(c = i|λik) = λik.
Moreover, as will be seen, Eq. (5.7) allows to quantify the posterior uncertainty,

thereby providing a measure of confidence in the classification result given all data
thus far.

At this point, it is useful to summarize our assumptions:

1. A single object is observed multiple times.

2. P(γt|zt, D) is approximated by a point cloud {γt} for each image zt.

3. An uninformative prior for P(c = i).

4. A Dirichlet distributed classifier model with with designated parameters for each
class c ∈ [1, . . . ,M]. These parameters are constant and given (e.g. learned).

5.2 Approach

We aim to find a distribution over the posterior class probability vector λk for time k,
i.e. P(λk|z1:k). First, λk is expressed given some specific sequence γ1:k. Using Bayes’
law:

λik = P(c = i|γ1:k) ∝ P(c = i|γ1:k−1)P(γk|c = i, γ1:k−1). (5.9)

57

Algorithm 5.1 P(λk|z1:k) inference algorithm with sub-sampling.

Input: z1:k: k images of an object, P(c = i) ∀ i = 1, ...,M : a prior for object class,
Li ∀ i = 1, ...,M : a classifier model, Nss,n maximum points per time step.

1: λi0 = P(c = i)
2: for t = 1 : k do
3: Classify image zt, and produce a point cloud {γt}.
4: for All possible γt and λt−1 pairs: do
5: for i = 1 : M do
6: λit ∝ Li(γt)λit−1.
7: end for
8: end for
9: Select randomly Nss,n pairs to form {λt}

10: end for
11: return {λk}

We assume, for simplicity, classifier outputs are statistically independent and re-write
Eq. (5.9) as

λik ∝ P(c = i|γ1:k−1)P(γk|c = i). (5.10)

Per the definition for λk−1 (Eq. (5.2)) and P(γk|c = i) (Eq. (5.6)), λik assumes the
following recursive form:

λik ∝ λik−1Li(γk). (5.11)

We now recall that γt (for each time step t ∈ [1, k]) is a random variable, making
also λik−1 and λik random variables. Thus, our problem is to infer P(λk|z1:k), where,
according to Eq. (5.11), for each realization of the sequence γ1:k, λk is a function of
λk−1 and γk.

We present our approach in Algorithm 5.1. At each time step t, a new image zt
is classified using multiple forward passes through a CNN with dropout, yielding a
point cloud {γt}. Each forward pass gives a probability vector γt ∈ {γt}, which is used
to compute the class likelihood L(γt), that is modeled as a Dirichlet distribution. In
addition, we have a point cloud {λt−1} from the previous step. We multiply all possible
pairs of λit−1 and Li(γt) , as in Eq. (5.11). Finally Nss,n pairs are chosen for the next
step, in a sub-sampling algorithm that will be detailed in Section 2.B. We eventually
get a point cloud {λt} that approximates P(λt|z1:t).

We need to initialize the algorithm for the first image. Recalling Eq. (5.2), we define
λi1 (first image) for class i and time k = 1 as:

λi1
.= P(c = i|γ1). (5.12)

Using Bayes law:
P(c = i|γ1) = P(γ1|c = i)P(c = i)

P(γ1)
(5.13)

where P(c = i) is a prior probability of class i, P(γ1) serves as a normalizing term, and

58

P(γ1|c = i) is the classifier model for class i. Per definition Eq. (5.6), Eq. (5.13) can be
written as:

λi1 ∝ P(c = i)Li(γ1), (5.14)

thus λi1 is a function of prior P(c = i) and γ1, and in the subsequent steps we can use
the update rule of Eq. (5.11) to infer P(λk|z1:k).

Remark: There is a numerical issue where λik for sufficiently large k can practically
become 0 or 1, preventing any possible change for future time steps. In our implemen-
tation, we overcome this by calculating log λik instead of λik.

In the next section we discuss the properties of P(λk|z1:k)), analyze the correspond-
ing posterior uncertainty versus time, and consider two inference approaches that ap-
proximate this PDF.

2.A Inference over the Posterior P(λk|z1:k)

In this section we consider how the distribution P(λk|z1:k) develops and seek to find
an inference method to track this distribution over time. As discussed in Section
5.1, we consider all γt as random variables; hence, according to Eq. (5.11), P(λk|z1:k)
accumulates all model uncertainty data from all P(γt|zt) up until time step k, with
t ∈ [1, k].

Fig. 5.1 illustrates an example for inference of P(λk|z1:k) from P(γk|zk) and P(λk−1|z1:k)
using a known classifier model, considering three possible classes. Fig. 5.1a-5.1c present
example distributions for the classifier model. Fig. 5.1d presents a point cloud that de-
scribes the distribution of λk−1. Fig. 5.1e presents P(γk|zk) represented by a point
cloud of γk instances. Each γk is projected via L(γk) to a different cloud in the sim-
plex, presented in Fig. 5.1f. Finally, based on Eq. (5.11), the multiplication of points
from Fig. 5.1d and 5.1f creates a {λk} point cloud, shown in Fig. 5.1g. In the pre-
sented scenario, the spread of {λk} (Fig. 5.1g) point cloud was smaller than {λk−1}
(Fig. 5.1d), because both point clouds {λk−1} and {L(γk)} are near the same simplex
edge. In general, classifier models with large parameters (see Eq. 5.5) create {L(γt)}
point clouds that are closer to the simplex edge. In turn, the {λk} point cloud (updated
via Eq. (5.11)) will converge faster to a single simplex edge.

In this paragraph we discuss the behavior of P(λk), dependent on both λk−1 and γk.
The spread of {λk} is indicative of accumulated model uncertainty, and is dependent
on the expectation and spread of both {λk−1} and {γk}. For specific realizations of
λk−1 and γk, as seen in Eq. (5.11), λik is a multiplication of λik−1 and Li(γk). Therefore,
when L(γk) is within the simplex center, i,e. Li(γk) = Lj(γk) for all i, j = 1, ...,M ,
the resulting λk will be equal to λk−1. On the other hand, when L(γk) is at one of
the simplex’ edges, its effect on λk will be the greatest. Expanding to the probability
P(λk|z1:k), there are several cases to consider. If P(λk−1|z1:k−1) and {L(γk)} “agree”
with each other, i.e. the highest probability class is the same, and both are far enough
from the simplex center, the resulting P(λk|z1:k) will have a smaller spread compared to

59

0 0.5 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1
P

ro
b
a
b
ili

ty
 o

f
c
la

s
s
 2

(a)

0 0.5 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 o

f
c
la

s
s
 2

(b)

0 0.5 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 o

f
c
la

s
s
 2

(c)

0 0.5 1

Class 1 probability

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 2

 p
ro

b
a

b
ili

ty

(d)

0 0.5 1

Class 1 probability

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 2

 p
ro

b
a

b
ili

ty

(e)

0 0.5 1

Class 1 probability

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 3

 p
ro

b
a

b
ili

ty

(f)

0 0.5 1

Class 1 probability

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 2

 p
ro

b
a

b
ili

ty

(g)

Figure 5.1: An example to illustrate the inference process of P(λk|z1:k). (a), (b), and (c) Li classifier model
for classes 1, 2 and 3, respectively, with higher probability zones presented in yellow. (d) distribution of λk−1
from the previous step. Note that for k = 1, λ0 is given by the prior P(c). (e) a point cloud {γk} approximating
P(γk|zk) via multiple forward passes of the (CNN) classifier with dropout, given a new measurement zk (an
image) at current time step k. (f) The corresponding likelihood L(γk) for each γk ∈ {γk} from (e). Finally,
multiplying λk−1 and L(γk) (Eq. (5.11)) results in the point cloud shown in (g) representing a distribution
over λk. λk’s spread is smaller in this case than λk−1’s, as both L(γk) and P(λk−1|zk−1) are close to the same
simplex corner.

P(λk−1|z1:k−1) and its expectation will have the dominant class with a high probability.
On the other hand, if P(λk−1|z1:k−1) and {L(γk)} “disagree” with each other, i.e. they
are close to the same simplex corner, the spread of P(λk|z1:k) will become larger; an
example for this case is illustrated in Fig. 5.2. In practice such a scenario can occur
when an object of a certain class is observed from a viewpoint where it appears like
a different class. If both P(λk−1|z1:k−1) and {L(γk)} are near the simplex center, the
spread of P(λk|z1:k) will increase as well. Finally, if only one of P(λk−1|z1:k−1) and
{L(γk)} is near the simplex center, P(λk|z1:k) will be similar to the one that is farther
from the simplex center.

0 0.5 1

Class 1 probability

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 2

 p
ro

b
a

b
ili

ty

(a)

0 0.5 1

Class 1 probability

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 2

 p
ro

b
a

b
ili

ty

(b)

0 0.5 1

Class 1 probability

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 3

 p
ro

b
a

b
ili

ty

(c)

0 0.5 1

Class 1 probability

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 2

 p
ro

b
a

b
ili

ty

(d)

Figure 5.2: An example to illustrate a case where the posterior uncertainty grows with an additional image.
The classifier model is the same as in Fig. 5.1, as well as the inference steps. (a) represents P(λk−1|zk−1). Here,
in (b) the point cloud {γk} is closer to class 3, compared to {λk−1} cloud from (a) that is closer to class 1.
The classifier model translates γk into L(γk) in (c), projecting the point cloud around class 3, and thus after
the multiplication in (d) the distribution is more spread out compared to (a).

From P(λk|z1:k) we can infer the expectation E(λk) (computed as in Eq. (5.8))
and covariance matrix Cov(λk) of λk. As E(λk) takes into account model uncertainty
from each image, unlike existing approaches (e.g. [10]), we can achieve a posterior
classification that is more resistant to possible aliasing. The covariance matrix Cov(λk)

60

represents the spread of λk, and in turn accumulates the model uncertainty from all
images z1:k. In general, lower Cov(λk) values represent smaller λk spread, and thus
higher confidence with the classification results. Practically, this can be used in a
decision making context, where higher confidence answers are preferred. In this chapter
we compare between values of V ar(λik) for all classes i = 1, ...,M , as it is simpler to
describe the uncertainty per class.

There is a correlation between the expectation E(λk) and Cov(λk). The largest
covariance values will occur when E(λk) is at the simplex’ center. In particular, it is
not difficult to show that the highest possible value for V ar(λik) for any i is 0.25; it
can occur when λik = 0.5. In general, if E(λk) is close to the simplex’ boundaries, the
uncertainty is lower. Therefore, to reduce uncertainty, E(λk) should be concentrated
in a single high probability class.

To the author’s knowledge, the expression P(λk|z1:k), where the expression for λk
is described in Eq. (5.11), has no known analytical solution. The next most accurate
method available is multiplying all possible permutations of point clouds {γt}, for all
images at times t ∈ [1, k]. This method is computationally intractable as the number
of λk points grows exponentially. In the next section we propose a simple sub-sampling
method to approximate this distribution and keep computational tractability.

2.B Sub-Sampling Inference

As mentioned previously in section 5.1, each measurement we receive a cloud of Nk

probability vectors {(γk)n}Nkn=1. Each probability vector is projected via the classi-
fier model to a different point with the simplex, which provides a new point cloud
{L(γk)n}Nkn=1. We assume that P(λk−1|z1:k−1) is described by a cloud of Nk−1 points.
Given the data for γk and λk−1, the most accurate approximation to P(λk|z1:k) is given
by multiplying all possible pairs of λk−1 and L(γk). Thus, P(λk|z1:k) is described with
a cloud of Nk−1 ×Nk points. For subsequent steps the cloud size grows exponentially,
making it computationally intractable. We address this problem by randomly sampling
from the point cloud for λk a subset of Nss,n points and use them for the next time
step. In practice, we keep Nss,n constant across all time steps, see line 16 in Algorithm
5.1.

5.3 Experiments

In this section we study our method in simulation and using real images fed into an
AlexNet [1] CNN classifier. We used a PyTorch implementation of AlexNet for classifi-
cation, and Matlab for sequential data fusion. Our hardware is an Intel i7-7700HQ CPU
running at 2.8GHz, and 16GB of RAM. We compare between four different approaches:

1. Method-P(c|z1:k)-w/o-model: Naive Bayes that infers the posterior of P(c|z1:k)
where the classifier model is not taken into account (SSBF in [10]).

61

2. Method-P(c|z1:k)-w-model: A Bayesian approach that infers the posterior of
P(c|z1:k) and uses a classifier model; essentially using Eq. (5.11) with a known
classifier model.

3. Method-P(λk|z1:k)-AP: Inference of P(λk|z1:k) multiplying all possible combina-
tions of λk−1 and L(γk). Note that the number of combinations grows exponen-
tially with k, thus the results are presented up until k = 5.

4. Method-P(λk|z1:k)-SS: Inference of P(λk|z1:k) using the sub-sampling method.

Our proposed approaches are 3 and 4.

3.A Simulated Experiment

This experiment is a simulation to demonstrate the algorithm’s performance. This
simulation is designed to emulate a scenario of a robot traveling in a predetermined
trajectory and observing an object from multiple viewpoints. This object’s class is one
of three possible candidates. We infer the posterior over λ and display the results as
expectation E(λik) and standard deviation per class i:

σi
.=
√
V ar(λik). (5.15)

This simulation is a study on the effect of using classifier model in the inference
for highly ambiguous measurements. In addition, we analyze the uncertainty behavior
for this scenario. We use a categorical uninformative prior of P(c = i) = 1/M for all
i = 1, ...,M .

Each of the three classes has its own (known) classifier model Eq. (5.16), as shown
in Figures 5.3a-5.3c. This classifier model is assumed Dirichlet distributed with the
following hyperparameters θi for all i ∈ [1, 3]:

θ1 = [6 1 1]
θ2 = [2 7 2]
θ3 = [1 1.5 2] .

(5.16)

In this experiment the true class is 3. These hyperparameters were selected to simulate a
case where the γ measurements are spread out (corresponds to ambiguous appearance
of the class), thus leading to incorrect classification without a classifier model. The
classifier model for this class L3 predicts highly variable γ’s using the training data
(Fig. 5.3c). The {γt} point clouds for each t ∈ [1, k] are different from each other
(Fig. 5.3e), representing an object photographed by a robot from multiple viewpoints.

We simulate a series of 5 images. Each image at time step t has its own different
P(γt|zt). For the approaches that infer P(c|z1:k), we sample a single γt per image zt for
all t ∈ [1, k] (Fig. 5.3f, also we present the γt order). This sample simulates the usual
single classifier forward pass that is used. For our approaches we sample 10 γt’s from

62

each P(γt|zt), except for the first step t = 1 where we sample 100 γ1’s. For Method-
P(λk|z1:k)-SS each {λt} point cloud is capped at 100 points. The expectation of these
generated measurements are presented in Fig. 5.3d, along with the cloud order. In
Fig. 5.3e {γt} point clouds for three different t’s are presented in distinct colors. The
input for methods 1 and 2 is shown in Fig. 5.3f, and some of the input for methods 3
and 4 is shown in Fig. 5.3e

0 0.2 0.4 0.6 0.8 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f
c
la

s
s
 2

(a)

0 0.2 0.4 0.6 0.8 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f
c
la

s
s
 2

(b)

0 0.2 0.4 0.6 0.8 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 o

f
c
la

s
s
 2

(c)

0 0.2 0.4 0.6 0.8 1

Class 1 probability

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 2

 p
ro

b
a

b
ili

ty

1

5
4

3
2

(d)

0 0.2 0.4 0.6 0.8 1

Class 1 probability

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 2

 p
ro

b
a
b
ili

ty

(e)

0 0.2 0.4 0.6 0.8 1

Class 1 probability

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 2

 p
ro

b
a

b
ili

ty

1

5

2
4

3

(f)

Figure 5.3: (a)-(c) Classifier likelihood model (Eq. (5.16)) for classes 1 to 3 respectively. Blue and orange
colors correspond, respectively, to low and high probability values. (d) E(γt) for t ∈ [1, 5] (i.e. 5 images). (e)
Point cloud {γt} for 3 images. (f) CNN classifier without dropout. In (d) and (f), image indices are shown.

Fig. 5.4 presents results obtained with our algorithm, in terms of expectation E(λik)
and

√
V ar(λik) for each class i, as a function of classifier measurements. In Fig. 5.4a

and 5.4b we use a single sampled γt for zt (see Fig. 5.3f), while in Fig. 5.4c and 5.4d
we create a {γt} point cloud for zt (see Fig. 5.3e). In Fig. 5.4a and 5.4b results
for Method-P(c|z1:k)-w/o-model and Method-P(c|z1:k)-w-model respectively. Without

63

classifier model the results generally favor class 2 incorrectly, as the measurements
tend to give that class the higher chances. With classifier models the results favor
class 3, the correct class. Because the classifier model for class 3 is more spread out
than for the other classes, γ’s in the simplex middle (as in Fig. 5.3e) have higher L3(γ)
values than L1(γ) and L2(γ). While method Method-P(c|z1:k)-w-model gives eventually
correct classification results, it does not account for model uncertainty, i.e. uses a single
classifier output γ obtained with a forward run through the classifier without dropout.
In this simulation we sample a single γ from each point cloud to simulate this forward
run.

Figs. 5.4c and 5.4d present the results for Method-P(λk|z1:k)-SS and Method-P(λk|z1:k)-
AP, expectation and standard deviation respectively. Throughout the scenario class 3
has the highest probability correctly, and the deviation drops as more measurements
are introduced. Compared to Fig. 5.4b where class 3 has high probability only at time
step t = 3, in Fig. 5.4c class 3 is the most probable from time step t = 1. Both Method-
P(λk|z1:k)-SS and Method-P(λk|z1:k)-AP behave similarly. Note that class 1 has much
smaller deviation than the other two because its probability is close to 0 through the
entire scenario.

1 2 3 4 5

Number of images

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 p

ro
b
a
b
ili

ty

Class 1

Class 2

Class 3

(a)

1 2 3 4 5

Number of images

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 p

ro
b
a
b
ili

ty

Class 1

Class 2

Class 3

(b)

1 2 3 4 5

Number of images

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 p

ro
b
a
b
ili

ty

Class 1 SS

Class 2 SS

Class 3 SS

Class 1 AP

Class 3 AP

Class 2 AP

(c)

1 2 3 4 5

Number of images

0

0.1

0.2

0.3

0.4

0.5

C
la

s
s
 p

ro
b

a
b

ili
ty

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Class 1 SS

Class 2 SS

Class 3 SS

Class 1 AP

Class 3 AP

Class 2 AP

(d)

Figure 5.4: (a)-(c) Posterior class probabilities: (a) Method-P(c|z1:k)-w/o-model; (b) Method-P(c|z1:k)-w-
model; (c) P(c|z1:k) calculated via expectation (5.8) for Method-P(λk|z1:k)-SS and Method-P(λk|z1:k)-AP; (d)
presents the posterior standard deviation Eq. (5.15)

for both of our methods.

Fig. 5.5 presents the development of {λk} point clouds for Method-P(λk|z1:k)-SS

64

at different time steps. Those figures show the gradual decrease in {λk}’s spread,
coinciding with the corresponding standard deviation at Fig. 5.4d.

0 0.2 0.4 0.6 0.8 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1
P

ro
b

a
b

ili
ty

 o
f

c
la

s
s
 2

(a) k=1

0 0.2 0.4 0.6 0.8 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 o

f
c
la

s
s
 2

(b) k=2

0 0.2 0.4 0.6 0.8 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 o

f
c
la

s
s
 2

(c) k=3

Figure 5.5: The figure depicts the evolution of the {λk} point cloud, as calculated by Method-P(λk|z1:k)-SS,
for different time instances k.

3.B Experiment with Real Images

Our algorithm is tested using a series of images of an object (space heater) with con-
flicting classifier outputs when observed from different viewpoints. This corresponds to
a scenario where a robot in a predetermined path observes an object that is obscured by
occlusions and different lighting conditions. The experiment presents our algorithm’s
robustness to these difficulties in classification, and addressing them is important for
real-life robotic applications.

The database photographed is a series of 10 images of a space heater with artificially
induced blur and occlusions. Each of the images is run through an AlexNet convolu-
tional neural network [1] with 1000 possible classes. Similar to Section 3.A, we use an
uninformative classifier prior on P(c) with P(c = i) = 1/M for all i = 1, ...,M classes.
Our algorithm is used to fuse the classification data into a posterior distribution of
the class probability and infer deviation for each class. As in the previous section,
we present results with and without classifier model. Fig. 5.6 presents four of the
dataset images, exhibiting occlusions, blur and different colored filters in a monotone
environment.

(a) (b) (c) (d)

Figure 5.6: Four of the 10 images used in the dataset with occlusions and different viewpoints. Blurring and
colored filters were introduced to some images artificially.

We compare between the same methods that are used in the previous sub-sections.
For Method-P(c|z1:k)-w/o-model and Method-P(c|z1:k)-w-model, we forward the images
through the classifier without dropout and use a single output γ for each image. For

65

Method-P(λk|z1:k)-SS, we run each image 10 times through the classifier with dropout,
producing a point cloud {γ} per image. The cap for number of λk points with Method-
P(λk|z1:k)-SS is 100. For Method-P(λk|z1:k)-AP method, we present results only for the
first five images as the calculations become infeasible due to the exponential complexity.

As AlexNet has 1000 possible classes (one of them is ”Space Heater”), it is difficult
to clearly present results for all of them. Because we wish to compare between the
most likely classes, we select 3 likely classes by averaging all γ classifier outputs and
selecting the three with highest probability. The probabilities for those classes are
then normalized, and utilized in the scenario. All other classes outside those three are
ignored. We require a classifier model for each class; assuming the classifier model is
Dirichlet distributed, we classified multiple images unrelated to the scenario for each
class with the same AlexNet classifier but without dropout. The classifier produced
multiple γ’s, one per image, and via a Maximum Likelihood Estimator [112] we inferred
the Dirichlet hyperparameters for each class i ∈ [1, 3]. The classifier model P(γk|c =
i) = Dir(γk; θi) was used with the following hyperparameters θi:

θ1 = [5.103 1.699 1.239]
θ2 = [0.143 208.7 5.31]
θ3 = [0.993 14.31 25.21]

(5.17)

In this experiment, class 1 is the correct class (i.e. ”Space Heater”). Fig. 5.7 presents
the simplex representation of the classifier model per class, and a normalized simplex of
classifier outputs for three high probability classes, similarly to Fig. 5.3. The classifier
model for class 1 is much more spread than the other two (Fig. 5.7a), therefore the
likelihood of measurements within a larger area will be higher for this class. Interest-
ingly, the classifier model for class 3 predicts P(γk|c = 3) will be between classes 2 and
3 (Fig. 5.7c). Fig. 5.7e presents 4 of the 10 {γt} point clouds used in the scenario.
Fig. 5.7d presents the expectation of each {γt} point cloud for t ∈ [1, 10]. Fig. 5.7f
presents classifier outputs without dropout, i.e. a single γt per image. Both Fig. 5.7d
and 5.7f have indices that represent the images order.

Fig. 5.8 presents the classification results for all the methods presented. Fig. 5.8a
and 5.8b show results for Method-P(c|z1:k)-w/o-model and Method-P(c|z1:k)-w-model
respectively. Without a classifier model, i.e. the former method, incorrectly indicates
class 2 as the most likely, because the classifier outputs often show class 2 as the most
likely (see Fig. 5.7f). With a classifier model, the results jump between classes 1 and
3 as most probable. This can be explained by the likelihood vector L from Eq. (5.17)
that projects the γ’s from different images approximately to different simplex edges
(e.g. γ2 and γ4 for class 1, and γ3 and γ5 for class 3).

Figs. 5.8c and 5.8d present results for Method-P(λk|z1:k)-SS and Method-P(λk|z1:k)-
AP, expectation and standard deviation respectively. Fig. 5.8c presents class 1 as most
likely correctly in both methods from k = 2 onwards, and the results are smoother than

66

0 0.2 0.4 0.6 0.8 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 o

f
c
la

s
s
 2

(a)

0 0.2 0.4 0.6 0.8 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 o

f
c
la

s
s
 2

(b)

0 0.2 0.4 0.6 0.8 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f
c
la

s
s
 2

(c)

0 0.2 0.4 0.6 0.8 1

Class 1 probability

0

0.2

0.4

0.6

0.8

1
C

la
s
s
 2

 p
ro

b
a

b
ili

ty

6

8

5

3

1
7

2

10

4

9

(d)

0 0.2 0.4 0.6 0.8 1

Class 1 probability

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 2

 p
ro

b
a
b
ili

ty

(e)

0 0.2 0.4 0.6 0.8 1

Class 1 probability

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 2

 p
ro

b
a

b
ili

ty

8

9

6

10
7

2

41

5

3

(f)

Figure 5.7: A simplex representation of the classifier model for (a) class 1, (b) class 2, and (c) class 3. In
(b), note the distribution is very tight centered at the top left corner of the simplex. (d) E(γt) for t ∈ [1, 10]
(i.e. 10 images). (e) Pointcloud {γt} for 4 images. (f) CNN classifier output without dropout. In (d) and (f),
image indices are shown.

67

in Fig. 5.8b because our algorithm takes into account multiple realizations of γ1 to γ10

- we recall that for each image we use a point cloud of γ’s. In addition, we can reason
about the standard deviation of λk, representing the posterior uncertainty, as seen in
Fig. 5.8d. Note that starting from the 4th image, the uncertainty increases, as later
measurement likelihoods do not agree with λk−1 about the most likely class at those
time steps, similar to the example presented in Fig. 5.2.

