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We investigate the problem of autonomous object classification and semantic SLAM, 
which generally exhibits a tight coupling between classification, metric SLAM, and 
planning under uncertainty. We contribute a unified framework for inference and belief 
space planning (BSP) that addresses prominent sources of uncertainty in this context: 
classification aliasing (classifier cannot distinguish between candidate classes from certain 
viewpoints), classifier epistemic uncertainty (classifier receives data “far” from its training 
set), and localization uncertainty (camera and object poses are uncertain). Specifically, two 
methods are developed for maintaining a joint distribution over robot and object poses, 
and over a posterior class probability vector that considers epistemic uncertainty in a 
Bayesian fashion. The first approach is Multi-Hybrid (MH), where multiple hybrid beliefs 
over poses and classes are maintained to approximate the joint belief over poses and 
posterior class probability. The second approach is Joint Lambda Pose (JLP), where the 
joint belief is maintained directly using a novel JLP factor. Furthermore, we extend both 
methods to BSP, while reasoning about future posterior epistemic uncertainty indirectly or 
directly via a novel information-theoretic reward function. Both inference methods utilize 
a novel viewpoint-dependent classifier uncertainty model that leverages the coupling 
between poses and classification scores and predicts the epistemic uncertainty from 
certain viewpoints. In addition, this model is used to generate predicted measurements 
during planning. To the best of our knowledge, this is the first work that reasons about 
classifier epistemic uncertainty within semantic SLAM and BSP. We extensively evaluate 
our inference and BSP approaches in simulation using real image data from the Active 
Vision Dataset. Results clearly indicate superior classification performance of our methods 
compared to an approach that is not epistemic uncertainty aware.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Simultaneous localization and mapping (SLAM) is a fundamental problem in robotics and computer vision, with wide-
reaching applications such as autonomous vehicles and UAVs, agriculture, medical, search and rescue, and more [1]. Specifi-
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cally, semantic SLAM, where a robot localizes itself and maps the environment using information from objects within it, is 
an actively researched field. For semantic SLAM, object classification is a crucial problem. With advances in recent years with 
deep-learning-based algorithms, classifiers today outperform humans in multiple classification tasks. However, classifiers are 
limited by their training and may provide unreliable results in different conditions, such as lighting, image resolution, and 
occlusions. In addition, the classifier may struggle to distinguish between different classes from certain viewpoints, resulting 
in classification aliasing. Faced with these uncertainties, classification scores may appear sporadic and unreliable, making 
reliable decision-making a significant challenge. State-of-the-art semantic SLAM approaches do not directly reason about 
these uncertainties, a gap we aim to address.

Object classification has recently seen many advances with the introduction of deep-learning-based classifiers. Most 
modern deep-learning-based classifiers provide a vector of class probabilities for a photographed object, given a set of 
candidate classes. These classifiers are trained on a set of examples for each class and, during deployment, infer the observed 
objects’ class based on the said training set. If the observation does not match images on the training set, the classification 
result is unreliable and, if not accounted for, may result in erroneous classification. Consequentially, a slight variation in 
classifier weights or the input may significantly change the output. This variation is referred to as epistemic uncertainty or 
model uncertainty. Several approaches were proposed to identify this uncertainty, such as Monte-Carlo (MC) dropout [2] or 
Bootstrapping [3]. In our work, we utilize an epistemic-uncertainty-aware classifier and incorporate it within our semantic 
SLAM framework.

The classifier output generally depends on the relative viewpoint between the camera and the object. This dependency 
can be modeled [4–7], and then be used to improve classification and localization accuracy within a SLAM setting. However, 
this type of model was not used in epistemic uncertainty-aware classification. While approaches that consider the accumu-
lated epistemic uncertainty from multiple images, i.e., the posterior epistemic uncertainty, exist (see, e.g., [8]), they decouple 
the relative pose between object and camera, which is a gap we address. We introduce a viewpoint-dependent classifier 
uncertainty model that can be utilized for inference and later in planning.