2 4 6 8 10

Number of images

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 p

ro
b

a
b

ili
ty

Class 1

Class 2

Class 3

(a)

2 4 6 8 10

Number of images

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 p

ro
b

a
b

ili
ty

Class 1

Class 2

Class 3

(b)

2 4 6 8 10

Number of images

0

0.2

0.4

0.6

0.8

1

C
la

s
s
 p

ro
b

a
b

ili
ty

Class 1 SS

Class 2 SS

Class 3 SS

Class 1 AP

Class 3 AP

Class 2 AP

(c)

2 4 6 8 10

Number of images

0

0.1

0.2

0.3

0.4

0.5

C
la

s
s
 p

ro
b
a
b
ili

ty

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Class 1 SS

Class 2 SS

Class 3 SS

Class 1 AP

Class 3 AP

Class 2 AP

(d)

Figure 5.8: (a)-(c) Posterior class probabilities: (a) Method-P(c|z1:k)-w/o-model; (b) Method-P(c|z1:k)-w-
model; (c) P(c|z1:k) calculated via expectation (5.8) for Method-P(λk|z1:k)-SS and Method-P(λk|z1:k)-AP; (d)
presents the posterior standard deviation Eq. (5.15) for both of our methods.

Fig. 5.9a presents the computational time comparison between those two meth-
ods for the scenario presented in this section, including different number of samples
Nss,n per time step. Importantly, the results for Method-P(λk|z1:k)-SS are similar to
Method-P(λk|z1:k)-AP while offering significantly shorter computational times. Note
that the computational time per step is constant as well for Method-P(λk|z1:k)-SS.
Fig. 5.9b presents mean square error (MSE) of Method-P(λk|z1:k)-SS compared to
Method-P(λk|z1:k)-AP, as a function of Nss,n. As expected, larger Nss,n values pro-
duce lower MSE.

68

1 2 3 4 5

Number of images

10
-4

10
-2

10
0

10
2

10
4

C
o
m

p
u
ta

ti
o
n
a
l
ti
m

e
 [
s
] AP

SS, 50 points

SS, 100 points

SS, 200 points

SS, 400 points

(a)

100 200 300 400 500

N
ss,n

0

0.2

0.4

0.6

0.8

1

1.2
M

e
a
n
 s

q
u
a
re

 e
rr

o
r

10
-3

(b)

Figure 5.9: (a) Computational time comparison between Method-P(λk|z1:k)-AP and Method-P(λk|z1:k)-SS
per time step. The figure presents computational times for Nss,n ∈ {50, 100, 200, 400} points per time step for
Method-P(λk|z1:k)-SS. (b) The statistical mean square error of Method-P(λk|z1:k)-SS as a function of Nss,n ∈
[50, 500] relative to Method-P(λk|z1:k)-AP.

69

70

Chapter 6

Epistemic Uncertainty Aware
Semantic Localization and
Mapping for Inference and Belief
Space Planning

In this chapter we contribute a unified framework for epistemic uncertainty aware in-
ference and belief space planning in the context of semantic perception and SLAM.
Our framework considers prominent sources of uncertainty — classification aliasing,
classifier epistemic uncertainty, and localization uncertainty — within inference and
BSP.

Specifically, the main contributions of this chapter are as follows.

1. We develop two methods for maintaining a joint distribution over robot and object
poses, and over the posterior class probability vector that considers epistemic un-
certainty in a Bayesian fashion. The first approach is Multi-Hybrid (MH), where
multiple hybrid beliefs over poses and classes are maintained to approximate the
joint belief over poses and posterior class probability. The second approach is
Joint Lambda Pose (JLP), where the joint belief maintained directly using a
novel JLP factor.

2. We extend both methods to a BSP framework, planning over posterior epistemic
uncertainty indirectly, or directly via a novel information-theoretic reward over
the distribution of posterior class probability.

3. Our inference and BSP methods utilize a novel viewpoint dependent classifier
model that predicts epistemic classifier uncertainty given a candidate class and rel-
ative viewpoint, allowing us to reason about the coupling between poses and clas-
sification scores, and predict future epistemic classifier uncertainty, while avoiding
predicting and generating entire images.

71

4. We extensively study our inference and BSP methods in simulation and using
real data from the Active Vision Dataset [113].

This chapter is structured as follows: In Sec. 6.3 we address epistemic-uncertainty-
aware inference; MH and JLP are introduced in first for the single object case and
afterwards to multiple objects case. In Sec. 6.4 we expand both approaches to BSP, and
discuss the information-theoretic cost over the distribution of posterior class probability.
Finally, we validate our approaches in Sec. 6.5 first in simulation in Sec. 5.B, and then
using Active Vision Dataset and BigBIRD in Sec. 5.C.

6.1 Preliminaries

In this section we introduce notations, provide preliminary material, and formulate
the problem addressed in this work. First, we introduce our setting and simultane-
ous localization and mapping (SLAM) notations. Afterwards, we introduce notations
specifically for classification in the context of epistemic uncertainty. Finally, we briefly
introduce belief space planning (BSP), and present the problem formulation for epis-
temic uncertainty aware semantic inference and planning.

1.A Simultaneous Localization and Mapping (SLAM)

Consider a robot operating in an unknown environment represented by object land-
marks. For inference and planning over a distribution of posterior class probabilities,
we need to solve an underlying object based simultaneous localization and mapping
problem (SLAM). The robot’s and objects pose, and objects’ classes are all unknown.
Let xk denote the robot pose at time k; Let xo and c denote object pose and class
respectively. To shorten notations, denote Xx ≜ {xo, x1:k} as all poses of robot and the
observed (expanded later to multiple objects) up until time k.

The robot receives from observed objects both geometric and semantic measure-
ments. Let zk denote a measurement received at time k from the object. This measure-
ment is split into geometric zgk and semantic zsk measurements; All those measurements
are aggregated to a set zk ≜ {zgk, zsk}. The robot action at time k is denoted ak, and
finally we denote the measurement history as Hk ≜ {z1:k, a0,k−1}. We assume indepen-
dence between semantic and geometric measurements, as well between different time
steps.

We utilize a known Gaussian motion model with constant parameters, denotedMk,
and defined as:

Mk ≜ P(xk|xk−1, ak−1) (6.1)

and a known geometric model P(zgk|xo, xk). In addition, we use an externally trained
viewpoint dependent classifier and uncertainty model P(zsk,n|cn, xo, xk) that will be
discussed in Section 3.A. Let us denote the corresponding measurement likelihood term,

72

Lk ≜ P(zgk|x
o, xk) · P(zsk|c, xo, xk), (6.2)

where, both geometric and classifier models are considered Gaussian as well.

1.B Distribution Over Class Probability Vector

During inference the robot receives a raw image in which observed objects are seg-
mented. In standard (deep-learning) approaches a classification model, i.e. a classifier,
is learned beforehand and used to classify the objects within each segment (e.g. bound-
ing box) by producing an output of a class probability vector. Given fixed classifier
weights w, we denote a probability vector from a classifier at time k as

γk ≜ P(c|Ik, w), (6.3)

where Ik is the raw image of the object. Also, denote γk,w as the probability vector
given a specific w. In practice, the image fed into the classifier is a cropped image of
an object via a bounding box. Note that γk ≜ [γ1

k , ..., γ
m
k] ∈ Rm is a probability vector,

thus it must satisfy the following conditions:

• All its elements must sum to 1, i.e. ∑m
i=1 γ

i
k = 1.

• Each element is bounded between 0 and 1, i.e. 0 ≤ γik ≤ 1, ∀i = 1, ...,m.

In contrast to this standard approach, in this work we reason about classifier epis-
temic uncertainty. Denote D as the classifier’s training set. In literature, these ap-
proaches rely on describing the trained weights w as random variables by themselves
distributed w ∼ P(w|D), thus making γk a random variable. In this chapter we create
a set W of sampled w to produce a point cloud of γk vectors per object and time step,
such that we can describe the distribution over γk with the delta Dirac function δ(·):

γk ∼ P(γk|Ik, D) =
∫
w
δ(γk = P(c|Ik, w))P(w|D)dw, (6.4)

which we approximate via sampling as:

P(γk|Ik, D) ≈ 1
|W |

∑
w

δ(γ = P(c|Ik, w)). (6.5)

Thus for each time step we get a point cloud {γk} per object where its spread describes
the epistemic model uncertainty of the classifier. See a simplified illustration in Fig. 6.1,
where an object is observed from multiple viewpoints, and the classifier outputs a cloud
of γ’s for each viewpoint. For example, the cloud {γk} obtained by observing the object
from the bottom right corner is spread widely, therefore the epistemic uncertainty
from that viewpoint is high. Contrast it with the upper-right viewpoint where the
spread is tight, representing low epistemic uncertainty. In this chapter the semantic

73

measurements are those point clouds within them−1 simplex, such that zsk = {γk}. The
set of sampled w can be created by, for example, MC-dropout [21] or Bootstrapping [18].

Figure 6.1: Illustration of viewpoint dependency for both classification scores and epistemic uncertainty. The
figure presents simplex graphs for different viewpoints, where m = 3. The individual class probability scores
are shown as blue points in the simplex, where it’s borders are in green. The red points represent possible
viewpoints observing the SUV in the middle.

1.C Distribution Over Posterior Class Probability Vector

Eventually the posterior over a sequence of γ vectors can be inferred. This posterior
takes into account both the epistemic uncertainty from multiple observations of an
object, as well as localization uncertainty induced by coupling between relative poses
and class probabilities. The posterior is defined as follows:

λk ≜ P(c|γ1:k, z
g
1:k), (6.6)

where λk is deterministically determined by both a sequence γ1:k and the geometric
measurement history. For a specific γ1:k,w sequence which is created by a specific w,
we use the notation λk,w. Because we consider γ1:k to be a random variable (as w is a
random variable), so is λk. As such, we can define a belief over λk the following way:

b[λk] ≜ P(λk|I1:k,Hgk, D). (6.7)

The belief b[λk] encompasses both the posterior classification probability vector via
E(λk), and the epistemic and localization uncertainty via Cov(λk). The belief b[λk]
representation is more expressive than a single class probability vector representation,
and it can reflect four possible archetypes, as seen in Fig. 6.2 (see [7]). Fig. 6.2a
presents an out-of-distribution case where the inputs to the classifier are totally alien,
therefore the output is completely unpredictable. Fig. 6.2c represent a case where the
classifier can safely identify the object with high degree of certainty, i.e. the input is
close to the training set. Intuitively, this is the case that we aim for, and generally

74

has the highest reward. Fig. 6.2b represents the case of high data uncertainty where
the classifier certainly cannot disambiguate between different classes, i.e. the classifier
”knows” that it does not know. This can be resulted from ambiguity in the training
set between different classes, when objects from different classes look identical from
certain viewpoints. Finally, Fig. 6.2d represent a case where the classifier can vaguely
infer the object class, but it’s still far from the training set (e.g. a car of an unusual
shape that there are no similar images in the training set), therefore with a large degree
of uncertainty.

0 0.2 0.4 0.6 0.8 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 o

f
c
la

s
s
 2

(a) Unknown-unknown

0 0.2 0.4 0.6 0.8 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f
c
la

s
s
 2

(b) Known-unknown

0 0.2 0.4 0.6 0.8 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 o

f
c
la

s
s
 2

(c) Known-known

0 0.5 1

Probability of class 1

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 o

f
c
la

s
s
 2

(d) Uncertain classification

Figure 6.2: The 4 archetypes of b[λk], shown in a 3 dimensional Dirichlet simplex example, where blue to yellow
correspond to low to high probability respectively. (a) is an out-of-distribution setting, where the classifier does
not identify the object and the epistemic uncertainty is high. (b) is high data uncertainty setting, which close
to D, but the class is identifiable in the training set itself. In (c) the classifier recognizes that the object of a
certain class with certainty, a scenario we aim for. In (d) the classifier gives preference to one of the classes,
but with a high degree of uncertainty.

As we shall see, this belief can be used within belief space planning, e.g. going to
relative poses where the epistemic uncertainty is the smallest to safely classify objects,
or vice-versa going to relative poses with high epistemic uncertainty to potentially learn
a model online.

More generally λk is coupled with object and camera poses Xk. A joint belief over
λk and Xk can be maintained, denoted as:

b[λk,Xk] ≜ P(λk,Xk|I1:k,Hgk, D). (6.8)

75

We may require to compute E(λk) to, for example, compute a reward function that
depends on E(λk). Consider that P(c = i|λk,Xk) = λik, then for every object class
c = i:

P(c = i|I1:k, Z
g
k , D) =

∫
λk,Xk

λik · b[λk,Xk]dλkdXk = E(λik). (6.9)

In chapter 5 we presented an approach to maintain b[λk] in a setting with a single
object, didn’t consider the coupling between Xk and λk, and the approach was limited
to inference. On the other hand, here we account for the coupling between λk and Xk,
present an active approach, and expand to a multi-object setting. First we consider
the formulation for a single object. In the approach sections 6.3 and 6.4 we extend the
formulation to the multiple object case, with each method having its specific notations.

1.D Belief Space Planning (BSP)

Given a general current belief bk, one can reason about the best future action from a
set of action to maximize (or minimize) an object function. With bk and a set of future
actions ak:k+L, it is common to define the objective function as the expected cumulative
reward,

J(bk, ak:k+L) = EZk+1:k+L(
L∑
i=0

r(bk+i(Zk+1:k+i)), ak+i), (6.10)

where r(·) is a belief-dependent reward function, and L is the planning horizon. This
formulation can be extended to policies as well.

The above equation can also be also written in a recursive form as in,

J(bk, ak:k+L) =
∫

Zk+1

P(Zk+1|Hk, ak)·

· J(bk+1, ak+1:k+L)dZk+1,

(6.11)

where bk+1 = bk+1(Zk+1). The term P(Zk+1|Hk, ak) is the measurement likelihood of
future measurement history thus far and and ak, and is essential for BSP. In practice,
most of the time the integral in Eq. (6.11) cannot be analytically computed, thus it is
approximated in sampled form:

J(bk, ak:k+L) ≈ 1
Nz

∑
Zk+1

J(bk+1(Zk+1), ak+1:k+L), (6.12)

where Nz is the number of Zk+1 samples, and Zk+1 ∼ P(Zk+1|Hk, ak).
The optimal action sequence a∗

k:k+L is chosen such that it maximizes the objective
function:

a∗
k:k+L = arg max

ak:k+L
(J(bk, ak:k+L)) . (6.13)

To evaluate the optimal action sequence, one must consider all possible sequences (pos-
sibly via search algorithms) and select the one that produces the highest objective

76

function.
Specifically, in this chapter we consider the belief bk = b[λk,Xk] for BSP, and

discuss planning using various reward functions, while focusing on classifier epistemic
uncertainty reward function, namely the entropy of b[λk+i] for a future time k+ i. Yet,
first, we must address the corresponding inference problem.

1.E Problem Formulation

Given geometric measurement history Hgk, an image sequence I1:k, actions a0;k−1, an
epistemic-uncertainty-aware classifier trained on training dataset D with a set W of
weight realizations w ∈ W , the problems of inference and planning are defined as
follows:

1. Inference: Infer the posterior joint belief b[λk,Xk], as defined in Eq. (6.8).

2. Planning: Given b[λk,Xk], find the future action sequence a∗
k:k+L that maximizes

J(b[λk,Xk], ak:k+L) with the reward function r(b[λk,Xk]).

In this chapter we address the inference and planning problems in Sections 6.3 and 6.4,
respectively.

6.2 Approach Overview

Two approaches are presented for solving each of the problems presented in Sec. 1.E.
The first approach is Multi-Hybrid (MH), a particle-based approach where multiple
hybrid beliefs are maintained simultaneously. The second approach is Joint Lambda
Pose (JLP), where a single continuous belief is maintained and the posterior class
probabilities are states within this belief.

The approach sections are divided to inference and planning; Starting with infer-
ence, we introduce the viewpoint dependent classifier uncertainty model, which predicts
the distribution of the classifier output and is used by both methods for inference and
planning. In particular, the classifier uncertainty model is used to generate predicted
measurements during planning. Then, we introduce MH and JLP for inference; First,
for simplicity we consider the single object case, afterwards the formulation is expanded
to multiple objects. The section concludes with a computation complexity analysis and
comparison.

Section 6.4 addresses the planning problem; First we discuss measurement genera-
tion in general for a single object, then delve into the specifics of both MH and JLP of
generating measurements for multiple objects. Afterwards we discuss reward functions,
and specifically expand upon information-theoretic reward for b[λ]. Finally, we discuss
Dirichlet distribution and LG as possible distributions of λ when using MH (JLP is
limited to LG).

77

For the reader’s convenience, main notations used in this chapter are summarized
in Table. 6.1.

6.3 Approach- Inference

3.A Viewpoint Dependent Classifier Uncertainty Model

We use a classifier uncertainty model that accounts both for the coupling between lo-
calization and classification, and epistemic model uncertainty. As an example, Fig. 6.1
illustrates that {γk} measurements varies across different viewpoints, with some con-
taining high epistemic uncertainty and some low. The model we propose learns to
predict these measurements, and subsequently which viewpoints will contain high epis-
temic uncertainty. In contrast, previous works that used a viewpoint dependent classi-
fier model (e.g. chapters 3, 4 and [12,15]) did not consider epistemic uncertainty while
learning the model.

The conditions for γk being a probability vector must be considered when one
requires to sample from the classifier model, thus unlike previous chapters 3 and 4 we
cannot use a Gaussian distributed classifier model. One possible solution is to consider
the classifier model as Dirichlet distributed (see chapter 5), but that model cannot be
incorporated into a Gaussian optimization framework (e.g. iSAM2 [36]) with unknown
poses which are coupled with classification results. Instead, we consider the following
solution: we use a logit transformation for γ to a vector lγ ∈ Rm−1 space, such that
the support of each element (−∞,∞):

lγ ≜
[
log

(
γ1

γm

)
, log

(
γ2

γm

)
, ..., log

(
γm−1

γm

)]T
. (6.14)

Then, lγ can be assumed Gaussian such that:

P(lγk|c, xo, xk) = N (hc(xo, xk),Σc(xo, xk)), (6.15)

and as a consequence γk is distributed Logistical Gaussian with parameters {hc,Σc}.
The probability density function (PDF) of γk is as follows:

P(γk|c, xo, xk) = 1√
|2πΣc|

· 1∏m
i=1 γ

i
k

· e(− 1
2 ||lγk−hc||2Σc). (6.16)

In practice, a classifier provides us with a cloud {γk}, and each γk ∈ {γk} is transformed
to lγk. There are m such models, one for each class. The training set consists of tuples
of relative pose and lγ point clouds such that Dcm ≜ {xrel, {lγ}} for each class, where
xrel ≜ xo ⊖ x is the relative pose between object and robot; the expectation (classifi-
cation scores) and covariance (epistemic uncertainty) is extracted from {lγ} and fitted
as known points either in the model using e.g. Gaussian Processes or deep-learning

78

Table 6.1: Main notations used in the paper.

Parameters
x Robot pose
xo Object o’s pose
Xk All robot and object poses up to k
xrel Relative pose between x and xo

Ok Set of all objects observed at time k
xinvk Set that contains the last robot pose and all object poses from Ok
co Object o’s class
C Class realization of all objects
zg Geometric measurement
zs Semantic measurement
n The amount of all objects in the environment
nk Number of objects observed at time k
Nk Number of objects observed up to time k
Mk Motion model from xk−1 to xk
a Robot action
Hk History of measurements and action up to time k
Hg
k

History of geometric measurements and action up to time k
Zg
k

All geometric measurements for all objects at time k
Ls Semantic measurement likelihood
hc Expectation of class c’s classifier uncertainty model
Σc Covariance of class c’s classifier uncertainty model
Lk Geometric and semantic measurement likelihood at time k
D Classifier training dataset
{·} Set or point cloud
I Raw image
l□ Logit transformation of probability vector
γ Probability vector classifier output
γc Element of γ of class c
Γk Set of all γ observed at time k, one per object
lΓk Set of all logit transformations for all γk ∈ Γk
λ Posterior class probability vector
λc Element of λ of class c
Λk Posterior probability vector for class realizations
l̄λk Set of lλ of all objects observed up to k
W Set of all possible classifier weight realizations w
b[·] Belief, probability conditioned on history P(·|I1:k,Hg

k
, D).

bcw Continuous belief conditioned on history, c, and w
hbw Hybrid belief conditioned on w
lLs Logit transformation of semantic measurement likelihood
Subscripts
w Classifier weight realization
k Time step
L Planning horizon
Superscript
o Object o
c Class hypothesis of an object
C Class hypothesis of all objects

79

based approaches. Real-life application may require creating Dcm from multiple dif-
ferent instances of the same objects, e.g. for class ”car” multiple types of cars may be
used. Fig. 6.3 illustrates the training data shown in black dots versus the trained model
shown in blue. The model attempts to ”predict” the epistemic uncertainty based on a
given training set.

(a) γ space (b) lγ space

Figure 6.3: Simplified illustration of the classifier uncertainty model we use in the chapter. (a) and (b)
represent γ and lγ space respectively. The black dots represent the corresponding γ(xrel, w) ∈ {γ}(xrel) and
lγ(xrel, w) ∈ {lγ}(xrel). The expectation and covariance are learned in (b) and interpolated for new queries of
xrel, potentially returning to (a) via the inverse logit transformation. The expectation is represented in dark
blue, while the one sigma covariance is represented in light blue.

3.B Multi-Hybrid Inference

In this section we present the Multi-Hybrid (MH) inference approach to maintain the
belief from b[λk,Xk] (6.8). With this method, we maintain b[λk,Xk] indirectly via
a set of hybrid beliefs, each for a realization of classifier weights. The posterior class
probabilities from each hybrid belief together represent the posterior classifier epistemic
uncertainty. From there, we can compute marginal distributions for both λk and Xk
if needed, e.g. when computing reward functions for planning (see Section 6.4). We
present this approach first when observing a single object, then we extend it to multiple
objects, and finally address computational complexity aspects.

Single Object

The belief b[λk,Xk], as defined by Eq. (6.8), is conditioned both on geometric mea-
surements Hgk and raw images I1:k, and the classifier training set D. As discussed in
Sec. 1.B, an epistemic uncertainty aware classifier provides us a cloud {lγ1:k}, which
we consider as semantic measurements. In the MH approach, we maintain b[λk,Xk] by
splitting it to components by marginalizing over object classes and classifier weight real-
ization w ∈W , where W is a predetermined discrete set of w that are used throughout

80

the entire scenario. First, we marginalize b[λk,Xk] over w:

b[λk,Xk] =
∫
w
P(Xk, λk|I1:k,Hgk, w) · P(w|D)dw

≈ 1
|W |

∑
w

P(Xk, λk|I1:k,Hgk, w).
(6.17)

Then, using chain rule yields

b[λk,Xk] ≈
1
|W |

∑
w

P(Xk|λk, w, I1:k,Hgk) · P(λk|w, I1:k,Hgk). (6.18)

Each term in the right-hand side of the above is addressed separately; P(Xk|λk, w, I1:k,Hgk)
is marginalized over c and using chain-rule can be split into the following distributions:

P(Xk|λk, w, I1:k,Hgk) =
∑
c

P(Xk|c, λk, w, I1:k,Hgk)

· P(c|λk, w, I1:k,Hgk)
(6.19)

Xk is conditioned on c, thus λk can be omitted. For c, given the posterior probability
vector λk, the rest can be omitted, and P(c|λk) = λck where λck is the element c of λk.

λk is a function of w, I1:k, and Hgk; therefore, P(λk|w, I1:k,Hgk) is a Dirac function
δ(·), such that

P(λk|w, I1:k,Hgk) = δ(λk − λk,w). (6.20)

As such, Eq. (6.18) is rewritten as:

b[λk,Xk] ≈
1
|W |

∑
c

∑
w

P(Xk|c, lγ1:k,w,H
g
k)︸ ︷︷ ︸

bcw[Xk]

·λck · δ(λk − λk,w), (6.21)

where bcw[Xk] is the continuous belief conditioned on w and c. Each w ∈W is constant
throughout the scenario with the reasoning of keeping the number of particles constant,
thus avoiding managing an exponentially increasing number of components (such as in
chapter 5). This can be achieved by, e.g., training multiple models on the same dataset
via bootstrapping, or re-using classifier weight sets created by MC-dropout. That way,
Eq. (6.21) shows that maintaining b[λk,Xk] is equivalent to maintaining bcw[Xk] and λck
for all w ∈W and c.

Each class probability λck,w within the particle λk,w is updated using Bayes rule as
follows:

λck,w = η · λck−1,w · P(zgk, lγk,w|c), (6.22)

where η is a normalizing constant such that ∑c λ
c
k = 1, and does not affect infer-

ence. As our classifier model is viewpoint dependent (Eq. (6.15)), we must marginalize

81

P(zgk, lγk,w|c) over xo and xk to fully utilize our models as follows:

λck,w ∝ λck−1,w

∫
xo,xk

Lk · bc−w [xo, xk]dxodxk, (6.23)

where bc−w [xo, xk] is the propagated conditional continuous belief, constructed as follows,
as we marginalize out all other variables from Xk beside xo and xk:

bc−w [xo, xk] ≜
∫

Xk/xo,xk
Mk · bcw[Xk−1]d(Xk/xo, xk). (6.24)

bcw[Xk] from (6.21) is incrementally updated using standard SLAM state of the art
approaches (e.g. iSAM2 [36]):

bcw[Xk] ∝ bcw[Xk−1] · Mk · Lk. (6.25)

Essentially, for every w, we maintain a hybrid belief over robot and object poses, and
classes, which we define as:

hbw[Xx, c] ≜ bcw[Xk] · λck,w, (6.26)

and using the above definition, and considering that the Dirac function only ”blocks”
all λk except for λk,w, we can rewrite Eq. (6.21) in terms of hbw[Xx, c]:

b[λk,Xk] ≈
1
|W |

∑
c

∑
w

hbw[Xk, c] · δ(λk − λk,w). (6.27)

Practically, for every w ∈W , we maintain bcw[Xk] with the accompanying λck,w for every
object class realization, overall maintaining |W | hybrid beliefs hbw[Xk, c] in parallel.

Further, one may require to infer the marginals b[λk] or P(Xk|I1:k,Hgk, D), e.g. to
compute an appropriate reward function, as we shall see in Section 6.4. We can describe
b[λk] in term of λk,w particles by marginalizing b[λk] over w:

b[λk] ≈
1
|W |

∑
w

P(λk|w, I1:k,Hgk)

= 1
|W |

∑
w

P(λk|lγ1:k,w,H
g
k)

= 1
|W |

∑
w

δ(λk − λk,w).

(6.28)

On the other hand, to compute P(Xk|I1:k,Hgk, D), we marginalize over w and c,

P(Xk|I1:k,Hgk, D) ≈ 1
|W |

∑
w

∑
c

hbw[Xk, c], (6.29)

utilizing the already-calculated individual hybrid beliefs hbw[Xk, c].
While theoretically this kind of maintenance is computationally expensive, in prac-

82

tice many class realizations can be with probability close to zero, allowing us to prune
bcw[Xk] with its conditional λck,w if needed (see e.g. [114]). In this chapter we set a fixed
lower limit on λck,w and remove the corresponding component if the value of λck,w is
lower than said limit. In total, |W | hybrid beliefs are maintained to infer λk,w for each
w.

Multiple Objects

We now extend our formulation to consider the environment includes multiple objects
observed by the robot. Let us introduce some notations to support this extension.
First, we denote variables corresponding to object o with a superscript □o. At time k
a robot may observe a subset of nk objects within the environment, and up until time
k, Nk objects. The subset of nk objects is denoted as Ok. Each object is segmented
from the image and the classifier outputs {γok,w}w∈W corresponding to said object, and
the set of all those clouds for all nk objects in Ok is denoted as {Γk} with Γ defined as
a realization of γ measurements, one per each observation. For a specific w ∈ W , we
define the realization of γ measurements as Γk,w ≜ {γok,w}o∈Ok , thus {Γk} ≜ {Γk,w}w∈W .
We define lΓk as the logit transformation of all γk ∈ Γk as in Eq. (6.14). The set of
all geometric measurements at time k is denoted Zgk , the history Hgk ≜ {a0:k−1, Z

g
k}

includes all geometric measurements and actions up until time k, and subsequently
Hk ≜ {I1:k,Hgk} includes all measurement and action history up to time k.

We define the joint posterior class probability vector as:

Λk ≜ P(C|lΓ1:k,Hgk), (6.30)

where C ≜ {co}o∈O1:k is the class realization of all objects observed up to time k, with
co being the o-th object class. In addition, we include in Xk the poses of all the objects,
such that Xk ≜ x0:k ∪ {xo}o∈O1:k . Subsequently, the belief over Λk and Xk is:

b[Λk,Xk] ≜ P(Λk,Xk|I1:k,Hgk, D). (6.31)

Observe that Λk is still a probability vector, but with mNk possible categories. To
illustrate this, consider an example with two objects and three candidate classes,
i.e. O1:k = {o, o′} and m = 3. Then each category contains a class hypothesis for
all object classes, e.g. co = 1, co′ = 3. As such, there are 9 possible class realizations
and therefore Λk has 9 categories whose probabilities should sum to one. That way, the
number of categories in Λk grows exponentially with the number of objects, potentially
to intractable levels. Fortunately, this can be mitigated by pruning components with
low probability, as was done in chapters 3 and 4.

For every w ∈W , updating Λk is largely similar to updating λk in Sec. 3.B, except
for a few differences. The likelihood terms include all objects Ok observed at time k,
and the conditional probability over the poses is conditioned on class realization C

83

instead of the class of a single object,

ΛCk,w ∝ ΛCk−1,w

∫
xinv
k

Lk · bC−
w [X invk]dxinvk , (6.32)

where ΛCk,w denotes the posterior probability of class realization C at time k for weight
realization w, and X invk represents the last robot pose and all poses of objects ob-
served at time k, i.e. X invk ≜ xk ∪ {xo}o∈Ok . Likelihood Lk now encompasses all the
measurement likelihoods of all objects as follows:

Lk ≜
∏

o∈Ok,o

P(lγok|C, xo, xk) · P(zgk|x
o, xk). (6.33)

The belief bC−
w [X invk] is the propagated belief conditioned on C, and marginalized over

the uninvolved variables such that Xk = X invk ∪ X¬inv
k :

bC−
w [X invk] =

∫
X ¬inv
k

Mk · bCw [Xk−1]dX¬inv
k . (6.34)

Similarly to Sec. 3.B we can rewrite b[Λk,Xk] as:

b[Λk,Xk] ≈
1
|W |

∑
w

∑
C

hbw[Xk, C] · δ(Λk − Λk,w), (6.35)

where hbw[Xk, C] is the hybrid belief conditioned on w:

hbw[Xk, C] ≜ bCw [Xk] · ΛCk,w, (6.36)

and bCw [Xk] ≜ P(Xk|c, lγ1:k,w,H
g
k). Similarly to Eq. (6.27), maintaining b[Λk,Xk] is

equivalent to maintaining hbw[Xk, C] for all w ∈ W and C. In case b[Λk] is required,
for the multi-object case Eq. (6.28) becomes:

b[Λk] ≈
1
|W |

∑
w

δ(Λk = Λk,w); (6.37)

Similarly; In case P(Xk|I1:k,Hgk, D) is required, for the multi-object case Eq. (6.29)
becomes:

P(Xk|I1:k,Hgk, D) ≈ 1
|W |

.
∑
w

∑
C

hbw[Xk, C]. (6.38)

In general, all Xk and C are coupled, and subsequently so do Xk and Λk. There are
two possible sources of coupling: class priors that depend on other objects’ classes (e.g.
a computer mouse may be expected to appear next to a monitor), and the coupling
between poses and classes induced by the viewpoint-dependent classifier uncertainty
model (6.15).

Specifically, if the classifier model is not viewpoint dependent, i.e. P(lγk|c,Xk) =
P(lγk|c), then P(Xk, c|Hk) = P(Xk|Hk) · P(c|Hk), and each one can be maintained

84

x0 x1 x2

xo

(a) co = 1

x0 x1 x2

xo

(b) co = 2

Figure 6.4: Factor graphs for a toy scenario where the camera observes an object for a specific w,there are
|W | such factor graph pairs. The object has two candidate classes. Each dot and line represents a separate
factor. The black factors between the camera and object represent the geometric model, while the colored factors
represent the classifier models, c = 1 and c = 2 by blue and red respectively.

separately. This simplified case can be represented as a single factor graph for the con-
tinuous variables, and the discrete variables are maintained via P(c|Hk) ∝ P(c|Hk−1) ·
P(lγk|c).

However, in our case, the viewpoint-dependent model P(lγk|c,Xk) couples between
relevant continuous and discrete variables; specifically, it is represented as a factor be-
tween robot and object poses at time steps when the object is observed. Thus, for lγk
that corresponds to a semantic observation of some object o at time instant k, the factor
is P(lγk|c, xk, xo), and, according to (6.15), it differs for each class realization c. This
is represented by multiple factor graphs as illustrated in a simple example in Fig. 6.4.
Between the graphs, the topology is identical, but the factor P(lγk|c,Xk) changes ac-
cording to class c hypothesis. Further, each classifier weight w ∈W corresponds to its
own instance of those factor graphs. Of course, if a given factor graph is connected, all
variables in it are coupled.

Remark: While here we described a straightforward extension of the MH approach
to the multi-object, its worst-case computational complexity (discussed in Section 3.B)
scales poorly with the number of objects. One could also consider maintaining a
marginal distribution for each object (e.g. b[λok, xo]) instead of the joint distribution
(6.35); yet, without introducing approximations, this would still involve inferring poses
via (6.38), as all object poses and classes are dependent as discussed in Sec. 3.B. The
marginal poses, i.e. Eq. (6.38), requires the maintenance of all hbw[Xk, C] as maintain-
ing b[Λk,Xk], thus the computational time and memory complexity does not change.
Computing a marginal distribution for each object is outside the scope of this chapter
and might be addressed in future work.

Computational Complexity and Discussion

With m candidate classes, and n objects, the number of possible class realizations per
Λk,w is mn, as C considers all possible class realizations of all objects observed thus far,
making C combinatorial in nature. Inference over continuous states (k camera poses
and n object poses), i.e. the conditional belief P(Xk|C, lγ1:k,H

g
k), can be efficiently done

using, e.g. the state of the art iSAM2 approach [36], with a computational complexity of
O((k+n)1.5), and at worst O((k+n)3) for loop closures. To compute an individual λk

85

particle, we must account for the attached P(Xk|C, lγ1:k,H
g
k), and thus the worst-case

computational complexity is O(mn(k+n)3). Eventually we maintain |W | particles, and
therefore the overall time computational complexity for b[λk] inference is O(|W |mn(k+
n)3) at worst without pruning.

The computational complexity can be further reduced by pruning e.g. low probabil-
ity classes for individual particles, but as with any pruning this can induce a problem
where a certain realization gets ”locked” in either probability 0 or 1, rendering the
possibility of probability changing for the said realization impossible.

For memory complexity, we require the latest robot pose, and the n poses and
m sized class probability vector for every object per λ particle. All in all, we must
maintain O(nmn) random variables in memory per particle, and O(|W |nmn) variables
for b[λ]. This also can be reduced by e.g. pruning low probability class realizations or
incremental inference methods.

To conclude, while accurate„ due to the combinatorial nature of C which considers
all possible class realizations, the need to simultaneously maintain |W | hybrid beliefs,
the worst-case complexity of MH scales poorly with number of objects and candidate
classes. In practice, pruning class realizations with low probability can reduce compu-
tational complexity to manageable levels. Incremental inference approaches for hybrid
beliefs, inline with [56], could further reduce computational complexity. These, how-
ever, are outside the scope of this chapter.

As an alternative, in the next section we propose the JLP algorithm, which is by
far computationally more efficient than MH.

3.C Joint Lambda Pose Inference

In this subsection we present an alternative approach for inference, which maintains
a joint belief over Xk and λk. This approach is significantly less computationally ex-
pensive than the Multi-Hybrid approach. Its accuracy depends on conditions that we
discuss below. This approach is denoted as Joint Lambda Pose (JLP). Similarly to MH,
we first consider the single object case, and then extend JLP to the multiple object case.

To the best of our knowledge, there are no approaches that combine Gaussian
distributed variables with random variables within a simplex besides sampling based
methods. Thus, we cannot maintain b[λk,Xk] as a single continuous belief, e.g. MH
requires maintaining multiple hybrid beliefs, as discussed in Sec. 3.B.

Instead, we define lλk as the logit transformation of λk, and maintain the belief
(considering a single object, for now):

b[lλk,Xk] ≜ P(lλk,Xk|I1:k,Hgk, D). (6.39)

For a general λk, each λck can be updated using Bayes rule:

λck = η · λck−1 · P(lγk|c, xrelk). (6.40)

86

When λk is cast into logit space, the above equation transforms into the following sum,
written in a vector form:

lλk = lλk−1 + lLsk, (6.41)

where for each element in λk, the normalizer η gets canceled as it is identical for all
elements of λk, and lLsk is defined as:

lLsk ≜
[

log
(

P(lγk|c = 1, xrelk)
P(lγk|c = m,xrelk)

)
, ...,

log
(
P(lγk|c = m− 1, xrelk)
P(lγk|c = m,xrelk)

)]T
.

(6.42)

To recursively update a Gaussian lλk in closed form from a Gaussian lλk−1, lLsk needs
to be Gaussian as well. We now discuss conditions for which lLsk is indeed Gaussian.

Accuracy Conditions

In this section we analyze the condition under which lLsk is accurately Gaussian dis-
tributed. This is formulated in the following Lemma:

Lemma 6.3.1. Given m Gaussian distributed viewpoint-dependent classifier uncer-
tainty models P(lγk|c, xrelk) as in Eq. (6.15), if Σc=i(xrelk) ≡ Σc=j(xrelk) ∀i, j ∈ [1,m],
then lLsk is Gaussian distributed.

Proof In this proof, we will omit time index k and sometimes omit xrelk from hc and
Σc to reduce clutter. We prove by construction, with writing the PDF of the classifier
uncertainty model for the i-th element of lLs. The model for class i has an expectation
hc=i(xrel) and a covariance matrix Σc=i(xrel). Thus:

lLsi = log

 (2π)
m−1

2
√
|Σc=m|e

− 1
2 ||lγ−hc=i||2Σc=i

(2π)
m−1

2
√
|Σc=i|e− 1

2 ||lγ−hc=m||2Σc=m

= −1

2
log(|Σc=i|) + 1

2
log(|Σc=m|)

− 1
2
||lγ − hc=i||2Σc=i + 1

2
||lγ − hc=m||2Σc=m .

(6.43)

Now, applying the condition Σc=i(xrel) ≡ Σc=j(xrel), and denoting both as Σc we get
the following expression:

lLsi =lγTΣ−1
c hc=i −

1
2
hTc=iΣ−1

c hc=i

− lγTΣ−1
c hc=m + 1

2
hTc=mΣ−1

c hc=m.
(6.44)

From the above equation, if lγ is a multi-variate Gaussian random variable, then lLsi is
a linear combination of Gaussian random variables, therefore Gaussian by itself. This
is valid for every i ∈ [1,m− 1]. ■

87

In general, the classifier model covariance functions may not be equivalent; There-
fore, Eq. (6.43) includes a quadratic expression of lγ, making lLsi a mixture of Gaussian
and Generalized Chi distributions. To counter this, the models’ covariances must be
”close” to each other to approximately describe lLsi as a Gaussian.

If lLs is assumed Gaussian via moment matching or other methods, it will only
approximate the true distribution of lLs with the accuracy dependent on the ”distance”
between Σc=i(xrel) and Σc=j(xrel) for all i, j ∈ [1,m]. This distance can be represented
by, for example, Forbenius Norm.

Remark: The Forbenius norm can be inserted into the loss function while training
the viewpoint-dependent classifier uncertainty models (6.15), thereby enforcing suf-
ficiently close covariance functions between different models such that the approach
presented in this section can be used. Our implementation utilizes this concept, as we
further explain in Sec. 5.C.

Having discussed conditions for lLs to be Gaussian (accurately or approximately),
in the following section we introduce a new factor, termed joint Lambda pose (JLP)
factor, which constructs b[lλk,Xk].

Joint Lambda Pose (JLP) Factor

Assume the conditions in Lemma 6.3.1 are satisfied. Considering Eq. (6.44) for all
i ∈ [1,m− 1], we can describe lLsk as follows:

lLsk = Φlγk −
1
2
ϕ, (6.45)

where the matrix Φ ∈ R(m−1)×(m−1) and the vector ϕ ∈ Rm−1 depend on the individual
classifier models (6.15) and xrelk . Using Eq. (6.44), the matrix Φ is defined as

Φ ≜

hTc=1Σ−1

c=1 − hTc=mΣ−1
c=m

...
hTc=m−1Σ−1

c=m−1 − hTc=mΣ−1
c=m

 , (6.46)

and ϕ is defined as

ϕ ≜

hTc=1Σ−1

c=1hc=1 − hTc=mΣ−1
c=mhc=m

...
hTc=m−1Σ−1

c=m−1hc=m−1 − hTc=mΣ−1
c=mhc=m

 . (6.47)

If the conditions of Lemma 6.3.1 are satisfied, we can substitute lLsk in Eq. (6.41) with
the expression in Eq. (6.45):

lλk = lλk−1 + Φlγk −
1
2
ϕ. (6.48)

88

Now, as lγk is assumed Gaussian, its distribution is defined by expectation E(lγk) and
covariance Σ(lγk). Assuming a non-singular matrix Φ, we define the JLP factor as:

P(lλk|lλk−1, Ik, D, x
rel
k) ≜

N
(
lλk−1 + ΦE(lγk)− 1

2ϕ,ΦΣ(lγk)ΦT
)
,

(6.49)

As mentioned before, we utilize a classifier that outputs a set {γk} instead of a single
γk. Each γk ∈ {γk} is then transformed via the logit transformation (6.14) to lλk, thus
the entire set {γk} is transformed to {lγk}. From there E(lγk) and Σ(lγk) are inferred,
and the JLP factor can be written as P(lλk|lλk−1, {lγk}, xrelk). As in Sec. 3.B, {lγk}
represents the classifier’s epistemic uncertainty.

The factor (6.49) is a four variable factor of lλk, lλk−1, xo, and x, with the latter
two used to compute xrel via xrel ≜ xo ⊖ x. The factor can be inserted into a graph
structure that can be optimized using standard SLAM methods, where lλk for different
k are separate variable nodes. This factor enables us to maintain b[lλk,Xk] using a single
continuous belief as we discuss in the next section, and in turn be faster computationally
than MH.

The term ΦΣ(lγk)ΦT is positive definite when Φ is not singular, but in practice we
cannot guarantee this condition. If there is some xrelk for classes c = i and c = j where
hc=i(xrel) = hc=j(xrel) and Σc=i(xrel) = Σc=j(xrel), then at that point Φ is singular.
This means: at that certain xrelk , we cannot differentiate between the two classes with
the given classifier models. To keep ΦΣ(lγk)ΦT non-singular, we add to it an identity
matrix multiplied by a small positive constant ϵ · I(m−1)×(m−1).

Recursive Update Formulation

In Section 3.C we introduced a novel four variable factor1 P(lλk|lλk−1, Ik, D, x
rel
k), de-

noted as the JLP factor. This factor allows to update b[lλ1:k,Xk] as a single continuous
belief, instead of multiple conditioned ones as with MH.

We may consider a smoothing formulation where we maintain the joint belief
b[lλ1:k,Xk]. Using Bayes and chain rules, b[lλ1:k,Xk] can then be updated as:

b[lλ1:k,Xk] =η · P(lλk|lλk−1, Ik, D, x
rel
k) · Mk·

· P(zgk|x
rel
k) · b[lλ1:k−1,Xk−1],

(6.50)

where η is a normalization constant. In practice, previous lλ1:k−1 are typically not re-
quired for classification inference and planning, so we can consider the belief b[λk,Xk],
without maintaining a large number of states per object. To update this belief re-
cursively, we must express it as a function of the prior b[lλk−1,Xk−1]. To do so, we

1In case the object is not observed at k − 1, instead of lλk−1 we connect the factor to the latest
previous lλ.

89

x0 x1 x2

xo

lλ0 lλ1 lλ2

(a) A single object.

x0 x1 x2

xo1

xo2

lλo1
0 lλo1

1 lλo1
2

lλo2
0 lλo2

1 lλo2
2

(b) Two objects.

Figure 6.5: Example of a factor graph for a scenario until k = 2, where at each time step an object (a) or
objects (b) are observed. There are priors for x0, and lλ0 for every object. Between the camera poses are
motion factors, connecting camera and object poses are geometric measurement factors, and between lλ’s at
different time steps the 4 variable factors are connecting.

marginalize over lλk−1 and use the Bayes rule:

b[lλk,Xk] ∝
∫
lλk−1

P(lλk|lλk−1, Ik, D, x
rel
k) · Mk·

· P(zgk|x
rel
k) · b[lλk−1,Xk−1]dlλk−1.

(6.51)

Fig. 6.5a presents a simple example to illustrate the factor graph structure using JLP.
In this figure, we present a scenario with two time steps in which the robot observes a
single object.

Multiple Objects

The extension to multiple objects within the JLP framework is straight-forward. Each
object o has its own set of lλo nodes, as seen in the example in Fig. 6.5b. The set of all
lλok for objects observed thus far is denoted as l̄λk ≜ {lλok}o∈O1:k . In contrast with Λk,
which is a single probability vector over class realization with mNk categories, l̄λk is a
set of vectors with m− 1 elements each, being the logit transformation of a probability
vector of an object, to a total of (m− 1) ·Nk elements for l̄λk. As such, the joint belief
is updated in a similar manner to the single object case:

b[l̄λk,Xk] = η

∫
l̄λk−1

∏
o∈Ok

P(lλok|lλok−1, {lγok}, xrelk) · Mk ·

·P(Zgk |Xk) · b[l̄λk−1,Xk−1]dl̄λk−1, (6.52)

with η being a normalization constant that does not participate in inference.
With this formulation, the difference between maintaining b[Λk,Xk] in MH and

b[l̄λk,Xk] must be discussed.

90

Computation Complexity and Discussion

MH maintains Λk, which is a posterior joint probability vector for all class realizations,
with mNk categories as seen in Sec. 3.B. Thus Λk grows exponentially with the number
of objects observed, and considering that the inference is done for |W | times, each
w with its own Λk, MH is intractable unless pruning methods are applied. On the
other hand, JLP maintains l̄λk which essentially maintains a separate lλk per object,
resulting in size of (m− 1) ·Nk, which grows linearly with the number of objects, and
results in better scaling. Moreover, the inference is done only a single time, as the set
W only plays a role in classifier output γ.

If we consider again the example scenario with two objects and three candidate
classes, Λk is a probability vector with 9 categories. On the other hand, l̄λk = {lλok, lλo

′
k }

where lλok and lλo
′
k , each, is a vector with two elements as they are the logit transfor-

mation of λok and λo
′
k , respectively, totaling in 4 elements for l̄λk.

JLP has a single continuous belief with at most k pose states and n object pose
states. In addition each object has lλ with m−1 variables. Consider pose states with d
variables each, at worst the total number of variables in JLP is dk+dn+n · (m−1). In
total, the computational time complexity is O

(
(dk + dn+ nm)3) at worst. Compared

to MH, as discussed in Sec. 3.B where the time computational complexity is at worst
O
(
|W |mn(k + n)3), JLP scales significantly better with the number of objects.

We can compare Fig. 6.6 and Fig. 6.5b for illustration of the difference between MH
and JLP inference. In those figures, a scenario with two objects and two candidate is
presented. Fig. 6.6 presents the factor graphs for a specific w, therefore in this case
we have to maintain 4|W | factor graphs. On the other hand, with JLP we have to
maintain a single one that also contains additional lλ nodes.

As we can see, the advantage of the JLP approach compared to the MH approach
is that it does not require maintaining multiple hybrid beliefs. It maintains a single
continuous belief that encompasses all poses and object classes while reasoning about
classifier epistemic uncertainty, allowing a rich, viewpoint dependent representation of
object class probabilities.

The main disadvantage of this approach is the requirement of Lemma 6.3.1 to hold
for accuracy. While the requirement can be offset by enforcing additional constrains on
the training of classifier uncertainty models, using the resulting models will render JLP
as approximation compared to MH. Another potential drawback is that JLP forces
λ to be LG distributed, which, as we will see in Sec. 4.E, results in slower entropy
computation. Despite of that, the advantage in computational efficiency of JLP is
significant enough to offset slower entropy computation relative to MH, thus practically
significantly more feasible.

91

x0 x1 x2

xo1

xo2

(a) co1 = 1, co2 = 1

x0 x1 x2

xo1

xo2

(b) co1 = 2, co2 = 1

x0 x1 x2

xo1

xo2

(c) co1 = 1, co2 = 2

x0 x1 x2

xo1

xo2

(d) co1 = 2, co2 = 2

Figure 6.6: Factor graphs used by MH with the same scenario as in Fig. 6.5b for a single w. Each dot and line
represents a separate factor. The black factors between the camera and object represent the geometric model,
while the colored factors represent the classifier models, c = 1 and c = 2 by blue and red respectively.

92

6.4 Approach- Planning

In this section we present a framework for epistemic uncertainty aware semantic BSP
(EUS-BSP). Our framework incorporates reasoning about future posterior epistemic
uncertainty within BSP; moreover, we appropriately generate future semantic and geo-
metric observations while utilizing the coupling between λ and X . Importantly, main-
taining the corresponding future posterior belief b[λ,X] within BSP allows to utilize a
variety of reward functions, and in particular, information-theoretic rewards over epis-
temic uncertainty. As such, EUS-BSP provides key capabilities for reliable autonomous
semantic perception in uncertain environments.

Each of the inference approaches developed in Section 6.3 has its own BSP counter-
part. As we discuss in detail below, they are not compatible with each other, i.e. MH
planning must be used with inference, and the same for JLP.

This section is structured as follows; First, in Sec. 4.A, we discuss future mea-
surement generation given candidate actions: For semantic measurements, we consider
generating raw images, and then propose to generate semantic measurements directly
from the viewpoint-dependent classifier uncertainty model from Eq. (6.15). Then, we
detail the specifics of generating measurements from the model for MH in Sec. 4.B
and JLP in Sec. 4.C. Afterwards, we discuss possible reward functions, first mention-
ing rewards in the form of r(b[X]) and r(E(λ)) in Sec. 4.D, both indirectly involving
reasoning about epistemic uncertainty. Further, we discuss an epistemic uncertainty
information-theoretic reward r(b[λ]) in Sec. 4.E, specifically the negative of differential
entropy −H(λ). We discuss computing −H(λ) for both LG and Dirichlet distributed
λ. For MH approach, λ can be distributed as either, but for the JLP approach, λ is
limited to LG. Fig. 6.7 presents a diagram of all aspects considered in this section.