Eventually, semantic SLAM with epistemic-uncertainty-aware classification opens the possibility of performing ‘safe’ 
decision-making based on a new type of reward function that considers epistemic uncertainty. Thereafter, this paper 
presents a novel active semantic SLAM approach that reasons about epistemic uncertainty. To the authors’ best knowledge, 
this is the first work that plans over classifier epistemic uncertainty with uncertain localization.

Specifically, we formulate the active semantic SLAM problem within the belief space planning (BSP) framework, which 
is an instantiation of a partially observable Markov decision process (POMDP) [9], and consider belief-dependent reward 
functions. Our approach considers both localization and classifier epistemic uncertainty within BSP by maintaining a joint 
belief over the robot and object poses and, importantly, over the objects’ class posterior probabilities. Having access to such 
a joint belief within BSP allows us to consider classifier posterior epistemic uncertainty implicitly using standard reward 
functions over the state and information-theoretic rewards. Crucially, it also enables utilizing novel reward functions directly 
over the classifier’s posterior epistemic uncertainty. This paper introduces such a reward function and develops methods for 
its computation (Section 4.4).

Further, an inherent aspect in BSP is belief propagation and reward calculation considering different candidate actions 
while accounting for possible future observations (see e.g. [10,11]). As an analytical calculation of the corresponding expec-
tation operator is generally unavailable, a common approach is to resort to a sampling-based approximation, which involves 
generating future observations. In our context, one may consider doing so by generative new images, such as e.g. in [12]. 
With this alternative, these images would be fed to a classifier to get the corresponding cloud of future semantic measure-
ments (representing the epistemic uncertainty). However, our key observation is that we can use the viewpoint-dependent 
classifier uncertainty model instead to generate these future semantic measurements directly.

1.1. Related work

Various works presented approaches for sequential classification. Coates and Ng [13] presented an approach that main-
tains a posterior class probability by multiplying classification scores from an image with the prior class probability. Static 
State Bayes Filter (SSBF) by Omidshafiei et al. [14] expanded the aforementioned approach for multiple classes. Hierarchical 
Bayesian Noise Inference by Omidshafiei et al. [14] maintains a posterior class probability vector by utilizing a Dirichlet 
distributed classifier model. All of these approaches do not consider epistemic uncertainty. Tchuiev and Indelman [8] pre-
sented an epistemic-uncertainty-aware sequential method while utilizing MC-dropout by Gal et al. [2] as the mechanism 
for extracting the epistemic uncertainty for each image. An alternative mechanism might be, e.g., Bootstrapping [3] where 
multiple classifiers are trained on the same training set, or using auxiliary training techniques and post hoc statistics to 
detect out-of-distribution input data as proposed by Nitsch et al. [15]. Malinin and Gales [16] proposed prior networks 
for reasoning about epistemic uncertainty in neural network outputs. These works either did not reason about epistemic 
uncertainty in classification or did so without considering localization uncertainty. We propose a semantic SLAM approach 
that performs sequential classification, addresses localization uncertainty, and reasons about posterior epistemic uncertainty 
in classification.

Some works utilized a viewpoint-dependent classifier model; Velez et al. [17], and Teacy et al. [18] utilized a viewpoint-
dependent classifier model in the context of active classification with known poses. Segal and Reid [19] proposed an 
inference approach for general hybrid beliefs based on message passing. Kopitkov and Indelman [4] presented a Gaus-
2



V. Tchuiev and V. Indelman Artificial Intelligence 319 (2023) 103903
sian viewpoint-dependent classifier model and used it for robot localization in a setting where the object class and pose are 
already known. Feldman and Indelman [20] presented a sequential classification approach with a viewpoint-dependent clas-
sifier model where the poses are known a-priori. Tchuiev et al. [5] showed that utilizing a viewpoint-dependent classifier 
model in a setting of semantic SLAM assists in solving the data association problem. The approach utilized a hybrid belief 
over poses and classes. This approach was expanded to a multi-robot semantic SLAM setting in [6]. Ok et al. [21] presented 
an approach for object-based SLAM that used a viewpoint-dependent texture plane measurement model, which is similar 
in concept to a viewpoint-dependent classifier model. All these approaches utilized a viewpoint-dependent classifier model 
that did not consider epistemic uncertainty, while on the other hand, we do consider the epistemic uncertainty for inference 
and planning.