Planning (Sec. 6.4)

Generating Measurements (Sec. 4.A)

Raw Images From Model

MH
(Sec. 4.B)

JLP
(Sec. 4.C)

Reward Functions

r(b[X])
(Sec. 4.D)

r(E(λ))
(Sec. 4.D)

r(b[λ])
(Sec. 4.E)

MH JLP

LG Dir LG

Figure 6.7: A diagram of aspects considered in Sec. 6.4. Dir stands for Dirichlet distribution.

93

4.A Measurement Generation

As part of the objective function (6.10) evaluation, we need to reason about future
observations, both geometric and semantic. While geometric measurements can be
sampled given through the geometric measurement model given sampled poses, the
semantic measurement generation, especially when accounting for epistemic uncertainty
is not immediate. For clarity, in this section we consider the single object case, while
in the next sections we expand to the multiple object case in each method.

One alternative is to consider, for the ith look ahead step, generating {lγk+i} by
first predicting raw measurements, i.e. future images Ik+i. Given each such image, we
can produce {lγk+1} by forwarding Ik+1 through a classifier for each w ∈W , similarly
to passive inference. In such a case, the objective function (6.10) becomes:

J(b[λk,Xk], ak:k+L) = EIk+1:k+L,z
g
k+1:k+L

(
l∑

i=1
r(b[λk+i,Xk+i], ak+i)), (6.53)

where

b[λk+i,Xk+i] = P(λk+i,Xk+i|Ik+1:k+i, z
g
k+1:k+i, I1:k,Hgk, D). (6.54)

As presented in Sec. 1.D, we have to use a generative model for generating measure-
ments with the general form of P(Zk+1:k+L|Hk, ak). In this case, it takes the form
of P(Ik+1:k+L, z

g
k+1:k+L|Hk, ak), which is a generative model for generating raw images

and geometric measurements.

This model generates images from a candidate viewpoint of a scene yet to be ob-
served, given a set of environments it was trained on. While such works do exist
(e.g. [115]), the problem is high dimensional and feasible only in specifically trained
environments.

In contrast, we propose an alternative approach that generates semantic measure-
ments directly via a learned viewpoint dependent classifier uncertainty model (6.15),
thereby avoiding generating raw, high-dimensional images.

Specifically, we use the LG model presented in Eq. (6.16) for generating semantic
measurements zsk+1:k+L with the specifics discussed in Sec. 4.B and Sec. 4.C for MH
and JLP respectively. Thus, as alternative to Eq. (6.53), the objective function (6.10)
becomes:

J(b[λk,Xk], ak:k+L) = Ezs
k+1:k+L,z

g
k+1:k+L

(
L∑
i=1

r(b[λk+i,Xk+i], ak+i)), (6.55)

where, as opposed to Eq. (6.54), b[λk+i,Xk+i] is conditioned on zsk+1:k+i, i.e.

b[λk+i,Xk+i] = P(λk+i,Xk+i|zsk+1:k+i, z
g
k+1:k+i, I1:k,Hgk, D). (6.56)

94

As both the geometric P(zgk|xrelk) and classifier (6.15) models require xrelk+i, in addition
to the class hypothesis c, measurement generation involves sampling both. We now
discuss the specifics for each method, addressing MH in Sec. 4.B and JLP in Sec. 4.C
while expanding both to multiple objects.

4.B Multi-Hybrid Planning (MH-BSP)

In this section we discuss the specifics of generating measurements for planning using
MH. Now considering multiple objects, we must generate future Zg and {lΓ}, s.t. the
objective function is as follows:

J(b[Λk,Xk], ak:k+L) = E{lΓk+1:k+L},Zg
k+1:k+L

(
l∑

i=1
r(b[Λk+i,Xk+i], ak+i)), (6.57)

where b[Λk,Xk] is obtained by MH from Sec. 3.B, and:

b[Λk+i,Xk+i] = P(Λk+i,Xk+i|{lΓk+1:k+i}, Zgk+1:k+i, I1:k,Hgk, D). (6.58)

As each lΓk+i,w consists of separate lγok+i,w, and similarly Zgk+i consists of zg,ok+i, we
must first predict which objects will be observed at time k+ i. This can be done using
an object observation model (see e.g. chapter 3) and sampled robot and object poses
(either by sampling all objects or using a heuristic, see e.g. [116]); These objects are
included in the predicted Ok+i set, and form X invk+1 ≜ xk+1 ∪ {xo}o∈Ok+1 .

To present that generative model, we first consider the generation of {lΓk+1} and
Zgk+1 from b[Λk,Xk] conditioned on action ak. We present a sampling hierarchy that is
described by the following marginalization scheme:

P({lΓk+1}, Zgk+1|Hk, ak) =∑
C

∫
Λk,Xk+1

Lk+1 · P(C|Λk) · Mk+1 · b[Λk,Xk]dΛkdXk+1,
(6.59)

which induces the following sampling hierarchy, for every object o ∈ Ok+1:

{lγok+1} ∼ P(lγok+1|co, x
rel,o
k+1) (6.60)

zg,ok+1 ∼ P(zg,ok+1|x
rel,o
k+1) (6.61)

C ∼ Cat(Λk,w) (6.62)

Xk+1 ∼ Mk+1P(Xk|Λk,w, lγ1:k,w,H
g
k) (6.63)

w ∼ P(w|D), (6.64)

where xrel,ok+1 ≜ xo ⊖ xk+1, and is determined by X invk+1. Recall that Ok+1 must be
determined by sampling Xk+1. First, w is sampled uniformly from |W |. From there,
as b[Λk] is already represented by a set of samples {Λk,w}, sampling w chooses Λk,w as
well. Next, following from Eq. (6.19) for the multiple object case, definition (6.36) for

95

hbw[Xk, C], and that Λk,w is chosen:

P(Xk|Λk,w, lγ1:k,w,H
g
k) =

∑
c

hbw[Xk, C]. (6.65)

Then P(Xk|Λk,w, lγ1:k,w,H
g
k) is propagated via:

P(Xk+1|Λk,w, lγ1:k,w,H
g
k, ak) =

∑
c

Mk+1hbw[Xk, C], (6.66)

and Xk+1 is sampled, from there we determine Ok+1.
Now for each object o ∈ Ok+1 we determine the appropriate xrel,ok+1 , and generate its

own geometric measurement zg,ok+1. Next we sample class realization C; As the action
ak alone doesn’t change Λ from time k to k + 1 without measurements, Λk,w is used
to sample C. As such, C is a categorical random variable with the probability vector
Λk,w as its parameters. Finally, with c ∈ C and xrel,ok+1 we sample a set of |W | vectors
lγok+1.

Often planning algorithms use Maximum Likelihood (ML) estimation to reduce
computational effort compared to sampling; Note that in our case, taking the ML
estimation of C can be problematic because it only considers the most likely class
realization, ignoring all possible others.

For the following time steps, we use the generated {lΓk+1} and Zgk+1 to infer
b[Λk+1,Xk+1] using MH inference from Sec. 3.B. Now using action ak+1, we can gener-
ate {lΓk+2} and Zgk+2, then b[Λk+2,Xk+2], and continue generating measurements and
inferring corresponding belief until the end of planning horizon.

Alg. 6.1 presents the MH-BSP measurement generation algorithm, where the func-
tion PredictObs predicts which objects are observed given sampled camera and object
poses.

We summarize our approach with the MH-BSP objective function computation
Alg. 6.2, where the function UpdateHB is the hybrid belief update approach presented
in Sec. 3.B, and InferDist infers b[Λk+1,Xk+1] from measurement generated in Alg. 6.1.
Alg. 6.2 recursively calls itself until the action set only includes one action, allowing
non-myopic planning.

As in inference, while accurate, MH-BSP can be computationally expensive. Sub-
sequently, in the next section we propose the expansion of JLP for planning. As in
inference, JLP is significantly computationally faster.

4.C Joint Lambda Pose Planning (JLP-BSP)

In this section we present JLP-BSP, an epistemic uncertainty aware semantic BSP
framework that leverages JLP from Section 3.C as the inference engine. If the as-
sumption in Lemma. 6.3.1 is exactly or approximately satisfied, we can utilize JLP for
planning.

96

Algorithm 6.1 MH-BSP Measurement Generation

Input: Belief b[Λk,Xk], action ak
1: b[Λk,Xk+1]←Mk · b[Λk,Xk]
2: Λk,Xk+1 ← Sample(b[Λk,Xk+1])
3: Ok+1 ← PredictObs(Xk+1)
4: X invk+1 ← Ok+1,Xk+1
5: Zgk+1 ← ∅
6: {lΓk+1} ← ∅
7: for o ∈ Ok+1 do
8: xrel,ok+1 ← xo, xk+1 ∈ X invk+1
9: co ← C

10: zg,ok+1 ← Sample(P(zg,ok+1|x
rel,o
k+1))

11: Zgk+1 ← Zgk+1 ∪ z
g
k+1

12: {lγok+1} ← ∅
13: for w ∈W do
14: {lγok+1} ← {lγok+1} ∪ Sample(P(lγok+1|co, x

rel,o
k+1))

15: end for
16: {lΓk+1} ← {lΓk+1} ∪ {lγok+1}
17: end for
18: return Zgk , {lΓk+1}

Similarly to MH-BSP, we should reason about the generation of new measurement.
As described in Sec. 4.B, MH-BSP uses the classifier uncertainty model (6.15) param-
eters hi(xrelk+1) and Σi(xrelk+1) to generate {lγk+1} given class c = i and xrelk+1; On the
other hand, JLP-BSP doesn’t require generating {lγk+1} and elegantly uses hi(xrelk+1)
and Σi(xrelk+1) as generated measurements.

With this, the objective function takes the following form:

J(b[l̄λk,Xk], ak:k+L) = EE(lΓk+1:k+L),Σ(lΓk+1:k+L),Zg
k+1:k+L

(
L∑
i=1

r(b[l̄λk,Xk+i], ak+i))

(6.67)

where,

b[l̄λk+i,Xk+i] = P(l̄λk+i,Xk+i|E(lΓk+1:k+L),Σ(lΓk+1:k+L), Zgk+1:k+i, I1:k,Hgk, D),
(6.68)

where E(lΓk) ≜ {E(lγok)}o∈Ok and similarly Σ(lΓk) ≜ {Σ(lγok)}o∈Ok
As in Sec. 4.B, we consider measurement generation for time k+1 from time k. This

time, we present a sampling hierarchy that is described by the following marginalization
scheme:

P(E(lΓk+1),Σ(lΓk+1), Zgk+1|Hk, ak) =∫
Xk+1,l̄λk

∏
o∈Ok+1

P(E(lγok+1),Σ(lγok+1)|lλok,Hk, ak)·
·P(zg,ok+1|Xk+1) · b[l̄λk,Xk+1]dXk+1.

(6.69)

By using the above equation, we can write the generative model that is used to generate

97

Algorithm 6.2 MH-BSP Objective Function

Input: MH Belief b[Λk,Xk], a set of actions ak:k+L
1: J ← 0
2: for number of samples Ns do
3: Zgk+1, {lΓk+1} ←

MH Measurement Generation(b[Λk,Xk], ak)(Alg. 6.1)
4: b[Λk+1,Xk+1]← UpdateMH(b[Λk,Xk], {lΓk+1}, Zgk+1, ak)
5: r(b[Λk+1,Xk+1])← Reward(b[Λk+1,Xk+1]
6: J ← J + r(b[Λk+1,Xk+1])/Ns

7: if L ̸= 0 then
8: J ← J

+MH Objective Function(b[Λk+1,Xk+1], ak+1:k+L)/Ns

9: end if
10: end for
11: return J

measurements for every o ∈ Ok+1. First, we need to determine the set Ok+1, and sample
the hypothesized object class co from lλok ∈ l̄λk. We do so by sampling Xk+1 and l̄λk

using b[l̄λk,Xk] as follows:

l̄λk,Xk+1 ∼Mk+1 · b[l̄λk,Xk]. (6.70)

Similar to MH-BSP, l̄λk stays the same conditioned on ak, thus not propagated. Then
we determine Ok+1, X invk+1 and xrel,ok+1 per object as we did in Sec. 4.B. From there, for
o ∈ Ok+1 we sample co and afterwards generate the measurements:

E(lγok+1) = hc(xrel,ok+1) (6.71)

Σ(lγok+1) = Σc(xrel,ok+1) (6.72)

zgk+1 ∼ P(zgk|x
rel,o
k+1) (6.73)

co ∼ Cat(λok), (6.74)

where hc(xrel,ok+1) and Σc(xrel,ok+1) are the Gaussian parameters of P(lγok+1|c, x
rel,o
k+1), as in

Eq. (6.15).

Alg. 6.3 presents the JLP measurement generation algorithm, where E(lΓk) ≜
{E(lγok)}o∈Ok , and similarly Σ(lΓk) ≜ {Σ(lγok)}o∈Ok .

The objective function computation is presented in Alg. 6.4. UpdateJLP refers to
updating b[l̄λk,Xk] as in Sec. 3.C given generated measurements. Alg. 6.4 calls itself
recursively until there is only one action left in the set. The algorithm is similar to
Alg. 6.2, except for the measurement generation and update functions which are specific
for JLP.

98

Algorithm 6.3 JLP-BSP Measurement Generation

Input: Belief b[¯lλk,Xk], action ak
1: b[¯lλk,Xk+1]←Mk · b[¯lλk,Xk]
2: ¯lλk,Xk+1 ← Sample(b[Λk,Xk+1])
3: Ok+1 ← PredictObs(Xk+1)
4: X invk+1 ← Ok+1,Xk+1
5: Zgk+1 ← ∅
6: E(lΓk+1)← ∅
7: Σ(lΓk+1)← ∅
8: for o ∈ Ok+1 do
9: xrelk+1 ← xo, xk+1 ∈ X invk+1

10: zg,ok+1 ← Sample(P(zg,ok+1|xrelk+1))
11: Zgk+1 ← Zgk+1 ∪ z

g
k+1

12: co ← Sample(Cat(λok))
13: E(lγok+1)← hc(xrelk+1)
14: E(lΓk+1)← E(lΓk+1) ∪ E(lγok+1)
15: Σ(lγok+1)← Σc(xrelk+1)
16: Σ(lΓk+1)← Σ(lΓk+1) ∪ Σ(lγok+1)
17: end for
18: return Zgk ,E(lΓk+1),Σ(lΓk+1)

4.D Reward Functions Over b[λ,X]

Predicting future b[λk+i,Xk+i] at a future time k + i allows us to consider multiple
reward functions, all captured by the general formulation r(b[λ,X]). To the best of
our knowledge, we are the first to consider reasoning about future posterior epistemic
uncertainty within a BSP setting. For rewards based on the poses r(X) e.g. distance-
to-goal, or rewards based on the belief over the poses r(b[X]) e.g. information-theoretic
costs, we can compute the marginal b[Xk+i] as in Eq. (6.29) for MH, or by marginalizing
out lλk+i from b[λk+i,Xk+i] for JLP.

In addition, we may also consider a reward over the posterior class probability
r(P(c|H)) which can be extracted by computing E(λk+i) from the marginal b[λk+i]:

P(c | {lγk+1:k+i}, z
g
k+1,k+i, I1:k,Hgk, D) =

∫
λk+i

P(c|λk+i) · b[λk+i]dλk+i = E(λk+i),

(6.75)
therefore we can write r(P(c|H)) as r(E(λ)). An example for such reward is the minus
of Shannon Entropy, such that r(E(λ)) =

∑
c λ

c log(λc). This reward favors class
probability vectors when one of the candidates has probability close to one, and others
close to zero.

Crucially, as b[Λk+i,Xk+i] for MH-BSP and b[l̄λk+i,Xk+i] for JLP-BSP both reason
about epistemic uncertainty, it affects implicitly every reward. Thus, we account for
future posterior epistemic uncertainty indirectly in all the cases discussed in this section.

99

Algorithm 6.4 JLP-BSP Objective Function

Input: JLP Belief b[l̄λk,Xk], a set of actions ak:k+l
1: J ← 0
2: for number of samples Ns do
3: Zgk+1,E(lΓk+1),Σ(lΓk+1)←

JLP Measurement Generation(b[λ̄k,Xk], ak:k+l)(Alg. 6.3)
4: b[l̄λk+1,Xk+1]← UpdateJLP(b[l̄λk,Xk]),

Zgk+1,E(lΓk+1),Σ(lΓk+1)
5: r(b[l̄λk+1,Xk+1])← Reward(b[l̄λk+1,Xk+1]
6: J ← J + r(b[l̄λk+1,Xk+1])/Ns

7: if l ̸= 0 then
8: J ← J

+JLP Objective Function(b[l̄λk+1,Xk+1], ak+1:k+l)/Ns

9: end if
10: end for
11: return J

4.E Information-Theoretic Reward Over b[λ]

In Sec. 4.D we discussed reward functions in the form of r(b[X]) and r(P(c|H)). But
crucially, maintaining b[λk+i,Xk+i] opens the possibility of planning directly over b[λ].
We consider info-theoretical rewards over λ in the form of r(b[λ]). Specifically, we
consider the differential entropy of λk+i, denoted H(λk+i), and is defined as:

H(λk+1) ≜ −
∫
λk+1

b[λk+1] · log b[λk+1]dλk+1. (6.76)

The reward considered is the minus of the entropy, i.e. r(b[λ]) = −H(λ), which, as
we will see in Sec. 4.E and 4.E, is dependent both on E(λ) and the epistemic model
uncertainty.

A possible alternative is a reward of the following general form for λ (see e.g. [88]):

r(b[λ]) = ω1 · f1(E(λ)) + ω · f2(Σ(λ)), (6.77)

where ω1 and ω2 are hyperparameters, and f1 and f2 are general functions. Here λ can
be interchangeable with its logit transformation lλ. This reward requires the tuning
of ω1 and ω2 manually, as opposed to using r(b[λ]) = −H(λ) which does not require
parameter tuning at all. In particular, as we will see in Sec. 4.E and Sec. 4.E, H(λ)
addresses both E(λ) and Σ(λ) simultaneously; H(λ) diminishes (i.e. r(b[λ]) grows)
when E(λ) is closer to the simplex corners, i.e. when one category has its probability
close to 1 and the rest close to 0. Also, H(λ) diminishes the smaller Σ(λ) becomes,
which corresponds to smaller epistemic uncertainty.

However, computingH(λk+i) requires the PDF value of b[λ], according to Eq. (6.76),
thus requiring us to model the distribution of λk+i. This distribution can be either
parametric e.g. Dirichlet or LG, which we will discuss here, or non-parametric such as

100

Kernel Density Estimation (KDE). MH provides us with {λ}, therefore any distribu-
tion that supports probability vectors can be chosen. On the other hand, JLP limits λ
to be LG distributed per definition. Sec. 4.E and Sec. 4.E detail Dirichlet and Logisti-
cal Gaussian distributions for b[λk] respectively in the context of computing entropy.
Sec. 4.E discusses the differences between utilizing both distributions. To simplify no-
tations, all of the variables in these sections are considered at the same time step, so
we drop the time step index. In addition, we use the single-object notation, i.e. λ and
c.

Logistic Gaussian For b[λ]

One option is to model b[λ] as Logistic Gaussian (LG) distributed. This option is sup-
ported by both MH and JLP, as illustrated in Fig. 6.7. This distribution (with PDF as
in Eq. (6.16)) supports probability vectors with conditions presented in Sec. 1.B for γ,
thus samples from LG are probability vectors. This distribution does not have an an-
alytical expression for expectation and covariance, and must be computed numerically
or approximated, e.g. via bounds, as we will discuss later.

To compute the parameters from a point cloud of probability vectors, e.g. {λ}, we
apply the logit transformation for each λ ∈ {λ}, and get {lλ}. Then, as lγ is modeled
Gaussian the LG parameters E(lλ) and Σ(lλ) are inferred.

In addition to expectation and covariance, the LG distribution does not have a
closed form solution for its differential entropy. However, LG variable is a transfor-
mation of a Gaussian variable with a known expression for entropy. As such, we can
express the entropy using the following lemma.

Lemma 6.4.1. Let λ = [λ1, ..., λm]T be Logistical-Gaussian distributed, and lλ its logit
transformation as in Eq. (6.14), thus lλ is Gaussian with parameters E(lλ) and Σ(lλ).
As such, the differential entropy H(λ) is described by:

H(λ) =H(lλ) +
m−1∑
i=1

E[lλi]

−
∫
lλ

log
(

1 +
m−1∑
i=1

elλ
i

)
P(lλ)dlλ.

(6.78)

Proof The reverse logit transformation from lλ to λ is given by:

λ =
[

elλ
1

1 +
∑m−1
i=1 elλ

i , ...,
elλ

m−1

1 +
∑m−1
i=1 elλ

i ,
e1

1 +
∑m−1
i=1 elλ

i

]T
. (6.79)

Thus, λ is LG distributed, and the probability density function is given as:

P(λ) = 1√
2π|Σ|

· 1∏m
i=1 λ

i
· e− 1

2 ||lλ−µ||2Σ , (6.80)

101

with µ ∈ Rm−1 and Σ ∈ R(m−1)×(m−1) being the LG parameters. The term 1∏m

i=1 λ
i

is the determinant of the transformation Jacobian, and is denoted as |J(λ)|. Thus we
write P(λ) as:

P(λ) = P(lλ)|J(λ)|, (6.81)

with P(lλ) ≜ P(lλ) = P(lλ)(µ,Σ), and write H(λ) as:

H(λ) = −
∫
λ
P(λ) · logP(λ)dλ (6.82)

Then, we transform the integral variable back to lλ, as we have a closed form expression
for H(lλ). As |J(λ)| is the transformation Jacobian, |J(λ)|dλ = dlλ. From there we
can write the integral in Eq. (6.82) as a function of lλ:

H(λ) =−
∫
λ
P(lλ) · |J(λ)| · log(P(lλ) · |J(λ)|)dλ =

−
∫
lλ
P(lλ) · log(P(lλ) · |J(λ)|)dy =

−
∫
lλ
P(lλ) · log(P(lλ))dlλ−

∫
lλ
P(lλ) · log(|J(λ)|)dlλ =

H(lλ)−
∫
lλ
P(lλ) · log(|J(λ)|)dlλ.

(6.83)

The term
∫
lλ P(lλ) · log(|J(λ)|)dlλ is positive, as P(lλ) is always positive and J(λ) > 1,

therefore H(λ) < H(lλ). Next, we describe log(|J(λ)|) in as a function of lλ:

log |J(λ)| = log
(1∏m

i=1 λ
i

)
= −

m−1∑
i=1

log λi − log λm =

−
m−1∑
i=1

log(elλ
i

) + log

1 +
m−1∑
j=1

elλ
j

− log(1) + log

1 +
m−1∑
j=1

elλ
j

 =

−
m−1∑
i=1

lλi +m · log

1 +
m−1∑
j=1

elλ
j

 .

(6.84)

Now we plug the above expression for log |J(λ)| into Eq. (6.83) and express H(λ) as a
function of lλ:

H(λ) =H(lλ)

+
∫
lλ
P(lλ) ·

m−1∑
i=1

lλi −m · log

1 +
m−1∑
j=1

elλ
j

 dlλ. (6.85)

As
∫
lλ P(lλ)lλidlλ = E[lλi], we can simplify the above equation into the form shown in

102

Lemma 6.4.1:

H(λ) = H(lλ) +
m−1∑
i=1

E(lλi)−m
∫
lλ

log

1 +
m−1∑
j=1

elλ
j

 · P(lλ)dlλ. (6.86)

As lλ is Gaussian, H(lλ) = 0.5 · log(2πe|Cov(lλ)|). The integral in Eq. (6.78) to the
best of our knowledge does not have an analytical solution. One approach is to compute
the entropy numerically from {λ} that we already have, but it is computationally
expensive to do so for a large number of candidate classes. Another option is to compute
bounds for the entropy, which are presented in the following lemma.

Lemma 6.4.2. Let λ = [λ1, ..., λm]T be Logistical-Gaussian distributed, and lλ its logit
transformation as in Eq. (6.14), thus lλ is Gaussian with parameters E(lλ) and Σ(lλ).
As such, an upper bound for H(λ) is given by:

H(λ) ≤ H(lλ) +
m−1∑
i=1

E(lγi)−m ·max
i
{0,E(lγi)}, (6.87)

and similarly a lower bound is given by:

H(λ) ≥H(lλ) +
m−1∑
i=1

E(lγi)

−m ·max
i
{0,E(lγi)} −m logm−

√
σmaxii

2π
,

(6.88)

where σmaxii ≜ maxi Σii(lλ) is the largest value element in the covariance of lλ.

Proof Upper Bound

Let us look at the integral in Eq. (6.86). The term log
(
1 +

∑m−1
j=1 elλ

j
)

can be bounded
from below by:

log

1 +
m−1∑
j=1

elλ
j

 ≥ log(max
i
{1, elλ

i

}) = max
i
{0, lλi}. (6.89)

Substituting the above equation to Eq. (6.86) yields the following inequality:

H(λ) ≤ H(lλ) +
m−1∑
i=1

E(lλi)−m
∫
lλ

max
i
{0, lλi} · P(lλ)dlλ. (6.90)

The integral term is similar to the expectation definition for lλi, except that it considers
only positive lλi, making the resulting value from the integral larger than E(lλi). For
the next step, we consider the case where there is at least a single E[lλi] ≥ 0, and the

103

case where for all i, E[lλi] < 0. Considering both cases we can write:

∫
lλ maxi{0, lλi} · P(lλ)dlλ ≥ 0 E(lλi) < 0 : ∀i∫
lλ maxi{0, lλi} · P(lλ)dlλ ≥ maxE(lλi) ∃E(lλi) ≥ 0.