Approaches that incorporate object classification within planning include Atanasov et al. [22] and Patten et al. [23], who 
presented approaches for active classification using a viewpoint-dependent classifier mode using a sampling-based method. 
The robot and object poses are known in the former, while in the latter, they are part of the state. Continuous state partially 
observable Markov decision process (CPOMDP) by Burks et al. [24] is also capable of reasoning about hybrid beliefs. These 
approaches, however, did not consider the classifier’s epistemic uncertainty.

Several planning approaches that do reason about epistemic uncertainty were proposed. Faddoul et al. [25] reasoned 
about epistemic uncertainty in MDP and POMDP transition matrices, creating a framework for decision-making. Hayashi et 
al. [26] proposed an approach that actively trains uncertain dynamic models via neural network priors. These works do 
not consider epistemic uncertainty in the context of classification. Lutjens et al. [27] presented a reinforcement learning 
approach that reasons about epistemic uncertainty for obstacle avoidance with known object poses. The approach utilized 
MC dropout and bootstrapping to extract epistemic uncertainty from measurements. On the other hand, we consider a 
BSP approach with a belief over poses and class probabilities, jointly considering both localization and classifier epistemic 
uncertainty within a semantic SLAM framework.

To generate measurements, one may consider generating raw images when performing classifier epistemic-uncertainty-
aware planning. Ha et al. [12] proposed World Models: a neural network that creates an image given a pose within the 
environment the network was trained on. Wang et al. [28] proposed an image extrapolation approach using Feature Expan-
sion Network (FEN) and Context Prediction Network (CPN). Mildenhall et al. [29] presented Neural Radiant Fields (NeRF), 
which rendered images using volume-rendering techniques with a neural network trained on images of the environment 
with corresponding poses. On the other hand, we present an approach that generates measurements via our proposed 
viewpoint-dependent classifier uncertainty model.

1.2. Contributions

This paper contributes a unified framework for epistemic uncertainty-aware inference and belief space planning in se-
mantic perception and SLAM. Our framework considers prominent sources of uncertainty — classification aliasing, classifier 
epistemic uncertainty, and localization uncertainty — within inference and BSP.

Specifically, the main contributions of this paper are as follows.

1. We develop two methods for maintaining a joint distribution over robot and object poses, and over the posterior class 
probability vector that considers epistemic uncertainty in a Bayesian fashion. The first approach is Multi-Hybrid (MH), 
where multiple hybrid beliefs over poses and classes are maintained to approximate the joint belief over poses and 
posterior class probability. The second approach is Joint Lambda Pose (JLP), where the joint belief is maintained directly 
using a novel JLP factor.

2. We extend both methods to a BSP framework, planning over posterior epistemic uncertainty indirectly or directly via a 
novel information-theoretic reward over the distribution of posterior class probability.

3. Our inference and BSP methods utilize a novel viewpoint-dependent classifier model that predicts epistemic classifier 
uncertainty given a candidate class and relative viewpoint. Allowing us to reason about the coupling between poses and 
classification scores and predict future epistemic classifier uncertainty while avoiding predicting and generating entire 
images.

4. We study our inference and BSP methods in simulation and using real data from the Active Vision Dataset [30].

1.3. Paper structure

This paper is structured as follows: We cover preliminary material, formulate the addressed problem in Sec. 2, and then 
provide a brief approach overview in Sec. 2.6. In Sec. 3, we address epistemic-uncertainty-aware inference. MH and JLP are 
introduced, first for the single object case and afterward for the multiple objects case. In Sec. 4, we expand both approaches 
to BSP; specifically, in Sec. 4.4 we introduce and develop the calculation of our novel information-theoretic reward over 
the distribution of posterior class probability. Finally, we validate our approaches first in simulation in Sec. 5.2, then using 
Active Vision Dataset and BigBIRD in Sec. 5.3.
3
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Table 1
Main notations used in the paper.