Considering both cases:∫
lλ

max
i
{0, lλi} · P(lλ)dlλ ≥ max{0,Elλi}. (6.91)

Finally, we can substitute the above expression into Eq. (6.90) and get the expression
in Lemma 6.4.2:

H(λ) ≤ H(lλ) +
m−1∑
i=1

E(lλi)−mmax{0,E(lλi)}. (6.92)

Lower Bound

Let us look again at the integral in Eq. (6.86). This time, the term log
(
1 +

∑m−1
j=1 elλ

j
)

can be bounded from above by:

log

1 +
m−1∑
j=1

elλ
j

 ≤ log(max
i
{m,melλ

i

}) =

max
i
{0, lλi}+ log(m).

(6.93)

Now, we substitute the above inequality into Eq. (6.86), and we get the following
expression:

H(λ) ≤ H(lλ) +
m−1∑
i=1

E(lλi)−m log(m)−m
∫
lλ

max
i
{0, lλi} · P(lλ)dlλ. (6.94)

This time we look for an upper bound for
∫
lλ maxi{0, lλi} · P(lλ)dlλ. Let us consider

that: ∫ ∞

0

lλi√
2π
e

− (lλi)2
2Σii dlλi =

√
Σii

2π
≤

√
Σmax
ii

2π
(6.95)

where Σii is the element (i, i) in the diagonal of matrix Σ, and Σmax
ii is the largest

element of Σ. Then we can bound
∫
lλ maxi{0, lλi} · P(lλ)dlλ by:

∫
lλ maxi{0, lλi} · P(lλ)dlλ ≤

√
Σmaxii

2π E(lλi) < 0 : ∀i∫
lλ maxi{0, lλi} · P(lλ)dlλ ≤ maxE(lλi) +

√
Σmaxii

2π ∃E(lλi) ≥ 0,

From the above equation, we reach:

∫
lλ

max
i
{0, lλi} · P(lλ)dlλ ≤ max

i
{0,E(lλi)}+

√
Σmax
ii

2π
, (6.96)

104

and by substituting into Eq. (6.86), we reach the lower bound presented in Lemma
6.4.2:

H(λ) ≥H(lλ) +
m−1∑
i=1

E(lγi)

−m ·max
i
{0,E(lγi)} −m logm−

√
σmaxii

2π
.

(6.97)

One can observe from the upper bound that H(lλ) is necessarily larger than H(λ)
as lγ is not subjected to the probability vector constraints, thus E(lγi) can be negative
for every i and ∑m−1

i=1 E(lγi)−m ·maxi{0,E(lγi)} is necessarily non-positive.
Fig. 6.8 presents the entropy values of b[λ] as a function of its LG parameters E(lλ)

and V ar(lλ) in the case of two candidate classes. As it has a single degree of freedom,
two parameters can fully describe the distribution. The figure shows that the farther
E[lλ] is from zero, i.e. the closer E[λ1] to either one or zero, the smaller the entropy gets
in general. The effect is more pronounced in the case where V ar(lλ) is small. If we aim
to minimize entropy during planning, the robot will aim to reach regions where E[λ] is
close to the edges of the simplex, and have smaller posterior epistemic uncertainty.

The scenarios presented in Fig. 6.2 correspond to the following cases in Fig. 6.8:

• The unknown-unknown case (Fig. 6.2a) corresponds to E(lλ) close to 0, and large
V ar(lλ) , i.e. the upper central part of Fig. 6.8.

• The known-unknown case (Fig. 6.2b) corresponds to E(lλ) close to 0, and small
V ar(lλ), i.e. the lower central part of Fig. 6.8.

• The known-known case (Fig. 6.2c) corresponds to E(lλ) with large absolute value,
and small V ar(lλ), i.e. the lower areas at the sides.

• The uncertain classification case (Fig. 6.2d) corresponds to E(lλ) with large ab-
solute value, and large V ar(lλ), i.e. the upper areas at the sides.

Dirichlet Distribution For b[λ]

The other option assumes b[λ] is Dirichlet distributed, which is supported only by MH,
as illustrated in Fig. 6.7. This distribution is a natural representation of distribu-
tion over probability vectors in which samples necessarily satisfy all the conditions of
probability vectors presented in Sec. 1.B.

The Dirichlet distribution is parametrized by a parameter set α ≜ {α1, ..., αm}, and
the PDF is:

Dir(λ;α) = 1
B(α)

m∏
i=1

(λi)αi−1, (6.98)

105

Figure 6.8: Entropy of a one dimensional Logistical Gaussian that corresponds to two dimensional probability
vector γ. The x and y axis represent E(lγ) and V ar(lγ) respectively. Blue to yellow colors correspond to low to
high entropy.

with λi being the i-th class probability. B(α) is a normalization constant defined as

B(α) ≜
∏m
i=1 Γ(αi)
Γ (α0)

, (6.99)

where Γ(·) is the Gamma function and α0 ≜∑m
i=1 αi for shorthand.

Recall that in MH b[λ] is maintained via maintaining each λw ∈ {λw}w∈W as in
Eq. 6.22 and Eq. 6.32. Dirichlet’s distribution parameters, given {λ}, can be estimated
in an iterative manner as follows [117]:

ψ(αnew
i) = ψ(

m∑
j=1

αoldj) + log λ̂i, (6.100)

where log λ̂i ≜ 1
|W | log λiw, and ψ(·) is the digamma function. The following expression

shows the entropy of the Dirichlet distribution given α parameters:

H(λ) = logB(a) + (α0 −m)ψ(α0)−
m∑
i=1

(αi − 1)ψ(αi). (6.101)

The term B(α) needs to be numerically computed. While it is not an analytical solu-
tion, the computation is significantly faster than computing differential entropy using
samples.

This entropy takes the maximal value when αi = 1, ∀i, and at the ”edges” of
the distribution, where a single parameter is much larger than the others, the entropy
is the lowest. If one of the parameters is zero, then H(λ) = −∞, as ψ(0) = −∞.
This behavior of entropy can be observed in Fig. 6.9 that shows an example for a two
dimensional distribution.

106

The scenarios presented in Fig. 6.2 correspond to the following cases in Fig. 6.9:

• The unknown-unknown case (Fig. 6.2a) corresponds to α1 and α2 that are close
to 1, i.e. the central part of Fig. 6.9.

• The known-unknown case (Fig. 6.2b) corresponds to α’s with large and similar
values, i.e. the upper right part of Fig. 6.9.

• The known-known case (Fig. 6.2c) corresponds to the case where one α is sig-
nificantly larger than the other, and larger than 1, i.e. left or bottom areas of
Fig. 6.9.

• The uncertain classification case (Fig. 6.2d) corresponds to the case where one α
is not significantly larger than the other, i.e. the areas between the high and low
entropy in Fig. 6.9.

Figure 6.9: Entropy of a two dimensional Dirichlet distribution as a function of log of parameters. Blue to
yellow colors correspond to low to high entropy values.

Comparison Between Dirichlet and Logistic Gaussian

When considering the reward H(λ) we have to consider two steps:

1. Computation of b[λ] parameters; With MH we maintain separately λw ∈ {λw}w∈W

and subsequently describe b[λ] using {{λw}w∈W }. As such, to compute H(λ) we
must assume a distribution for b[λ] and infer its parameters. JLP on the other
hand limits b[λ] to be LG distributed.

2. Calculation of H(λ) to use as a reward function for planning, either via numerical
computation, or by using bounds.

107

0 50 100 150 200

Number of candidate classes

0

0.01

0.02

0.03

0.04

0.05
C

o
m

p
u
ta

ti
o
n
a
l
ti
m

e
 [
s
]

Dirichlet

LG

(a) Inference time

0 50 100 150 200

Number of candidate classes

0

2

4

6

8

C
o

m
p

u
ta

ti
o

n
a

l
ti
m

e
 [

s
]

10
-3

Dirichlet

LG numerical

LG upper bound

(b) Entropy time

0 50 100 150 200

Number of candidate classes

-2500

-2000

-1500

-1000

-500

0

E
n

tr
o

p
y
 v

a
lu

e

Dirichlet

LG numerical

LG upper bound

LG lower bound

(c) Entropy value

0 5 10 15 20

E(l)

-20

-15

-10

-5

0

5

E
n
tr

o
p
y
 v

a
lu

e

Dirichlet

LG numerical

LG upper bound

LG lower bound

(d) Entropy value

0 2 4 6 8 10

(l)

-6

-4

-2

0

2

4

E
n

tr
o

p
y
 v

a
lu

e

Dirichlet

LG numerical

LG upper bound

LG lower bound

(e) Entropy value

Figure 6.10: This figure presents a comparison between Dirichlet and Logistical Gaussian (denoted LG) in
terms of computational time, entropy, and log-likelihood values. (a) presents a computational time comparison
between Dirichlet and LG for inference as a function of probability vector dimension. Similarly (b) presents
a computational time for entropy computation, both for numerical and upper bound. (c) presents a value
comparison between the different entropy computations. Note that in (b) and (c) the plots are given the
parameters calculated for (a). (d) presents an entropy value comparison between distributions with different
expectations with a fixed covariance; Similarly, (e) presents an entropy value comparison between distributions
with different covariance value with a fixed expectation.

We remind that this discussion is relevant for H(λ) computation for MH, as in JLP λ

is LG distributed by definition.
Parameter inference for Dirichlet is faster than for LG although the process is

numeric. On the other hand, LG is more expressive; Form classes, Dirichlet distribution
has m parameters, while LG has m− 1 parameters for E(lλ), and m·(m−1)

2 parameters
for Σ(lλ), totaling in (1 + m

2) · (m− 1) parameters.
LG does not have an analytical solution for computing entropy, and its numeric

computation is slower than Dirichlet’s. On the other hand, computing bounds of en-
tropy for LG is comparable in terms of computational effort to computing Dirichlet
entropy. One must note that while Dirichlet is less computationally expensive than
LG, when MH with Dirichlet and JLP are compared, JLP is still computationally
much more efficient.

Fig. 6.10 presents a comparison between the two distributions in terms of computa-
tional effort and value of the entropy. In all figures, the x-axis is number of candidate
classes, and for each, a dataset of 1000 class probability vectors was sampled. Fig. 6.10a
presents the measured time of parameter computation, clearly showing an advantage
for Dirichlet distribution for high dimensional probability vectors despite the param-
eter computation process for Dirichlet distribution containing functions that must be
numerically computed.

Fig. 6.10b presents the computational time of the entropy, for numerical computa-
tion for both LG and Dirichlet, and the bounds for LG(computation time is identical

108

both for upper and lower bounds; thus only upper bound is shown). Here entropy
computation for Dirichlet holds a significant advantage over numerical computation of
entropy for LG, and the bound computation time is comparable to Dirichlet.

Fig. 6.10c presents entropy values for Dirichlet, numerical LG, lower and upper
bounds for LG. In general, the upper bound tends to be close to the numerical solution
for fewer candidate classes. In addition, entropy for Dirichlet distribution tends to be
higher.

In Fig. 6.10d the number of candidate classes is fixed to two, i.e. the dimension of
lλ is R1; The covariance Σ(lλ) is fixed at 3, and E(lλ) goes from 0 to 20. In this figure
the entropy value monotonically decreases when increasing E(lλ). The lower bound is
tighter between the two bounds as E(lλ) increases.

In Fig. 6.10e E(lλ) is fixed instead at E(lλ) = 3 and Σ(lλ) varies between 0 and
10. We can see that the entropy value increases with the increase in Σ(lλ), but the
bigger effect is for LG compared to Dirichlet distribution. The upper bound is tighter
at lower E(lλ) values, while the lower bound is tighter for higher values.

One may ask: which distribution should be used? For JLP, as mentioned previously,
we are limited to LG. For MH, the tradeoff is between distribution expressiveness and
computational effort; While Logistical Gaussian is more expressive because of a larger
number of parameters, the computation effort is significantly higher than for Dirichlet
distribution. Also, Dirichlet distribution, unlike the Logistical Gaussian, can manage
a very small number of probability vector samples.

6.5 Simulation and Experiments

We evaluate our approaches for semantic SLAM inference and planning in simulation
(Sec. 5.B) and an experiment (Sec. 5.C) over the Active Vision Dataset scenario Home-
3-01 [113], with viewpoint dependent classifier uncertainty models trained using the
BigBIRD dataset [118]. We considered environments with multiple spatially scattered
objects, and the robot’s task is to accurately classify them while localizing. Our imple-
mentation uses the GTSAM library [107] with a Python wrapper. The hardware used
is an Intel i7-7700 processor running at 2.8GHz and 16GB RAM, with GeForce GTX
1050Ti with 4GB RAM.

5.A Compared Approaches and Metrics

We consider three approaches for inference and planning: our MH and JLP methods
with the corresponding MH-BSP and JLP-BSP, and an approach that does not consider
model uncertainty, denoted as Without Epistemic Uncertainty (WEU). In this approach
we maintain a single hybrid belief and use it for inference and planning, similar to
approaches presented in [95] and chapter 3.

We require a metric to evaluate classification where a completely incorrect clas-

109

sification would not result in infinite error, unlike cross entropy loss. Therefore, our
approach is evaluated for classification accuracy using the Mean Square Detection Error
metric (MSDE, also used by Teacy et al. [15] and Feldman & Indelman [16]). Given
b[λk], MSDE is defined as follows:

MSDE ≜ 1
m

m∑
i=1

(
λigt − E(λik)

)2
, (6.102)

where λigt is the ground truth probability of the object being of class c = i, and is equal
to 1 if the object is class i and 0 otherwise. For a completely incorrect classification
MSDE ≤ 1, ideal classification MSDE = 0, and for classification results where all
class probabilities are equal, MSDE = m−1

m2 .

5.B Simulation

Simulation Setting

We consider a closed set setting and assume, for simplicity, that the number of classes
m = 2, i.e., each object can be one of the two classes. The camera senses objects up to
10 meters distance, with an opening angle of 120◦. We choose two sets of models for
the simulation; The first is a model that satisfies Lemma 6.3.1, and the second does
not to show the effect of using JLP with such models. The baseline MSDE score for
m = 2 where all class probabilities are equal is MSDE = 0.25.

Inference: Single Run

The setting for this comparison is an environment with 5 objects; These object are
placed within the environment, which is presented in Fig. 6.11 along with the ground
truth trajectory. The robot passes through an area in which the objects have classifi-
cation scores with high degree of epistemic uncertainty. Normally, with methods that
do not consider epistemic uncertainty, classification results will have a high chance of
being incorrect, but our approach provide more accurate results as it considers epis-
temic uncertainty. Denote ψ as the relative orientation between the object’s orientation
(chosen during the classifier uncertainty model training) and the camera’s pose. We
simulate a classifier model that considers the following cases:

1. The classifier differentiates well between classes with low epistemic uncertainty,
ψ = 0◦.

2. The classifier does not differentiate well between the two classes, ψ = 90◦, 270◦.

3. The classifier differentiates between classes well, but with high epistemic uncer-
tainty, ψ = 180◦.

As such, ψ = 0◦ is the relative orientation where the best classification with the lowest
uncertainty is expected (corresponding to the blue cone in Fig. 6.11 that represent

110

this relative orientation), and ψ = 180◦ is the relative orientation that most prone
to classification errors when not considering epistemic uncertainty. Considering the
specific ground truth trajectory for the presented scenario, objects 1 and 2 represent
case 3; as such, we expect our approaches to infer the correct class within a large
number of steps because of the uncertainty. Object 3 represents case 1, and as such
when it is observed the classification will be accurate on the first view. Objects 4 and 5
represent case 2, where classification is difficult as the model doesn’t differentiate well
between the classes of those objects. The object ground truth classes are c = 1 for
objects 1, 2 and 5, and c = 2 for objects 3 and 4.

Figure 6.11: The ground truth of the scenario in Sec. 5.B. The red dot represents the robot’s starting point,
with the red curve being the path. The green dots represent the objects’ location with the corresponding object
labels. The green line represents the object orientation, with the yellow line present 90◦ of that orientation.
The blue cones represent the observation viewpoints in which the classifier identifies the object class well with
low uncertainty, i.e. case 1.

A visualization of the models presented can be seen in Fig. 6.12.

(a) P(γc=1|c = 1, ψ) (b) P(γc=1|c = 2, ψ)

Figure 6.12: A visualization of the classifier uncertainty model used in Sec. 5.B. We present the value of
P(γc=1|c, xrel) ≡ P(γc=1|c, ψ) as a function of relative orientation ψ and γc=1 value, for classes c = 1 and c = 2
in (a) and (b) respectively. Blue and yellow colors correspond to low and high PDF values respectively.

We consider noisy geometric measurements of relative pose, and cloud point se-
mantic measurements, i.e. the classifier gives {γ} per each object, sampled from the

111

classifier uncertainty model. We use a classifier uncertainty model with the following
function for expectation (see Eq. (6.15)):

hc=1(xrel) = 1
2

cos(2 · ψ) + 1
2

hc=2(xrel) = −1
2

cos(2 · ψ)− 1
2
,

(6.103)

and the following parameter for root-information:

Rc=1(xrel) = Rc=2(xrel) = 1.4 + 0.6 · cos(ψ), (6.104)

Subsequently, the covariance parameter from Eq. (6.15) in the two class case is com-
puted as follows:

Σc(xrel) =
√

1
Rc(xrel)

. (6.105)

With the covariance parameter being equal, the presented model satisfies the assump-
tion of Lemma 6.3.1, allowing us to use the JLP approach.

Fig. 6.13 presents MSDE results for each object separately. We perform inference
with MH with a different number of hybrid beliefs, and compare it to JLP and WEU.
With MH and JLP, the class of objects 1 and 2 is inferred using multiple observations,
eventually inferring the correct class. The class of object 3, once seen, is quickly
and accurately inferred. The class of objects 4 and 5 remain ambiguous (MSDE of
approximately 0.25) because they are observed from viewpoints that correspond to
case 2. In general, MH in Fig. 6.13a-6.13d tends to present smoother results the more
hybrid beliefs are used, and also compared to JLP in Fig. 6.13e where for each time step
the entropy must be computed numerically from new λk samples. WEU in Fig. 6.13f
shows that objects can be classified incorrectly if not considering epistemic uncertainty,
such as object 4, as shown in the figure.

As a summary, Fig. 6.14a presents average MSDE results for all the objects com-
bined, showing that epistemic uncertainty aware approaches outperform WEU, while
MH with 10 beliefs and JLP perform similarly. Fig 6.14b presents a computation time
comparison between WEU, JLP and MH for different number of hybrid beliefs. From
this figure, we can see that JLP is comparable to WEU, with MH being significantly
more computationally intensive as the number of the simultaneous beliefs increase.

Inference: Statistical Study

In this section we perform a Monte-Carlo study to compare between MH, JLP, and
WEU. We run the simulation 10 times and present results for MSDE and computational
time. The setting for this comparison is an environment with 5 objects with randomized
poses, with examples presented in Fig. 6.15. Otherwise, we use the same setting and
classifier uncertainty model as in Sec. 5.B.

112

(a) MH 5 hybrid beliefs (b) MH 10 hybrid belief (c) MH 25 hybrid beliefs

(d) MH 100 hybrid beliefs (e) JLP (f) WEU

Figure 6.13: (a), (b), (c), and (d) show MSDE results per time step for MH per object, each in a different
color, for 5, 10, 25, and 100 respectively. (e) shows MSDE results for JLP. (f) shows MSDE results for WEU

(a) (b)

Figure 6.14: (a) compares MSDE to time step between MH in red, JLP in blue, and without uncertainty in
green. (b) compares run-time per inference step between realizations of MH with different number of hybrid
beliefs in red, JLP in black, and WEU in green.

(a) (b)

Figure 6.15: Examples of a sampled environment in which the inference is performed. The red trajectory is
the robot path. The green dots denote the objects, numbered O1 to O5. The green and yellow lines represent
their orientation, 0◦ and 90◦ respectively.

113

We present MSDE statistical results in Fig. 6.16a, with one σ uncertainty. While
MH and JLP perform similarly, both outperform the approach that does not consider
epistemic uncertainty, especially in cases where the camera goes through areas that
correspond to ψ = 180◦. Fig. 6.16b presents run-time results for the algorithms. Ex-
pectedly, as the number of simultaneous beliefs increase for MH, the algorithm runs
slower. JLP is comparable to maintaining a single hybrid belief in this case, demon-
strating that it is more practical when the conditions of Lemma 6.3.1 are satisfied.

(a) (b)

Figure 6.16: (a) compares MSDE to time step between MH in red, JLP in blue, and without uncertainty
in green. The transparent colors correspond to the respective plot in one σ value. (b) compares run-time per
inference step between realizations of MH with different number of hybrid beliefs in red, JLP in black, and WEU
in green.

Inference: Joint Lambda Pose Assumption

One may consider the ramifications of using JLP with models that don’t satisfy Lemma
6.3.1; The most straightforward result is that MH and JLP results don’t coincide with
each other, and that may result in either erroneous or overconfident classification (i.e.
large values of E(lλ) and/or too small values of Σ(lλ)).

This time, the classifier model uses the following parameters; For expectation:

hc=1(xrel) = 0.3 · cos(2 · ψ) + 0.3

hc=2(xrel) = −0.3 · cos(2 · ψ)− 0.3,
(6.106)

and the following parameters for root-information:

Rc=1(xrel) = 1.4 + 0.6 · cos(ψ)

Rc=2(xrel) = 1.4− 0.6 · cos(ψ).
(6.107)

The goal is creating opposing Σc(ψ) for the two classes, such that Lemma 6.3.1 does not
hold and may result in inaccurate classification while using JLP. Fig. 6.17 presents a
visualization of the model. Specifically, the problematic areas are around ψ = 0◦ where
the models actually predict that when γc=1 > 0.8 the likelihood is actually higher for
c = 2, and vice-versa when ψ = 180◦ when γc=2 > 0.8 predicts a higher likelihood for

114

c = 1.

(a) P(γc=1|c = 1, ψ) (b) P(γc=1|c = 2, ψ)

Figure 6.17: A visualization of the classifier uncertainty model used in Sec. 5.B. We present the value of
P(γc=1|c, ψ) as a function of relative orientation ψ and γc=1 value, for classes c = 1 and c = 2 in (a) and (b)
respectively. Blue and yellow colors correspond to low and high PDF values respectively.

Fig. 6.18 presents the PDF values of lγk, and Lsk with and without JLP assumption
at ψ = 0◦. Here lγk ∼ N (0.6, 0.25), coinciding with the classifier uncertainty model
parameters of class c = 1. In this figure the difference between the approximation
and real Lsk are evident, with the approximated Lsk risking a larger chance of incorrect
classification as the area below 0 is larger than that for the real Lsk.

Figure 6.18: An approximate PDF value graph for JLP assumption where ψ = 0◦ The yellow area represents
the distribution of lγk, the red area represents Lsk PDF when JLP assumption is used, and the blue area
represents the real PDF of Lsk.

In this scenario we use the same setting we used at Sec. 5.B, 5.B, and 5.B. and
compare the MSDE scores in Fig. 6.19. For Fig. 6.19a and 6.19b we use the scenario
from Sec. 5.B. In Fig. 6.19a MSDE results for MH with 100 hybrid beliefs are shown
as the most accurate, where objects 1 and 2 have more accurate classification than the
rest. Fig. 6.19b presents MSDE results for JLP, where we see significantly less accurate
results. Finally, we perform a statistical study with 5 random object locations of 10
runs as in Sec. 5.B, comparing between MH with 10 hybrid belief, JLP, and WEO,

115

and see that statistically the difference between MH and JLP is not large even without
Lemma 6.3.1 holding, as opposed to the specific run from Figs. 6.19a and 6.19b.

(a) MH 100 hybrid beliefs (b) JLP (c) Average MSDE

Figure 6.19: (a) shows MSDE results to time step per object for MH with 100 hybrid beliefs which we
consider most accurate, while (b) shows JLP results for MSDE. (c) is a statistical study that compares between
average MSDE over all objects for WEU in green, JLP in blue, and MH in red. The line corresponds to MSDE
expectation and the colored area to one σ range.

Empirical Analysis of Entropy Reward

First, we present how the reward function of entropy over b[λ] as in Eq. (6.76) be-
haves from different relative viewpoints using the classifier model presented in Sec. 5.B
Fig. 6.12. Around a single object, as seen in the ground truth Fig. 6.20, we have a robot
placed in different initial points. From each point, the prior P(λ0) is LG distributed
with parameters µ = 1.218 and Σ = 1.219. We compute sampled rewards for perform-
ing a candidate action for each initial position that takes the robot close to the target;
Each starting position is denoted with a number index. We show results for both MH
and JLP in term of predicted −H(λ1) values, compared to the value of −H(λ0), which
for the selected parameters for P(λ0) is 0.434.

0 2 4 6 8 10

X axis [m]

− 4

− 2

0

2

4

Y
 a

x
is

 [
m

]

O11 O1

2

O1

3

O1

4

O1

5

O1

6

O1

7

O1

8

O1 9O1

10

O1

11

O1

12

O1

13

O1

14

O1

15

O1

16

Figure 6.20: Ground truth of robot initial positions relative to the object at the center. Initial positions and
corresponding paths are shown in red, the object position in green, and the orientation green and yellow.

116

Fig. 6.21 and 6.22 present two dimensional simplexes for predicted future b[λ1]. In
each sub-figure from those figures there are 50 predicted realizations of b[λ1] created
from sampled measurements. Each sub-figure represent a different viewpoint. Recall
the classifier models at Fig. 6.12, at ψ = 0◦ the epistemic uncertainty is the lowest,
with high degree of separation between the models. This is reflected in Fig. 6.21a and
6.22a, where the predicted P(λ0) is the closest to the edges of the simplex. At ψ = 90◦

and ψ = 270◦, corresponding to Fig. 6.21c, 6.21e, 6.22c, and 6.22e, the classifier model
cannot differentiate between the classes, and that is reflected by the simplexes that
stay close to the prior. Fig. 6.21b, 6.21f, 6.22b, and 6.22f present the case in which
ψ = ±20◦, a middle-of-the-road case between ψ = 0◦ and ψ = 90◦. At ψ = 180◦

the separation is large, but the epistemic uncertainty is high. As such, Fig. 6.21d and
6.22d present a case where the plots are close to the edges, but with large epistemic
uncertainty.

(a) ψ = 0◦ (b) ψ = 20◦ (c) ψ = 90◦

(d) ψ = 180◦ (e) ψ = 270◦ (f) ψ = 340◦

Figure 6.21: 2D simplexes of b[λ1] realization created from measurement samples for MH. The x axis is the
value of λc=1

1 , while the y axis is b[λc=1
1]. Each figure contains multiple plots with low opacity.

Fig. 6.23 and 6.24 present the rewards for each viewpoints within the scenario, with
the red dot corresponding to the objective function, and the blue dot corresponding
to −H(λ0), for MH in 6.23 and JLP in 6.24. Both figures present a similar behavior
of the reward; The highest rewards are around ψ = 0◦, i.e. indices 1,2 and 16 where
the epistemic uncertainty is the lowest. On the other hand, he lowest rewards are for
ψ = 180◦ where the epistemic uncertainty is the highest. For ψ = 90, 270◦, the reward
stays close to −H(λ0). Therefore, to get the highest reward in planning, the robot must
travel to zones where the relative viewpoint is close to ψ = 0◦. Note that different class
hypotheses for the object produce different predicted b[λ1] and therefore −H(λ1), as
evident by the fact that at some viewpoints the reward was split to two ”clusters”.

117

(a) ψ = 0◦ (b) ψ = 20◦ (c) ψ = 90◦

(d) ψ = 180◦ (e) ψ = 270◦ (f) ψ = 340◦

Figure 6.22: 2D simplexes of b[λ1] realization created from measurement samples for JLP. The x axis is the
value of λc=1

1 , while the y axis is b[λc=1
1]. Each figure contains multiple plots with low opacity.

Figure 6.23: Rewards as a function of scenario and action index, logarithmic scale, MH. The black dots
represent the rewards, the blue dots represent −H(λ0).

118

Figure 6.24: Rewards as a function of scenario and action index, logarithmic scale, JLP. The black dots
represent the rewards, the blue dots represent −H(λ0).

Planning: Single Object

Next, we simulate a planning scenario of a single object using EUS-BSP. Relative to the
object, there is an area with low epistemic uncertainty and high separation between
classes, represented as a blue cone in Fig. 6.25a. We compare between two reward
functions for planning. R1 is the negative of the entropy of λ as defined in Eq. (6.76),
while R2 is the entropy of E(λ) as defined in Sec. 4.D. For a future belief b[λk+1]:

R1 = −H(λk+1)

R2 = −H(E(λok+1))
(6.108)

For both reward functions we use MH-BSP and JLP-BSP. We use only R2 for WEU
as R1 is not applicable because it does not consider epistemic uncertainty, while R2

can use the posterior class probability as E(λok+1). Optimally, the robot would plan
to go through the high separation low uncertainty zone. We have five possible motion
primitives, as represented in Fig. 6.25b with a vision cone of 120◦ emanating from the
camera. We explore the planning decision tree using Monte Carlo Tree Search with a
horizon length L = 10 at each step, then perform the action with the highest reward.
The setting for the classifier model, viewing radius and angle, motion, and geometric
noise are the same as in the inference simulation. We use 10 hybrid beliefs for MH.
The trajectory length is 20 time steps.

Fig 6.26 presents the ground truth trajectories calculated by performing planning
over R1 and R2 both for JLP-BSP and MH-BSP, and planning for R2 for WEU. It is
evident that the epistemic-uncertainty-aware methods seek to pass near the blue-cone
area for more accurate classification with lower epistemic uncertainty. Methods that
plan over R1 tend to pass through the cone.

119

(a) (b)

Figure 6.25: (a) is the ground truth of the scenario in Sec. 5.B. The red dot represents the robot’s starting
point. The green dots represent the objects’ location with the corresponding object labels. The green line
represents the object orientation, with the yellow line present 90◦ of that orientation. The blue cones represent
the observation angles in which the object are classified most accurately with the lowest epistemic uncertainty.
(b) presents the five motion primitives in the scenario. The red dot represents the origin point, the black arrows
the possible actions, and the blue cone is the field of view after the action.

(a) R1 (b) R2 (c) WEU

Figure 6.26: This figure presents the ground truth of a planned trajectories. (a) for planning over R1 for
MH-BSP (purple) and JLP-BSP (black). (b) for planning over R2 for MH-BSP (red) and JLP-BSP (blue). (b)
for WEU (green). All are for the multiple object scenario. The object is shown in a green dot, with the green
line representing the object orientation, with the yellow line present 90◦ of that orientation. The blue cones
represent the areas where observations have the lowest epistemic uncertainty.

120

The behavior presented in Fig 6.26 is reflected in Fig. 6.27 where the values of H(λk)
are shown as a function of time during inference after the corresponding action has been
performed. The values of H(λk) correlate to the epistemic uncertainty. Evidently,
planning over R1 yields lower epistemic uncertainty for both MH-BSP (Fig. 6.27a) and
JLP-BSP (Fig. 6.27b).

(a) (b)

Figure 6.27: H(λ20) values for MH (a) and JLP (b) as a function of the time step. In (a), the purple and
red plots represent R1 and R2 respectively, and similarly in (a) , the black and blue plots represent R1 and R2
respectively.

Fig. 6.28 presents MSDE results for all the methods, split into results for MH in
Fig. 6.28a and for JLP in Fig. 6.28b, both showing comparison to WEU in the green
plot. WEU performs significantly worse in this setting than all the other methods.
When comparing planning over R1 and R2, the first presents better results than the
latter for both JLP and MH.

(a) (b)

Figure 6.28: MSDE values as a function of time step for MH (a) and JLP (b), compared to WEU. In (a), the
purple and red plots represent R1 and R2 respectively, and similarly in (a) , the black and blue plots represent
R1 and R2 respectively. WEU is represented in both figure with a green plot.

Fig. 6.29 presents the results at time k = 20 for all methods as a bar graph with
error margins for the ground truth class. We can compare the entropy from Fig. 6.26
and MSDE from Fig. 6.28 with the bar graphs, with lower entropy values resulting in
smaller posterior epistemic uncertainty. Similarly, lower MSDE values result in a more

121

”certain” result in the bar graph, as we can see for methods that plan over R1.

Figure 6.29: Probability of the object being class c = 2 (ground truth) for our methods at time k = 20. We
compare planning over R1 and R2, JLP-BSP, MH-BSP, and WEU. Purple and red for R1 and R2 respectively
using MH-BSP, black and blue for using for R1 and R2 respectively using JLP-BSP, and green for WEU.
The one σ deviation is represented via the black line at each relevant bar, and represents the posterior model
uncertainty.

In Fig. 6.30 we perform computation time comparisons between WEU, MH-BSP
and JLP-BSP. The significant advantage in computational time for JLP-BSP is evident
against MH-BSP, and while WEU is lower still, JLP-BSP also opens the possibility of
reasoning about epistemic uncertainty.

Figure 6.30: This figure compares run-time per inference step between realizations of MH with 5 hybrid beliefs
in red, JLP in black, and WEU in green.

122

Planning: Single Run, Multiple Objects

We simulate a planning scenario of 9 objects, where they formed in a way that there are
3 zones of low uncertainty high expected classification scores, as shown in Fig. 6.31a.
Reward function R1 is now modified to include a cap of Rmax = 5 per object to to
encourage exploration and classification of all objects in the scene. We modify R1 and
R2 to include all objects by summing the entropy of each marginal λk+1 per object. All
in all, the explicit expression for the cost functions for a future b[λk] is:

R1 =
∑
o

min(−H(λok+1), Rmax)

R2 = −
∑
o

H(E(λok+1))
(6.109)

Optimally, the robot would plan to go through all three zones to achieve accurate
classification of all objects. As in Sec. 5.B, We have five possible motion primitive, as
presented in Fig. 6.31b with a cone of vision of 120◦ emanating from the camera. We
use MCTS for a horizon L = 10. We use 10 hybrid beliefs for MH-BSP. The trajectory
length is 20 time steps. As in the previous section, we plan for R1 with MH-BSP and
JLP-BSP, and for R2 with MH-BSP, JLP-BSP, and WEU.

(a) (b)

Figure 6.31: (a) is the ground truth of the scenario in Sec. 5.B. The red dot represents the robot’s starting
point. The green dots represent the objects’ location with the corresponding object labels. The green line
represents the object orientation, with the yellow line present 90◦ of that orientation. The blue cones represent
the observation angles in which the objects are classified most accurately with the lowest epistemic uncertainty,
with 3 overlapping areas as low epistemic uncertainty areas. (b) presents the five motion primitives in the
scenario. The red dot represents the origin point, the black arrows the possible actions, and the blue cone is the
field of view after the action.

Fig. 6.32 presents the trajectories created for all the methods. The ones that plan
over R1 create trajectories pass closer to the overlapping low uncertainty areas from
Fig. 6.31a, resulting eventually in more accurate classification compared to planning
over R2 for all methods, especially WEU.

Fig. 6.33 presents a comparison for H(λk) at the inference phase, when comparing
planning over R1, and R2 for MH-BSP in Fig. 6.33a and JLP-BSP in Fig. 6.33b. In both
figures planning over R1 yields lower entropy, correlating to lower epistemic uncertainty.

123

(a) R1 (b) R2 (c) WEU

Figure 6.32: This figure presents the ground truth of a planned trajectories. (a) for planning over R1 for
MH-BSP (purple) and JLP-BSP (black). (b) for planning over R2 for MH-BSP (red) and JLP-BSP (blue). (b)
for WEU (green). All are for the multiple object scenario. The object is shown in a green dot, with the green
line representing the object orientation, with the yellow line present 90◦ of that orientation. The blue cones
represent the areas where observations have the lowest epistemic uncertainty.

The effect is more noticeable for MH-BSP than JLP-BSP.

(a) (b)

Figure 6.33: H(λ20) values for MH-BSP (a) and JLP-BSP (b) as a function of the time step. In (a), the
purple and red plots represent R1 and R2 respectively, and similarly in (a) , the black and blue plots represent
R1 and R2 respectively.

Fig. 6.34 presents MSDE results for all the methods, split into results for MH-BSP
in Fig. 6.34a and for JLP-BSP in Fig. 6.34b, both showing comparison to WEU in the
green plot. As in Sec 5.B, planning over R1 slightly outperforms planning over R2,
with WEU lagging far behind.

Fig. 6.35 presents a bar-graph with error representation of the classification results
at time k = 20 for all objects. In general, planning over R1 tend to have more accurate
classification compared to planning over R2 with lower uncertainty. On the other hand,
WEU tends to go towards extremes of class probabilities 0 or 1, whether it is the correct
class or not.

In Fig. 6.36 we present the computational time per step for all our approaches using
R2 reward function. For MH-BSP, we used 10 hybrid beliefs. This figure shows that
JLP-BSP is slightly faster than WEU while also reasoning about posterior epistemic
uncertainty, because the number of states in JLP-BSP scales linearly with the number
of objects and candidate classes, as opposed to exponentially with WEU and MH-BSP.
As in Sec. 5.B, JLP-BSP is significantly more computationally efficient than MH-BSP.

124

(a) (b)

Figure 6.34: Single-run study for multiple object scenario study for MSDE comparing planning over R1 and
R2 for MH-BSP ((a)) and JLP-BSP ((b)), and WEU.

Figure 6.35: Probability of the objects being ground truth class for our methods at time k = 20 for all
objects. We compare planning over R1 and R2, JLP-BSP, MH-BSP, and WEU. Purple and red for R1 and R2
respectively using MH, black and blue for using for R1 and R2 respectively using JLP-BSP, and green for WEU.
The one σ deviation is represented via the black line at each relevant bar, and represents the posterior model
uncertainty.

Figure 6.36: This figure compares run-time per inference step between realizations of MH-BSP with 5 hybrid
beliefs in red, JLP-BSP in black, and WEU in green.

125

Planning: Statistical Study

For the statistical study, we randomly corrupt geometric and semantic measurements
with noise. We use the scenario from Sec. 5.B, using R1, and R2 with JLP-BSP, and
compare it to WEU. We perform 10 iteration, each with a planning horizon L = 10,
and present results for entropy and MSDE. Each run was performed to 20 time-steps.

Fig. 6.37 presents the statistical results for the sum of the entropy in Fig. 6.37a, and
the MSDE results in Fig. 6.37b, with the colored areas representing one σ deviation.
All in all, planning over R1 performs better over planning over R2 for JLP-BSP, with
lower entropy and MSDE. In addition, MSDE results compared to WEU are vastily
superior for epistemic-uncertainty-aware methods.

(a) (b)

Figure 6.37: Statistical study for the scenario in Sec. 5.B (a) Presents an comparison for the sum of entropy
over all objects between trajectories for R1 and R2 as a function of time step for MH-BSP. (b) presents an
MSDE comparison between MH-BSP, JLP-BSP, and WEU as a function of time step. In both, the line represent
the statistical expectation, while the colored area represents a one σ deviation.

5.C Experiment

Setup

For the experiment, we consider a myopic planning scenario in a semantic SLAM set-
ting, using Active Vision Dataset (AVD) [113] Home 005 with example images presented
in Fig. 6.38. In this scenario, the objects are grouped to two groups, one on a table
near the window back-lit by sunlight as seen in Fig. 6.38a, and another on the kitchen
counter seen in Fig. 6.38b. We perform planning for a 20 time step trajectory, at each
step performing myopic planning. We aim to compare between JLP-BSP and WEU for
classification accuracy using MSDE (6.102), differential entropy representing epistemic
uncertainty, and computational time. The reward functions R1 and R2 are identical to
those presented in Eq. (6.109).

We consider five candidate classes: ”Packet”, ”Book Jacket”, ”Pop Bottle”, ”Digital
Clock”, and ”Soap Dispenser”. For each class, we trained classifier uncertainty models
using images from BigBIRD dataset [118], with example images presented in Fig. 6.39.

126

(a) (b) (c)

Figure 6.38: [Experiment: example images with bounding boxes.]Example images of the Active Vision Dataset,
home 005. The red boxes represent the bounding boxes for the objects, and the notation Ox represent the x’th
object.

For classification, we used VGG convolutional neural network [2] with dropout activated
during test time. The R1 upper limit Rmax per object is 500, as the increase number
of objects increases the scale of R1 values; Recall Lemma 6.4.1, the entropy depends
on the covariance of lγ via H(lλ).

(a) (b) (c) (d)

Figure 6.39: Example images of the BigBIRD dataset for training the classifier models. (a) is an example for
”pop bottle” class, while the rest are examples for ”packet”.

The classifier models were trained via PyTorch on fully connected networks. Recall
Eq. (6.15), we train hc(xrel) and Σc(xrel) from a dataset Dc = {xrel, {lγ}} per object,
where xrel = [ψ, θ] is parametrized by relative yaw angle ψ and relative pitch angle θ. hc
and Σc are represented by separate neural networks, up to a total of 2m networks. As
seen in Sec. 3.C, all Σc=i ≡ Σc=j for i, j = 1, ...,m−1 for the JLP factor to be Gaussian.
This constraint limits the expressibility of Σc, thus not accurately representing the
epistemic uncertainty from certain viewpoints of objects. As such, instead of enforcing
a hard constraint on all Σc, we train the classifier uncertainty model with a loss function
that imposes a penalty if Σc for different c are not similar, enforcing a soft constraint.

The loss function Lh for the hc network is mean square error (MSE):

Lh(hc, {lγ}) = MSE(hc, {lγ}) =
m∑
i=1

(
hic − E(lγi)

)2
, (6.110)

where hic is the i’th element of hc. The loss function LΣ for the Σc uses MSE over
the covariance matrix elements, and adds a Forbenius norm term that acts as the soft
constraint that makes the values of Σc closer:

LΣ(hc,Σc, {lγ}) = MSE(Σc,Σ(lγ)) + κ · FN (hc,Σc) (6.111)

127

where the MSE for the above loss function is defined:

MSE(Σc,Σ(lγ)) = 1
(m− 1)2

m∑
i=1

m∑
j=1

([Σc]ij − [Σ(lγ)]ij)2, (6.112)

FN (·) is the Forbenius Norm, defined:

FN (Σc) = Tr
(
(Σ−1

c=i − Σ−1
c=m) · (Σ−1

c=i − Σ−1
c=m)T

)
, (6.113)

and κ is a positive constant. In our case, κ = 0.005.

Results

Fig. 6.40 presents the paths created by the planning session. The path for planning over
R1 focuses on the object group on the kitchen counter, while the others focus more on
the object on the table by the window. This can be explained by poorer visibility of the
objects near the window, induced by the sunlight, therefore inducing higher epistemic
uncertainty than the objects on the counter.

(a) R1 (b) R2 (c) WEU

Figure 6.40: This figure presents the ground truth of a planned trajectories with object pose estimations.
(a) for planning over R1 for JLP-BSP in black. (b) for planning over R2 for JLP-BSP in blue. (c) for WEU
(green). All for the AVD scenario. The object estimation is shown in a green dot with corresponding estimation
covariance of 3σ in gray. The red dots represent the starting position of each trajectory.

The results of those trajectories chosen can be seen in Fig. 6.41, where the entropy
and MSDE results are presented. In Fig. 6.41a the lower epistemic uncertainty for
planning with R2 can be evident. In addition, the MSDE comparison in Fig. 6.41b
significantly favors planning over R1 over R2 and especially compared to WEU, with
epistemic-uncertainty-aware planning outperforms both.

Fig. 6.42 shows the class probability of the ground truth class for all the objects for
time-step k = 20. While both JLP-BSP with R2 and WEU observe an object more as
the group near the window contains more objects, the objects that JLP-BSP with R1

observes are classified more accurately.
Fig. 6.43 presents a computational time comparison between JLP-BSP and WEU.

The figure shows a significant advantage for JLP-BSP over WEU, as this time the
number of candidate classes is 5, instead of 2 in the simulation. WEU computational
time per step drops with time steps as some class realization are pruned. As evident

128

(a) (b)

Figure 6.41: Experimental results for the scenario in Sec. 5.C (a) Presents an comparison for the sum of
entropy over all objects between trajectories for R1 and R2 as a function of time step for JLP-BSP. (b) presents
an MSDE comparison between JLP-BSP, and WEU as a function of time step.

Figure 6.42: Probability of the objects being ground truth class for our methods at time k = 20 for all objects.
We compare planning over R1 and R2, JLP-BSP,and WEU. Black and blue for using for R1 and R2 respectively
using JLP-BSP, and green for WEU. The one σ deviation is represented via the black line at each relevant bar,
and represents the posterior model uncertainty. The colored X marks represent that object wasn’t observed by
the corresponding method.

129

from the figure, JLP-BSP offers computational efficiency greater than WEU, while also
opening access to model uncertainty, both for inference and planning.

Figure 6.43: This figure compares run-time per inference step between realizations of JLP-BSP in black, and
WEU in green for the AVD scenario.

130

Chapter 7

Conclusion and possible future
research

In this thesis we addressed uncertainties in object classification, namely classification
aliasing induced by observing objects from certain viewpoints, and classifier epistemic
uncertainty. For addressing classification aliasing we proposed a semantic SLAM ap-
proach that maintains a hybrid belief over object poses and classes. For semantic
measurements, we utilized an output of a class probability vector per object. We lever-
aged the coupling between poses and classes using a viewpoint dependent classifier
model to assist in data association disambiguation. Eventually we presented in simu-
lation that utilizing a viewpoint dependent classifier model assist in data association
disambiguation, as well as enhancing SLAM performance.

Afterwards, we extended the approach to a distributed multi-robot setting, as-
suming solved data-association. For maintaining a consistent distributed hybrid belief
estimation, we proposed an approach that maintains an individual belief and a joint
belief simultaneously. In this approach the robots communicate the individual beliefs
and store them in a stack, updating the older belief while removing old information.
This way, the robots avoid double counting to keep the estimation consistent. We pre-
sented the advantage of our approach in term of classification and SLAM performance
over the single robot approach and the approach that doesn’t address double counting,
both in simulation and experiment.

Then, we presented a sequential classification approach that infers the belief over
posterior class probability, representing posterior uncertainty. We utilized an epistemic-
uncertainty-aware classifier that provides a point cloud of probability vectors that rep-
resent the epistemic uncertainty from a single image. We computed a posterior class
probability point cloud given measurements and a prior class probability point cloud.
We showed in simulation and experiment the advantage of our approach against ap-
proaches that do not reason about epistemic uncertainty.

Finally, we presented two epistemic-uncertainty-aware approaches that address both
classification aliasing and epistemic uncertainty in a unified inference and BSP semantic

131

SLAM setting. The first is MH, which maintains several hybrid belief simultaneously,
each with semantic measurements of class probability vectors that correspond to differ-
ent classifier weights. This approach proves computationally expensive, so we proposed
a second method: JLP, which uses the novel JLP factor to maintain a single continu-
ous belief that also reasons about posterior epistemic uncertainty. For the active BSP
setting, we discussed the sampling of predicted measurements for both MH and JLP,
namely the advantage of sampling from a viewpoint dependent classifier uncertainty
model compared to generating raw images. The classifier uncertainty model is a mod-
ification of the viewpoint dependent model used previously that is able to generate
probability vector, in addition to participate inference. We proposed a novel type of
information-theoretic reward function over the belief of posterior class probability, and
demonstrated in simulation and using Active Vision Dataset the advantages of planning
over this reward function for classification. In addition, we showed the advantages in
object classification of using epistemic-uncertainty-aware semantic SLAM.

7.1 Possible Future Research

Future research may reason about improving the computational efficiency of hybrid
beliefs over poses and classes, either via parallel computation, incremental inference,
utilizing simplifying assumptions that allows reducing computational effort, or smart
hybrid belief component pruning schemes. JLP provides a promising direction for in-
cluding epistemic-uncertainty-aware classification in SLAM, but still requires improve-
ment for computational effort, e.g. sparsification. In addition, scenarios with many
candidate classes per object may present challenges both for hybrid-belief-based meth-
ods and JLP, so addressing that concern may be a future research direction as well.

132

Appendix A

Communication Tables for
Distributed Semantic SLAM

A.1 Communication Table for Distributed Semantic SLAM
Simulation

In this section we present a table of stack time stamps that indicates direct and indirect
communication between robots in our scenario. Recall that the maximal communica-
tion radius is 10 meters, thus robots r2 and r3 communicate from time k = 6, robots
r1 starts communicating to others from time k = 13.

133

Time step Stack of r1 Stack of r2 Stack of r3

k = 1
t(r1): 1
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 1

k = 2
t(r1): 2
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 2

k = 3
t(r1): 3
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 3
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 3

k = 4
t(r1): 4
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 4
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 4

k = 5
t(r1): 5
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 5
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 5

k = 6
t(r1): 6
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 6
t(r3): 5

t(r1): 0
t(r2): 5
t(r3): 6

k = 7
t(r1): 7
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 7
t(r3): 6

t(r1): 0
t(r2): 6
t(r3): 7

k = 8
t(r1): 8
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 8
t(r3): 7

t(r1): 0
t(r2): 7
t(r3): 8

k = 9
t(r1): 9
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 9
t(r3): 8

t(r1): 0
t(r2): 8
t(r3): 9

k = 10
t(r1): 10
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 10
t(r3): 9

t(r1): 0
t(r2): 9
t(r3): 10

k = 11
t(r1): 11
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 11
t(r3): 10

t(r1): 0
t(r2): 10
t(r3): 11

k = 12
t(r1): 12
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 12
t(r3): 11

t(r1): 0
t(r2): 11
t(r3): 12

k = 13
t(r1): 13
t(r2): 12
t(r3): 12

t(r1): 12
t(r2): 13
t(r3): 12

t(r1): 12
t(r2): 12
t(r3): 13

k = 14
t(r1): 14
t(r2): 13
t(r3): 13

t(r1): 13
t(r2): 14
t(r3): 13

t(r1): 13
t(r2): 13
t(r3): 14

k = 15
t(r1): 15
t(r2): 14
t(r3): 14

t(r1): 14
t(r2): 15
t(r3): 14

t(r1): 14
t(r2): 14
t(r3): 15

Time step Stack of r1 Stack of r2 Stack of r3

k = 16
t(r1): 16
t(r2): 15
t(r3): 15

t(r1): 15
t(r2): 16
t(r3): 15

t(r1): 15
t(r2): 15
t(r3): 16

k = 17
t(r1): 17
t(r2): 16
t(r3): 16

t(r1): 16
t(r2): 17
t(r3): 16

t(r1): 16
t(r2): 16
t(r3): 17

k = 18
t(r1): 18
t(r2): 17
t(r3): 17

t(r1): 17
t(r2): 18
t(r3): 17

t(r1): 17
t(r2): 17
t(r3): 18

k = 19
t(r1): 19
t(r2): 18
t(r3): 18

t(r1): 18
t(r2): 19
t(r3): 18

t(r1): 18
t(r2): 18
t(r3): 19

k = 20
t(r1): 20
t(r2): 19
t(r3): 19

t(r1): 19
t(r2): 20
t(r3): 19

t(r1): 19
t(r2): 19
t(r3): 20

k = 21
t(r1): 21
t(r2): 20
t(r3): 20

t(r1): 20
t(r2): 21
t(r3): 20

t(r1): 20
t(r2): 20
t(r3): 21

k = 22
t(r1): 22
t(r2): 21
t(r3): 21

t(r1): 21
t(r2): 22
t(r3): 21

t(r1): 21
t(r2): 21
t(r3): 22

k = 23
t(r1): 23
t(r2): 22
t(r3): 22

t(r1): 22
t(r2): 23
t(r3): 22

t(r1): 22
t(r2): 22
t(r3): 23

k = 24
t(r1): 24
t(r2): 23
t(r3): 23

t(r1): 23
t(r2): 24
t(r3): 23

t(r1): 23
t(r2): 23
t(r3): 24

k = 25
t(r1): 25
t(r2): 24
t(r3): 24

t(r1): 24
t(r2): 25
t(r3): 24

t(r1): 24
t(r2): 24
t(r3): 25

k = 26
t(r1): 26
t(r2): 25
t(r3): 25

t(r1): 25
t(r2): 26
t(r3): 25

t(r1): 25
t(r2): 25
t(r3): 26

k = 27
t(r1): 27
t(r2): 26
t(r3): 26

t(r1): 26
t(r2): 27
t(r3): 26

t(r1): 26
t(r2): 26
t(r3): 27

k = 28
t(r1): 28
t(r2): 27
t(r3): 27

t(r1): 27
t(r2): 28
t(r3): 27

t(r1): 27
t(r2): 27
t(r3): 28

k = 29
t(r1): 29
t(r2): 28
t(r3): 28

t(r1): 28
t(r2): 29
t(r3): 28

t(r1): 28
t(r2): 28
t(r3): 29

k = 30
t(r1): 30
t(r2): 29
t(r3): 29

t(r1): 29
t(r2): 30
t(r3): 29

t(r1): 29
t(r2): 29
t(r3): 30

134

Time step Stack of r1 Stack of r2 Stack of r3

k = 31
t(r1): 31
t(r2): 30
t(r3): 30

t(r1): 30
t(r2): 31
t(r3): 30

t(r1): 30
t(r2): 30
t(r3): 31

k = 32
t(r1): 32
t(r2): 31
t(r3): 31

t(r1): 31
t(r2): 32
t(r3): 31

t(r1): 31
t(r2): 31
t(r3): 32

k = 33
t(r1): 33
t(r2): 32
t(r3): 32

t(r1): 32
t(r2): 33
t(r3): 32

t(r1): 32
t(r2): 32
t(r3): 33

k = 34
t(r1): 34
t(r2): 33
t(r3): 33

t(r1): 33
t(r2): 34
t(r3): 33

t(r1): 33
t(r2): 33
t(r3): 34

k = 35
t(r1): 35
t(r2): 34
t(r3): 34

t(r1): 34
t(r2): 35
t(r3): 34

t(r1): 34
t(r2): 34
t(r3): 35

k = 36
t(r1): 36
t(r2): 35
t(r3): 35

t(r1): 35
t(r2): 36
t(r3): 35

t(r1): 35
t(r2): 35
t(r3): 36

k = 37
t(r1): 37
t(r2): 36
t(r3): 36

t(r1): 36
t(r2): 37
t(r3): 36

t(r1): 36
t(r2): 36
t(r3): 37

k = 38
t(r1): 38
t(r2): 37
t(r3): 37

t(r1): 37
t(r2): 38
t(r3): 37

t(r1): 37
t(r2): 37
t(r3): 38

k = 39
t(r1): 39
t(r2): 38
t(r3): 38

t(r1): 38
t(r2): 39
t(r3): 38

t(r1): 38
t(r2): 38
t(r3): 39

k = 40
t(r1): 40
t(r2): 39
t(r3): 39

t(r1): 39
t(r2): 40
t(r3): 39

t(r1): 39
t(r2): 39
t(r3): 40

k = 41
t(r1): 41
t(r2): 40
t(r3): 40

t(r1): 40
t(r2): 41
t(r3): 40

t(r1): 40
t(r2): 40
t(r3): 41

k = 42
t(r1): 42
t(r2): 41
t(r3): 41

t(r1): 41
t(r2): 42
t(r3): 41

t(r1): 41
t(r2): 41
t(r3): 42

k = 43
t(r1): 43
t(r2): 42
t(r3): 42

t(r1): 42
t(r2): 43
t(r3): 42

t(r1): 42
t(r2): 42
t(r3): 43

k = 44
t(r1): 44
t(r2): 43
t(r3): 43

t(r1): 43
t(r2): 44
t(r3): 43

t(r1): 43
t(r2): 43
t(r3): 44

k = 45
t(r1): 45
t(r2): 44
t(r3): 44

t(r1): 44
t(r2): 45
t(r3): 44

t(r1): 44
t(r2): 44
t(r3): 45

Time step Stack of r1 Stack of r2 Stack of r3

k = 46
t(r1): 46
t(r2): 45
t(r3): 45

t(r1): 45
t(r2): 46
t(r3): 45

t(r1): 45
t(r2): 45
t(r3): 46

k = 47
t(r1): 47
t(r2): 46
t(r3): 46

t(r1): 46
t(r2): 47
t(r3): 46

t(r1): 46
t(r2): 46
t(r3): 47

k = 48
t(r1): 48
t(r2): 47
t(r3): 47

t(r1): 47
t(r2): 48
t(r3): 47

t(r1): 47
t(r2): 47
t(r3): 48

k = 49
t(r1): 49
t(r2): 48
t(r3): 48

t(r1): 48
t(r2): 49
t(r3): 48

t(r1): 48
t(r2): 48
t(r3): 49

k = 50
t(r1): 50
t(r2): 49
t(r3): 49

t(r1): 49
t(r2): 50
t(r3): 49

t(r1): 49
t(r2): 49
t(r3): 50

k = 51
t(r1): 51
t(r2): 50
t(r3): 50

t(r1): 50
t(r2): 51
t(r3): 50

t(r1): 50
t(r2): 50
t(r3): 51

k = 52
t(r1): 52
t(r2): 51
t(r3): 51

t(r1): 51
t(r2): 52
t(r3): 51

t(r1): 51
t(r2): 51
t(r3): 52

k = 53
t(r1): 53
t(r2): 52
t(r3): 52

t(r1): 52
t(r2): 53
t(r3): 52

t(r1): 52
t(r2): 52
t(r3): 53

k = 54
t(r1): 54
t(r2): 53
t(r3): 53

t(r1): 53
t(r2): 54
t(r3): 53

t(r1): 53
t(r2): 53
t(r3): 54

k = 55
t(r1): 55
t(r2): 54
t(r3): 54

t(r1): 54
t(r2): 55
t(r3): 54

t(r1): 54
t(r2): 54
t(r3): 55

k = 56
t(r1): 56
t(r2): 55
t(r3): 55

t(r1): 55
t(r2): 56
t(r3): 55

t(r1): 55
t(r2): 55
t(r3): 56

k = 57
t(r1): 57
t(r2): 56
t(r3): 56

t(r1): 56
t(r2): 57
t(r3): 56

t(r1): 56
t(r2): 56
t(r3): 57

k = 58
t(r1): 58
t(r2): 57
t(r3): 57

t(r1): 57
t(r2): 58
t(r3): 57

t(r1): 57
t(r2): 57
t(r3): 58

k = 59
t(r1): 59
t(r2): 58
t(r3): 58

t(r1): 58
t(r2): 59
t(r3): 58

t(r1): 58
t(r2): 58
t(r3): 59

k = 60
t(r1): 60
t(r2): 59
t(r3): 59

t(r1): 59
t(r2): 60
t(r3): 59

t(r1): 59
t(r2): 59
t(r3): 60

A.2 Communication Table for Distributed Semantic SLAM
Experiment

In this section we present a table of stack time stamps that indicates direct and indirect communication between
robots in our scenario. Recall that the maximal communication radius is 3 meters, thus all robots start to
communicate between them at step k = 6.

135

Time step Stack of r1 Stack of r2 Stack of r3

k = 1
t(r1): 1
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 1

k = 2
t(r1): 2
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 2

k = 3
t(r1): 3
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 3
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 3

k = 4
t(r1): 4
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 4
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 4

k = 5
t(r1): 5
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 5
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 5

k = 6
t(r1): 6
t(r2): 5
t(r3): 5

t(r1): 5
t(r2): 6
t(r3): 5

t(r1): 5
t(r2): 5
t(r3): 6

k = 7
t(r1): 7
t(r2): 6
t(r3): 6

t(r1): 6
t(r2): 7
t(r3): 6

t(r1): 6
t(r2): 6
t(r3): 7

k = 8
t(r1): 8
t(r2): 7
t(r3): 7

t(r1): 7
t(r2): 8
t(r3): 7

t(r1): 7
t(r2): 7
t(r3): 8

k = 9
t(r1): 9
t(r2): 8
t(r3): 8

t(r1): 8
t(r2): 9
t(r3): 8

t(r1): 8
t(r2): 8
t(r3): 9

k = 10
t(r1): 10
t(r2): 9
t(r3): 9

t(r1): 9
t(r2): 10
t(r3): 9

t(r1): 9
t(r2): 9
t(r3): 10

k = 11
t(r1): 11
t(r2): 10
t(r3): 10

t(r1): 10
t(r2): 11
t(r3): 10

t(r1): 10
t(r2): 10
t(r3): 11

k = 12
t(r1): 12
t(r2): 11
t(r3): 11

t(r1): 11
t(r2): 12
t(r3): 11

t(r1): 11
t(r2): 11
t(r3): 12

k = 13
t(r1): 13
t(r2): 12
t(r3): 12

t(r1): 12
t(r2): 13
t(r3): 12

t(r1): 12
t(r2): 12
t(r3): 13

k = 14
t(r1): 14
t(r2): 13
t(r3): 13

t(r1): 13
t(r2): 14
t(r3): 13

t(r1): 13
t(r2): 13
t(r3): 14

k = 15
t(r1): 15
t(r2): 14
t(r3): 14

t(r1): 14
t(r2): 15
t(r3): 14

t(r1): 14
t(r2): 14
t(r3): 15

Time step Stack of r1 Stack of r2 Stack of r3

k = 16
t(r1): 16
t(r2): 15
t(r3): 15

t(r1): 15
t(r2): 16
t(r3): 15

t(r1): 15
t(r2): 15
t(r3): 16

k = 17
t(r1): 17
t(r2): 16
t(r3): 16

t(r1): 16
t(r2): 17
t(r3): 16

t(r1): 16
t(r2): 16
t(r3): 17

k = 18
t(r1): 18
t(r2): 17
t(r3): 17

t(r1): 17
t(r2): 18
t(r3): 17

t(r1): 17
t(r2): 17
t(r3): 18

k = 19
t(r1): 19
t(r2): 18
t(r3): 18

t(r1): 18
t(r2): 19
t(r3): 18

t(r1): 18
t(r2): 18
t(r3): 19

k = 20
t(r1): 20
t(r2): 19
t(r3): 19

t(r1): 19
t(r2): 20
t(r3): 19

t(r1): 19
t(r2): 19
t(r3): 20

k = 21
t(r1): 21
t(r2): 19
t(r3): 19

t(r1): 19
t(r2): 21
t(r3): 20

t(r1): 19
t(r2): 20
t(r3): 21

k = 22
t(r1): 22
t(r2): 19
t(r3): 19

t(r1): 19
t(r2): 22
t(r3): 21

t(r1): 19
t(r2): 21
t(r3): 22

k = 23
t(r1): 23
t(r2): 19
t(r3): 22

t(r1): 21
t(r2): 23
t(r3): 21

t(r1): 22
t(r2): 21
t(r3): 23

k = 24
t(r1): 24
t(r2): 19
t(r3): 23

t(r1): 21
t(r2): 24
t(r3): 21

t(r1): 23
t(r2): 21
t(r3): 24

k = 25
t(r1): 25
t(r2): 23
t(r3): 24

t(r1): 21
t(r2): 25
t(r3): 24

t(r1): 24
t(r2): 24
t(r3): 25

k = 26
t(r1): 26
t(r2): 24
t(r3): 25

t(r1): 24
t(r2): 26
t(r3): 25

t(r1): 25
t(r2): 25
t(r3): 26

k = 27
t(r1): 27
t(r2): 25
t(r3): 26

t(r1): 25
t(r2): 27
t(r3): 26

t(r1): 26
t(r2): 26
t(r3): 27

k = 28
t(r1): 28
t(r2): 26
t(r3): 27

t(r1): 26
t(r2): 28
t(r3): 27

t(r1): 27
t(r2): 27
t(r3): 28

k = 29
t(r1): 29
t(r2): 27
t(r3): 28

t(r1): 27
t(r2): 29
t(r3): 28

t(r1): 28
t(r2): 28
t(r3): 29

k = 30
t(r1): 30
t(r2): 29
t(r3): 29

t(r1): 29
t(r2): 30
t(r3): 29

t(r1): 29
t(r2): 29
t(r3): 30

136

Time step Stack of r1 Stack of r2 Stack of r3

k = 31
t(r1): 31
t(r2): 30
t(r3): 30

t(r1): 30
t(r2): 31
t(r3): 30

t(r1): 30
t(r2): 30
t(r3): 31

k = 32
t(r1): 32
t(r2): 31
t(r3): 31

t(r1): 31
t(r2): 32
t(r3): 31

t(r1): 31
t(r2): 31
t(r3): 32

k = 33
t(r1): 33
t(r2): 32
t(r3): 32

t(r1): 32
t(r2): 33
t(r3): 32

t(r1): 32
t(r2): 32
t(r3): 33

k = 34
t(r1): 34
t(r2): 33
t(r3): 33

t(r1): 33
t(r2): 34
t(r3): 33

t(r1): 33
t(r2): 33
t(r3): 34

k = 35
t(r1): 35
t(r2): 34
t(r3): 34

t(r1): 34
t(r2): 35
t(r3): 34

t(r1): 34
t(r2): 34
t(r3): 35

k = 36
t(r1): 36
t(r2): 35
t(r3): 35

t(r1): 35
t(r2): 36
t(r3): 35

t(r1): 35
t(r2): 35
t(r3): 36

k = 37
t(r1): 37
t(r2): 36
t(r3): 36

t(r1): 36
t(r2): 37
t(r3): 36

t(r1): 36
t(r2): 36
t(r3): 37

k = 38
t(r1): 38
t(r2): 37
t(r3): 37

t(r1): 37
t(r2): 38
t(r3): 37

t(r1): 37
t(r2): 37
t(r3): 38

k = 39
t(r1): 39
t(r2): 38
t(r3): 38

t(r1): 38
t(r2): 39
t(r3): 38

t(r1): 38
t(r2): 38
t(r3): 39

k = 40
t(r1): 40
t(r2): 39
t(r3): 39

t(r1): 39
t(r2): 40
t(r3): 39

t(r1): 39
t(r2): 39
t(r3): 40

137

138

Bibliography

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[2] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[3] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. Going deeper with convolutions. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2015.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[5] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In Advances in
Neural Information Processing Systems (NIPS), pages 3859–3869, 2017.

[6] A. Amini, A. Soleimany, S. Karaman, and D. Rus. Spatial uncertainty sampling for end-to-end control.
arXiv preprint arXiv:1805.04829, 2018.

[7] Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. In Advances in
Neural Information Processing Systems (NIPS), pages 7047–7058, 2018.

[8] A. Sharma, N. Azizan, and M. Pavone. Sketching curvature for efficient out-of-distribution detection for
deep neural networks. arXiv preprint arXiv:2102.12567, 2021.

[9] Adam Coates and Andrew Y Ng. Multi-camera object detection for robotics. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pages 412–419. IEEE, 2010.

[10] Shayegan Omidshafiei, Brett T Lopez, Jonathan P How, and John Vian. Hierarchical bayesian noise
inference for robust real-time probabilistic object classification. arXiv preprint arXiv:1605.01042, 2016.

[11] T. Patten, M. Zillich, R. Fitch, M. Vincze, and S. Sukkarieh. Viewpoint evaluation for online 3-d active
object classification. IEEE Robotics and Automation Letters (RA-L), 1(1):73–81, January 2016.

[12] N. Atanasov, B. Sankaran, J.L. Ny, G. J. Pappas, and K. Daniilidis. Nonmyopic view planning for active
object classification and pose estimation. IEEE Trans. Robotics, 30:1078–1090, 2014.

[13] Sudeep Pillai and John Leonard. Monocular slam supported object recognition. In Robotics: Science and
Systems (RSS), 2015.

[14] Beipeng Mu, Shih-Yuan Liu, Liam Paull, John Leonard, and Jonathan How. Slam with objects using a
nonparametric pose graph. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2016.

[15] WT Teacy, Simon J Julier, Renzo De Nardi, Alex Rogers, and Nicholas R Jennings. Observation modelling
for vision-based target search by unmanned aerial vehicles. In Intl. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS), pages 1607–1614, 2015.

[16] Y. Feldman and V. Indelman. Bayesian viewpoint-dependent robust classification under model and local-
ization uncertainty. In IEEE Intl. Conf. on Robotics and Automation (ICRA), 2018.

139

[17] D. Kopitkov and V. Indelman. Robot localization through information recovered from cnn classificators.
In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS). IEEE, October 2018.

[18] G. Paass. Assessing and improving neural network predictions by the bootstrap algorithm. In Advances
in Neural Information Processing Systems (NIPS), pages 196–203, 1993.

[19] Hugo Grimmett, Rudolph Triebel, Rohan Paul, and Ingmar Posner. Introspective classification for robot
perception. Intl. J. of Robotics Research, 35(7):743–762, 2016.

[20] Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with bernoulli approximate
variational inference. arXiv preprint arXiv:1506.02158, 2016.

[21] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In Intl. Conf. on Machine Learning (ICML), 2016.

[22] Alex Kendall and Roberto Cipolla. Modelling uncertainty in deep learning for camera relocalization. arXiv
preprint arXiv:1509.05909, 2015.

[23] Pavel Myshkov and Simon Julier. Posterior distribution analysis for bayesian inference in neural networks.
In Workshop on Bayesian Deep Learning, NIPS, 2016.

[24] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? arXiv preprint arXiv:1703.04977, 2017.

[25] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2001.

[26] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively
trained part-based models. IEEE Trans. Pattern Anal. Machine Intell., 32(9):1627–1645, 2010.

[27] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 580–587, 2014.

[28] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In Advances in neural information processing systems, pages 91–99, 2015.

[29] Ross Girshick. Fast r-cnn. arXiv preprint arXiv:1504.08083, 2015.

[30] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards real-time object detection
with region proposal networks. IEEE Trans. Pattern Anal. Machine Intell., 39(6):1137–1149, 2017.

[31] V. Ila, J. M. Porta, and J. Andrade-Cetto. Information-based compact Pose SLAM. IEEE Trans. Robotics,
26(1):78–93, 2010. In press.

[32] F. Dellaert and M. Kaess. Square Root SAM: Simultaneous localization and mapping via square root
information smoothing. Intl. J. of Robotics Research, 25(12):1181–1203, Dec 2006.

[33] D. Benson M. Svedman J. Ostrowski N. Karlsson P. Pirjanian L. Goncalves, E.D. Bernardo. A visual
front-end for simultaneous localization and mapping. In IEEE Intl. Conf. on Robotics and Automation
(ICRA), pages 44–49, Apr 2005.

[34] N. Sunderhauf and P. Protzel. Towards a robust back-end for pose graph slam. In IEEE Intl. Conf. on
Robotics and Automation (ICRA), pages 1254–1261. IEEE, 2012.

[35] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and mapping. IEEE Trans.
Robotics, 24(6):1365–1378, Dec 2008.

[36] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert. iSAM2: Incremental smoothing
and mapping using the Bayes tree. Intl. J. of Robotics Research, 31(2):217–236, Feb 2012.

[37] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, Jose Neira, Ian D Reid,
and John J Leonard. Simultaneous localization and mapping: Present, future, and the robust-perception
age. IEEE Trans. Robotics, 32(6):1309 – 1332, 2016.

140

[38] S. Vasudevan, S. Gachter, M. Berger, and R. Siegwart. Cognitive maps for mobile robots — an object
based approach. Robotics and Autonomous Systems, 55(5):359–371, May 2007.

[39] Ioannis Kostavelis and Antonios Gasteratos. Semantic mapping for mobile robotics tasks: A survey.
Robotics and Autonomous Systems, 2014.

[40] A. Gawel, C. Del Don, R. Siegwart, J. Nieto, and C. Cadena. X-view: Graph-based semantic multiview
localization. IEEE Robotics and Automation Letters, 3(3):1687–1694, 2018.

[41] Y. Nakajima, K. Tateno, F. Tombari, and H. Saito. Fast and accurate semantic mapping through
geometric-based incremental segmentation. arXiv preprint arXiv:1803.02784, 2018.

[42] J. Josifovski, M. Kerzel, C. Pregizer, L. Posniak, and S. Wermter. Object detection and pose estima-
tion based on convolutional neural networks trained with synthetic data. In IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), pages 6269–6276. IEEE, 2018.

[43] J. Wu, B. Zhou, R. Russell, V. Kee, S. Wagner, M. Hebert, A. Torralba, and D. Johnson. Real-time
object pose estimation with pose interpreter networks. In IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), pages 6798–6805. IEEE, 2018.

[44] T.E. Fortmann, Y. Bar-Shalom, and M. Scheffe. Multi-target tracking using joint probabilistic data
association. In Proc. 19th IEEE Conf. on Decision & Control, 1980.

[45] N. Sünderhauf and P. Protzel. Switchable constraints for robust pose graph SLAM. In IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), 2012.

[46] L. Wong, L. P. Kaelbling, and T. Lozano-Pérez. Data association for semantic world modeling from partial
views. In International Symposium for Robotics Research. Intl. Foundation of Robotics Research, 2013.

[47] E. Olson and P. Agarwal. Inference on networks of mixtures for robust robot mapping. Intl. J. of Robotics
Research, 32(7):826–840, 2013.

[48] L. Carlone, A. Censi, and F. Dellaert. Selecting good measurements via l1 relaxation: A convex approach
for robust estimation over graphs. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
pages 2667–2674. IEEE, 2014.

[49] S. Pathak, A. Thomas, and V. Indelman. Nonmyopic data association aware belief space planning for
robust active perception. In IEEE Intl. Conf. on Robotics and Automation (ICRA), 2017.

[50] S. Pathak, A. Thomas, and V. Indelman. A unified framework for data association aware robust belief
space planning and perception. Intl. J. of Robotics Research, 32(2-3):287–315, 2018.

[51] A. Milan, S.H. Rezatofighi, A.R. Dick, I.D. Reid, and K. Schindler. Online multi-target tracking using
recurrent neural networks. In Nat. Conf. on Artificial Intelligence (AAAI), pages 4225–4232, 2017.

[52] Hafez Farazi and Sven Behnke. Online visual robot tracking and identification using deep lstm networks.
In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages 6118–6125. IEEE, 2017.

[53] K. Doherty, D. Fourie, and J. Leonard. Multimodal semantic slam with probabilistic data association. In
2019 international conference on robotics and automation (ICRA), pages 2419–2425. IEEE, 2019.

[54] L. Bernreiter, A. Gawel, H. Sommer, J. Nieto, R. Siegwart, and C.C. Lerma. Multiple hypothesis semantic
mapping for robust data association. IEEE Robotics and Automation Letters (RA-L), 4(4):3255–3262,
2019.

[55] J. Wang and B. Englot. Robust exploration with multiple hypothesis data association. In IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), pages 3537–3544. IEEE, 2018.

[56] M. Hsiao and M. Kaess. Mh-isam2: Multi-hypothesis isam using bayes tree and hypo-tree. In IEEE Intl.
Conf. on Robotics and Automation (ICRA), May 2019.

[57] K. Ok, K. Liu, K. Frey, J.P. How, and N. Roy. Robust object-based slam for high-speed autonomous
navigation. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 669–675, 2019.

141

[58] Aleksandr V Segal and Ian D Reid. Hybrid inference optimization for robust pose graph estimation. In
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages 2675–2682. IEEE, 2014.

[59] Pierre-Yves Lajoie, Siyi Hu, Giovanni Beltrame, and Luca Carlone. Modeling perceptual aliasing in slam
via discrete-continuous graphical models. IEEE Robotics and Automation Letters (RA-L), 2019.

[60] S. Bowman, N. Atanasov, K. Daniilidis, and G. Pappas. Probabilistic data association for semantic slam.
In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 1722–1729. IEEE, 2017.

[61] Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I Christensen, and Frank Dellaert.
Multi robot object-based slam. In Intl. Sym. on Experimental Robotics (ISER), 2016.

[62] A. Cunningham, M. Paluri, and F. Dellaert. DDF-SAM: Fully distributed slam using constrained factor
graphs. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2010.

[63] A. Cunningham, V. Indelman, and F. Dellaert. DDF-SAM 2.0: Consistent distributed smoothing and
mapping. In IEEE Intl. Conf. on Robotics and Automation (ICRA), Karlsruhe, Germany, May 2013.

[64] V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein. Graph-based distributed cooperative navigation for a
general multi-robot measurement model. Intl. J. of Robotics Research, 31(9), August 2012.

[65] V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein. Distributed vision-aided cooperative localization and
navigation based on three-view geometry. Robotics and Autonomous Systems, 60(6):822–840, June 2012.

[66] V. Indelman, E. Nelson, J. Dong, N. Michael, and F. Dellaert. Incremental distributed inference from
arbitrary poses and unknown data association: Using collaborating robots to establish a common reference.
IEEE Control Systems Magazine (CSM), Special Issue on Distributed Control and Estimation for Robotic
Vehicle Networks, 36(2):41–74, 2016.

[67] Jeffrey M Walls, Alexander G Cunningham, and Ryan M Eustice. Cooperative localization by factor
composition over a faulty low-bandwidth communication channel. In IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2015.

[68] S.I. Roumeliotis and G.A. Bekey. Distributed multi-robot localization. IEEE Trans. Robot. Automat.,
August 2002.

[69] A. Howard. Multi-robot simultaneous localization and mapping using particle filters. Intl. J. of Robotics
Research, 25(12):1243–1256, 2006.

[70] Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik I Christensen, and Frank Dellaert.
Distributed mapping with privacy and communication constraints: Lightweight algorithms and object-
based models. Intl. J. of Robotics Research, 36(12):1286–1311, 2017.

[71] A. Bahr, M.R. Walter, and J.J. Leonard. Consistent cooperative localization. In IEEE Intl. Conf. on
Robotics and Automation (ICRA), pages 3415–3422, May 2009.

[72] R.R. Brooks, P. Ramanathan, and A.M. Sayeed. Distributed target classification and tracking in sensor
networks. Proceedings of the IEEE, 91(8):1163–1171, 2003.

[73] Y. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active vision. Intl. J. of Computer Vision, 1(4), January
1988.

[74] Cl Connolly. The determination of next best views. In Robotics and automation. Proceedings. 1985 IEEE
international conference on, volume 2, pages 432–435. IEEE, 1985.

[75] David Wilkes and John K Tsotsos. Active object recognition. In Computer Vision and Pattern Recognition,
1992. Proceedings CVPR’92., 1992 IEEE Computer Society Conference on, pages 136–141. IEEE, 1992.

[76] Mingyu Gao, Zhiwei He, and Yuanyuan Liu. Improved unscented kalman filter for bounded state estima-
tion. In Electronics, Communications and Control (ICECC), 2011 International Conference on, pages
2101–2104. IEEE, 2011.

142

[77] G.A. Hollinger, U. Mitra, and G.S. Sukhatme. Active classification: Theory and application to underwater
inspection. In Robotics Research, pages 95–110. Springer, 2017.

[78] A. Singh, A. Krause, C. Guestrin, and W.J. Kaiser. Efficient informative sensing using multiple robots.
J. of Artificial Intelligence Research, 34:707–755, 2009.

[79] Javier Velez, Garrett Hemann, Albert S Huang, Ingmar Posner, and Nicholas Roy. Modelling observation
correlations for active exploration and robust object detection. J. of Artificial Intelligence Research, 2012.

[80] Corina Gurău, Dushyant Rao, Chi Hay Tong, and Ingmar Posner. Learn from experience: probabilistic
prediction of perception performance to avoid failure. The International Journal of Robotics Research,
page 0278364917730603, 2017.

[81] T. Arbel and F.P. Ferrie. Entropy-based gaze planning. Image and vision computing, 19(11):779–786,
2001.

[82] J. Denzler and C.M. Brown. Information theoretic sensor data selection for active object recognition and
state estimation. IEEE Transactions on pattern analysis and machine intelligence, 24(2):145–157, 2002.

[83] Michael A. Sipe and David Casasent. Feature space trajectory methods for active computer vision. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(12):1634–1643, 2002.

[84] K. Liu, M. Stadler, and N. Roy. Learned sampling distributions for efficient planning in hybrid geometric
and object-level representations. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 9555–
9562. IEEE, 2020.

[85] A. Wandzel, Y. Oh, M. Fishman, N. Kumar, L. Wong, and S. Tellex. Multi-object search using object-
oriented pomdps. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 7194–7200. IEEE,
2019.

[86] R Faddoul, W Raphael, A-H Soubra, and Alaa Chateauneuf. Partially observable markov decision pro-
cesses incorporating epistemic uncertainties. European Journal of Operational Research, 241(2):391–401,
2015.

[87] Akinobu Hayashi, Dirk Ruiken, Christian Goerick, and Tadaaki Hasegawa. Online adaptation of uncertain
models using neural network priors and partially observable planning. In IEEE Intl. Conf. on Robotics
and Automation (ICRA), pages 2440–2446. IEEE, 2019.

[88] Björn Lütjens, Michael Everett, and Jonathan P How. Safe reinforcement learning with model uncertainty
estimates. arXiv preprint arXiv:1810.08700, 2018.

[89] C. Papadimitriou and J. Tsitsiklis. The complexity of markov decision processes. Mathematics of opera-
tions research, 12(3):441–450, 1987.

[90] J. Van Den Berg, S. Patil, and R. Alterovitz. Motion planning under uncertainty using iterative local
optimization in belief space. Intl. J. of Robotics Research, 31(11):1263–1278, 2012.

[91] R. Platt, L. Kaelbling, T. Lozano-Perez, and R. Tedrake. Efficient planning in non-gaussian belief spaces
and its application to robot grasping. In Proc. of the Intl. Symp. of Robotics Research (ISRR), 2011.

[92] R. Platt, R. Tedrake, L.P. Kaelbling, and T. Lozano-Pérez. Belief space planning assuming maximum
likelihood observations. In Robotics: Science and Systems (RSS), pages 587–593, Zaragoza, Spain, 2010.

[93] C. Stachniss, D. Haehnel, and W. Burgard. Exploration with active loop-closing for FastSLAM. In
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2004.

[94] V. Indelman, L. Carlone, and F. Dellaert. Planning in the continuous domain: a generalized belief space
approach for autonomous navigation in unknown environments. Intl. J. of Robotics Research, 34(7):849–
882, 2015.

[95] Timothy Patten, Wolfram Martens, and Robert Fitch. Monte carlo planning for active object classification.
Autonomous Robots, 42(2):391–421, 2018.

143

[96] S. M. Chaves, J. M. Walls, E. Galceran, and R. M. Eustice. Risk aversion in belief-space planning under
measurement acquisition uncertainty. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
pages 2079–2086. IEEE, 2015.

[97] L. Burks, I. Loefgren, and N.R. Ahmed. Optimal continuous state pomdp planning with semantic obser-
vations: A variational approach. IEEE Trans. Robotics, 35(6):1488–1507, 2019.

[98] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[99] Oleksii Zhelo, Jingwei Zhang, Lei Tai, Ming Liu, and Wolfram Burgard. Curiosity-driven exploration for
mapless navigation with deep reinforcement learning. arXiv preprint arXiv:1804.00456, 2018.

[100] Lei Tai and Ming Liu. Towards cognitive exploration through deep reinforcement learning for mobile
robots. arXiv preprint arXiv:1610.01733, 2016.

[101] Lei Tai, Giuseppe Paolo, and Ming Liu. Virtual-to-real deep reinforcement learning: Continuous control
of mobile robots for mapless navigation. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pages 31–36. IEEE, 2017.

[102] Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P How. Decentralized non-communicating mul-
tiagent collision avoidance with deep reinforcement learning. In Robotics and Automation (ICRA), 2017
IEEE International Conference on, pages 285–292. IEEE, 2017.

[103] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P How. Socially aware motion planning with
deep reinforcement learning. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2017.

[104] Jakob Foerster, Yannis Assael, Nando de Freitas, and Shimon Whiteson. Learning to communicate with
deep multi-agent reinforcement learning. In Advances in Neural Information Processing Systems, pages
2137–2145, 2016.

[105] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and John Vian. Deep decen-
tralized multi-task multi-agent rl under partial observability. arXiv preprint arXiv:1703.06182, 2017.

[106] F.R. Kschischang, B.J. Frey, and H-A. Loeliger. Factor graphs and the sum-product algorithm, February
2001.

[107] F. Dellaert. Factor graphs and GTSAM: A hands-on introduction. Technical Report GT-RIM-CP&R-
2012-002, Georgia Institute of Technology, September 2012.

[108] T. Bailey, S. Julier, and G. Agamennoni. On conservative fusion of information with unknown non-gaussian
dependence. In Intl. Conf. on Information Fusion, FUSION, pages 1876 – 1883, 2012.

[109] V. Tchuiev and V. Indelman. Semantic distributed multi-robot classification, localization, and mapping
with a viewpoint dependent classifier model - supplementary material. Technical report, Technion - Israel
Institute of Technology, 2020.

[110] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767,
2018.

[111] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 248–255. IEEE, 2009.

[112] Jonathan Huang. Maximum likelihood estimation of dirichlet distribution parameters. CMU Technique
Report, 2005.

[113] Phil Ammirato, Patrick Poirson, Eunbyung Park, Jana Kosecka, and Alexander C. Berg. A dataset
for developing and benchmarking active vision. In IEEE International Conference on Robotics and
Automation (ICRA), 2017.

144

[114] R. Singh, B. C. Pal, and R. A. Jabr. Statistical representation of distribution system loads using gaussian
mixture model. IEEE Transactions on Power Systems, 25(1):29–37, 2009.

[115] David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[116] E. I. Farhi and V. Indelman. ix-bsp: Belief space planning through incremental expectation. In IEEE
Intl. Conf. on Robotics and Automation (ICRA), May 2019.

[117] T.P. Minka. Estimating a dirichlet distribution. 2003.

[118] Arjun Singh, James Sha, Karthik S Narayan, Tudor Achim, and Pieter Abbeel. Bigbird: A large-scale 3d
database of object instances. In 2014 IEEE international conference on robotics and automation (ICRA),
pages 509–516. IEEE, 2014.

145

בצורה החלטה לקבל יכול רובוט בתמונה, האובייקטים של מדויק סיווג ודרוש אפיסטמית ודאות אי להעריך יכולת ישנה אם לבסוף,

סוכן בין היחסית המבט נקודת של לתלות גם להתייחס יש כך, לשם נמוכה. האפיסטמית האי-ודאות בהם איזורים לכיוון לנוע אוטונומית

המסלול בו פאסיבי מקרה עבור קודם זמנית, בו ודאות האי מקורות לשני מתייחסים אנו הרביעי, בחלק הסיווג. בתוצאות ואובייקטים

לכל הסתברות וקטורי מספר מספק המסווג השלישי, בחלק כמו החלטה. לקבל צריך הרובוט בו אקטיבי מקרה ואז לרובוט, מוכתב

המטפלות אובייקטים מבוסס SLAM גישות שתי מציעים אנו הרביעי בחלק תמונה. אותה עבור אפיסטמית ודאות אי שמייצגים תמונה

SLAM תשתית בתוך המסווג של אפיסטמית ודאות לאי התייחסות עם סיווג בין שמשלבת הראשונה העבודה זו עבודה המקרים. בשני

היברידיות אמונות מספר מתחזקות בה MH, היא מציגים שאנו הראשונה הגישה בסביבה. והאובייקטים המצלמה של מיקום מחשבת שגם

התייחסות מאפשר האמונות כל שילוב בתמונה. לאובייקט שונה יחיד הסתברות וקטור של קלט מקבלת מהן אחת כל כאשר במקביל

אלטרנטיבית גישה מציעים אנו חישובית. כבדה מאוד זו גישה מדויקת, היותה למרות אובייקט. כל של משוכללת אפיסטמית ודאות לאי

יעיל יותר משמעותית פרמטרים שיערוך ומאפשרת יחידה רציפה אמונה מתחזקת המסווג מודל על הנחות בקיום אשר JLP, הנקראת

מרחיבים ואז תחילה, הפאסיבי למקרה מפתחים אנו הגישות שני את אפיסטמית. ודאות לאי גישה מאפשרת שהיא כך כדי תוך ,MH-מ

ודאות אי למזעור תכנון המאפשרת פרס בפונקצית ושימוש החלטות לקבלת עתידית מדידות ליצירת התייחסות כדי תוך האקטיבי, למקרה

תמונות ולייצר לחזות במקום עתידיות מדידות לדגום לנו מאפשר מסווג אי-ודאות במודל משתמשים אנו השיטות עבור אפיסטמית.

יתרון ומציגים אפיסטמית, באי-ודאות מתחשבות שלא שיטות לעומת בסיווג ביצועים שיפור מראים אנו וניסוי בסימולציה עתידיות.

שלא. כזו לעומת אפיסטמית ודאות לאי שמתייחסת פרס פונקצית עם לתכנון בביצועים

של אפיסטמית ודאות ואי לאובייקט, מצלמה בין יחסי במיקום תלות בסיווג: ודאות אי מקורות שני עם המתמודדות גישות הצגנו לסיכום,

ודאות אי לחישוב סדרתית סיווג שיטת הצגנו היחסי, המיקום בעיית עם להתמודדות היברידית אמונה מבוססות גישות הצגנו המסווג.

היעילות שיפור לכלול עשויים עתידי למחקר אפשריים כיוונים ביחד. הודאות אי מקורות בשני לטיפול שיטות והצגנו מצטברת, איפסטמית

מהיר חישוב המאפשרות בהנחות שימוש או מותנות, רציפות אמונות של חכמה גזימה עם היברידית אמונה מבוססות שיטות של החישובית

בשיערוך. משמעותית לפגוע בלי יותר

ii

תקציר

כגון ישומים, של רחב למגוון משמשים אובייקטים סיווג פתרונות ואווירונאוטיקה. רובוטיקה בישומי חשובה בעיה היינה אובייקטים סיווג

עם אובייקטים סיווג של בתחום משמעותית התקדמות חלה האחרונות בשנים וכו'. והצלה, חיפוש מל"טים, ניווט אוטונומיים, רכב כלי

אמין סיווג כן, פי על אף אדם. בני של ביצועים על עולים ניורונים רשתות של הביצועים במהרה כאשר העמוקה, הלמידה התפתחות

של תלות נמוכה, רזולוציה הסתרות, לקויה, מתאורה לנבוע יכולים בסיווג דיוקים אי מורכבת. בעיה היא שכן פתוחה, בעיה נשארת

ודאות חוסר או אפיסטמית, ודאות כחוסר שידוע האימון סט של והגבלות שלו, במחלקה להבחין ניתן לא בה מבט בנקודת סיווג תוצאות

הראשונים השניים כאשר חלקים, לארבעה מחולקת זו עבודה האחרונים. השניים עם להתמודדות גישות מפתחים אנו זו בעבודה במודל.

מתמודד והאחרון אפיסטמית, ודאות אי עם מתמודד השלישי החלק יחסית, מבט בנקודת תלות עקב דיוקים אי עם בהתמודדות עוסקים

בו-זמנית. שניהם עם

המחלקות, שתי בין להבחין מסוגלים יהיו לא ומסווגים מסויימות, מבט מנקודות דומה להראות יכולים שונות ממחלקות אובייקטים בפרט,

בין היחסי מיקום על ממידע וגם נוספות מתמונות נוסף מידע נדרש מדויקת, סיווג תוצאת לקבלת לכן, בסיווג. כפילות נקראת זו בעיה

מספר בין סיווג הסתברויות של וקטור ומספקים כקלט תמונה מקבלים למידה-עמוקה מבוססי מודרניים מסווגים לאובייקט. המצלמה

אותו את למדל יכולים אנו ואם למצלמה, אובייקט בין יחסיות מבט נקודות בין משתנה הזה הסתברות הוקטור כפלט. מועמדות מחלקות

ידוע, אינו היחסי המבט אם בנוסף, מבט. נקודת תלוי מסווג מודל הוא מודל אותו סיווג; תוצאות לשיפור בזה להשתמש יכולים אנו יחס

לוקיזציה, ביצועי שיפור למען אובייקטים מבוסס (SLAM) סימולטני ומיפוי לוקליזציה של פיתרון בתוך הזה המודל את לשלב יכולים אנו

או ביותר, הסבירה המחלקה של מסווג בפלט משתמשות ביחד ולקוליזציה לסיווג שמתייחסות קיימות עבודות כה, עד מידע. ושיוך מיפוי

שיטה מציע העבודה של הראשון החלק מראש. ידועה המצלמה של והמפנה המיקום בו במצב מבט נקודת תלוי מסווג במודל משתמשות

רציפים אקראיים משתנים המשלבת היברידית אמונה לתחזוק שיטה מפתחים אנו אובייקטים. מבוסס SLAM-ב המסווג מודל אותו לשילוב

לאמונה לחלוקה ניתנת ההיברידית האמונה האובייקטים). של סיווג (מחלקות ובדידים והאובייקטים), המצלמה של ואוריינטציה (מיקום

שהיא מידע ושיוך אובייקטים של מחלקות מימוש על בדידה ואמונה הסתברות, צפיפות פונקצית שהיא ומפנה מיקום על מותנית רציפה

ביצועים משפר המסווג במודל שימוש מראים אנו מסווג. במודל משתמשים אנו האמונות סוגי בשני רציפה. אמונה אותה של המשקל

מודל. באותו משתמשות שלא לגישות בהשוואה ,SLAM-ב מידע שיוך בעיית בפתרון ועוזר בלוקליזציה

מסוגלים טייס כלי או רובוטים שמספר עבודה מדויקת, מספיק בצורה בתמונה האובייקטים את לסווג מסוגלת אינה יחידה מצלמה לעיתים,

יחידת עם מתקשרים הסוכנים כל בה ממורכזות, רובוטים: מרובות מערכות של עיקריות תצורות 3 ישנן מידע. שילוב כדי תוך לעשות

שהוא מידע בעצמו ומעבד עצמאי הוא סוכן כל בהן ומבוזרות, עיבוד; יחידות מספר עם מתקשרים הסוכנים בהן מערכות מרכזית; עיבוד

תכנונן אך עיבוד, יחידות של קטן במספר תלויות אינן שכן יותר איתנות הינן מבוזרות מערכות אחרים. ומסוכנים עצמו שלו ממדידו קיבל

אחת פעם מדידה בכל המידע בעיבוד להתחשב חייב סוכן כל בשיערוך; עקביות הינו מבוזרות למערכות שספציפי אתגר יותר. מורכב

מרובה SLAM עבור קיימות עבודות מדי). קטן ודאות אי איזור (עם בעצמו בטוח מדי ויותר שגוי בשיערוך מסתכן הוא אחרת בלבד,

בחלק לעומתן בלבד. רציפים למשתנים נוגע השיערוך עקביות לבעית התייחסותן גם לכן בלבד, רציפים למשתנים מתייסות רובוטים

מתמודדים אנו כאשר מבוזרת רובוטים מרובת למערכת הראשון בחלק שפותחה הגישה את מרחיבים אנו פתור, מידע שיוך בהנחת השני,

ושנייה מקבל, בעצמו שהרובוט מידע עבור אינדיבידואלית אחת היברידיות: אמונות שני בנפרד מתחזקים אנו הסיווג. כפילות בעית עם

אינדיבידואליות, אמונות ,משתפים ביניהם מתקשרים הסוכנים ומאחרים. מעצמו מקבל שהרובוט המידע כל של שילוב שהיא משותפת

ובייחוד רציפים משתנים עבור עקבי שיערוך על שומרים גם הם כך המשותפת. האמונה לתחזוק בה שמשתמשים בערמה אותן ושומרים

בבעיית מתחשבים לא וכאשר יחיד ברובוט לשימוש בהשוואה ביצועים משפרת שגישתנו מראים אני קודם. נעשה לא כה שעד בדידים

השיערוך. עקביות

לייצג ולא מוגבל להיות יכול האימון סט בפועל לישומים אובייקטים. של מתויגות דוגמאות הכולל אימון סט ידי על מאומנים מסווגים

סיווג המחייבים לישומים עליו להשען ניתן ולא אקראי להיות עשוי המסווג של הפלט כך, עקב לקבל. עשוי המסווג אותו הקלט את היטב

הסיווג בתוצאות ודאות האי האימון, בסט לדוגמאות תואם אינו במסווג שהתקבל הקלט אם רכב. כלי של אוטונומית נהיגה כגון מדויק,

בסיווג לא אך יחידה, תמונה עבור אפיסטמית ודאות אי לחישוב גישות פותחו השנים במהלך אפיסטמית. ודאות אי נקראת והיא גבוהה

אני האימון. בסט אפיסטמית ודאות אי המחשב סדרתי לסיווג שיטה ומציעים הפער על מגשרים אנו זו, בעבודה השלישי בחלק סדרתי.

ומאחדים אובייקט, של יחידה בתמונה אפיסטמית ודאות אי מתאר שלהם שהפיזור הסתברות וקטורי של סדרה המספק במסווג משתמשים

לעומת סיווג בביצועי שיפור בניסוי מראים אנו משוקללת. אפיסטמית ודאות ואי סיווג לקבל כדי תמונות ממספר המתקבל המידע את

אפיסטמית. ודאות באי להתחשב בלי משוכלל, סיווג בוקטור רק שמתחשבות גישות

i

וחלל. אווירונאוטיקה להנדסת בפקולטה אינדלמן, ואדים חבר פרופסור של בהנחייתו בוצע המחקר

הדוקטורט מחקר תקופת במהלך ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של

V. Tchuiev and V. Indelman. Inference Over Distribution of Posterior Class Probabili-
ties For Reliable Bayesian Classification and Object-Level Perception. IEEE Robotics and
Automation Letters (RA-L), 3(4):4329–4336, 2018.
V. Tchuiev, Y. Feldman, V. Indelman. Data Association Aware Semantic Mapping and
Localization via a Viewpoint-Dependent Classifier Model. classificators. In IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS). 7742–7749, IEEE, October 2019.
V. Tchuiev and V. Indelman. Distributed Consistent Multi-Robot Semantic Localization
and Mapping. IEEE Robotics and Automation Letters (RA-L), 5(3):4649–4656, 2020.
V. Tchuiev and V. Indelman. Epistemic Uncertainty Aware Localization And Mapping For
Inference and Belief Space Planning. Submitted to Artificial Inteligence Journal (AIJ), 2021.

תודות

עם לדוקטורט מחקר שנות 4 במהלך המקצועית ותמיכתו הנחייתו על אינדלמן ואדים חבר פרופ. שלי למנחה להודות רוצה אני

תרומתם על מהטכניון וחלל אווירונאוטיקה להנדסת לפקולטה ,2019 IROS בכנס שהוצג למאמר תרומתו על פלדמן ליורי ותובנותיו, הידע

צ'וייב ויבגני אולגה להוריי להודות רוצה אני לבסוף, למחקר. רבות שתרמו פורים דיונים על ANPL לקבוצת הזה, הזמן כל במשך הכספית

דוקטור. תואר לקראת עבודתי במשך מתמשכת מורלית תמיכה עבור

זה. מחקר מימון על לטכניון מסורה תודה הכרת

אי תחת רובוטים מרובה אוטונומי סיווג
ודאות

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

לפילוסופיה דוקטור

צ'וייב ולדימיר

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2021 אפריל חיפה התשפ"א אייר

אי תחת רובוטים מרובה אוטונומי סיווג
ודאות

צ'וייב ולדימיר

	List of Figures
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Thesis Contributions
	1.3 Thesis Outline

	2 Literature Survey
	2.1 Classification and Deep Learning
	2.2 Single and Multi-Robot SLAM
	2.3 Active Classification Under Uncertainty

	3 DA Aware SLAM Using a Viewpoint Dependent Classifier Model
	3.1 Preliminaries
	3.2 Approach
	3.2.1 Conditional Belief Over Continuous Variables: b[Xk]C1:k
	3.2.2 Marginal Belief Over Discrete Variables: wC1:k
	3.2.3 Overall Algorithm
	2.D Computational Complexity and Tractability

	3.3 Experiments

	4 Distributed Semantic SLAM with Viewpoint Dependent Classifier Model
	4.1 Notations and Problem Formulation
	4.2 Approach
	2.A Local Hybrid Belief Maintenance
	2.B Distributed Hybrid Belief Maintenance
	2.C Communication Between Robots
	2.D Double Counting of Discrete Random Variables

	4.3 Experiments
	3.A Simulation Setting, Compared Approaches and Metrics
	3.B Simulation Results
	3.C Experiment Setting
	3.D Experimental Results

	5 Model Uncertainty Aware Sequential Inference of Posterior Class Probability
	5.1 Notations and Problem Formulation
	5.2 Approach
	2.A Inference over the Posterior P(k|z1:k)
	2.B Sub-Sampling Inference

	5.3 Experiments
	3.A Simulated Experiment
	3.B Experiment with Real Images

	6 Epistemic Uncertainty Aware Semantic Localization and Mapping for Inference and Belief Space Planning
	6.1 Preliminaries
	1.A Simultaneous Localization and Mapping (SLAM)
	1.B Distribution Over Class Probability Vector
	1.C Distribution Over Posterior Class Probability Vector
	1.D Belief Space Planning (BSP)
	1.E Problem Formulation

	6.2 Approach Overview
	6.3 Approach- Inference
	3.A Viewpoint Dependent Classifier Uncertainty Model
	3.B Multi-Hybrid Inference
	3.C Joint Lambda Pose Inference

	6.4 Approach- Planning
	4.A Measurement Generation
	4.B Multi-Hybrid Planning (MH-BSP)
	4.C Joint Lambda Pose Planning (JLP-BSP)
	4.D Reward Functions Over b[,X]
	4.E Information-Theoretic Reward Over b[]

	6.5 Simulation and Experiments
	5.A Compared Approaches and Metrics
	5.B Simulation
	5.C Experiment

	7 Conclusion and possible future research
	7.1 Possible Future Research

	A Communication Tables for Distributed Semantic SLAM
	A.1 Communication Table for Distributed Semantic SLAM Simulation
	A.2 Communication Table for Distributed Semantic SLAM Experiment

	Bibliography
	Hebrew Abstract