Parameters
x Robot pose
xo Object o’s pose
Xk All robot and object poses up to k
xrel Relative pose between x and xo

O k Set of all objects observed at time k
xinv

k Set that contains the last robot pose and all object poses from O k

co Object o’s class
C Class realization of all objects
zg Geometric measurement for a specific object
Z g

k All geometric measurements for all objects at time k
zs Semantic measurement for a specific object
Z s

k All semantic measurements for all objects at time k
n The amount of all objects in the environment
nk Number of objects observed at time k
Nk Number of objects observed up to time k
Mk Motion model from xk−1 to xk

a Robot action
Hk History of measurements and actions up to time k
Hg

k History of geometric measurements and action up to time k
Ls Semantic measurement likelihood
hc Expectation of class c’s classifier uncertainty model
�c Covariance of class c’s classifier uncertainty model
Lk Geometric and semantic measurement likelihood at time k
D Classifier training dataset
{·} Set or point cloud
I Raw image
l� Logit transformation of probability vector
γ Probability vector classifier output
γ c Element of γ of class c
�k Set of all γ observed at time k, one per object
l�k Set of all logit transformations for all γk ∈ �k

λ Posterior class probability vector
λc Element of λ of class c
�k Posterior probability vector for class realizations
¯lλk Set of lλ of all objects observed up to k
W Set of all possible classifier weight realizations w
b[·] Belief, probability conditioned on history P (·|I1:k,Hg

k , D).
bc

w Continuous belief conditioned on history, c, and w
hbw Hybrid belief conditioned on w
lLs Logit transformation of semantic measurement likelihood

Subscripts
w Classifier weight realization
k Time step
L Planning horizon

Superscript
o Object o
c Class hypothesis of an object
C Class hypothesis of all objects

2. Background and problem formulation

In this section, we introduce notations, provide preliminary material, and formulate the problem addressed in this work. 
First, we introduce our setting and simultaneous localization and mapping (SLAM) notations. Afterward, we introduce nota-
tions specifically for classification in the context of epistemic uncertainty. Finally, we briefly introduce belief space planning 
(BSP), and present the problem formulation for epistemic uncertainty-aware semantic inference and planning.

For the reader’s convenience, the main notations used in this paper are summarized in Table 1.

2.1. Simultaneous localization and mapping (SLAM)

Consider a robot operating in an unknown environment represented by object landmarks. The robot’s and objects’ pose 
& objects’ classes are all unknown. Let xk denote the robot pose at time k; let xo and c denote object pose and class 
respectively. Denote Xx � {xo, x0:k} as all poses of the robot and the (expanded later to multiple) objects up until time k.
4



V. Tchuiev and V. Indelman Artificial Intelligence 319 (2023) 103903
The notation P (·) describes a probability density function (PDF) for continuous random variables, and a probability 
mass function (PMF) in the case of discrete random variables. For hybrid probabilities of both continuous and discrete 
random variables, P (·) is the PDF of the continuous variable conditioned on the discrete variable, multiplied by the PMF 
of the discrete variable. In other words, consider a discrete random variable a and a discrete random variable b, then 
P (a,b) �P (a|b)P (b), where P (a|b) is a PDF and P (b) is a PMF.

The robot receives from observed objects both geometric and semantic measurements. Let zk denote a measurement 
received at time k from the object. This measurement is split into geometric zg

k and semantic zs
k measurements; All those 

measurements are aggregated to a set zk � {zg
k , zs

k}. The robot action at time k is denoted ak , and finally we denote the 
measurement history as Hk � {z1:k, a0,k−1}. The measurements at different time steps are assumed independent; in addition, 
the semantic and geometric measurements are assumed independent as well.

We utilize a known Gaussian motion model with constant parameters, denoted Mk , and defined as:

Mk � P (xk|xk−1,ak−1), (1)

and a known geometric model P (zg
k |xo, xk). In addition, we use an externally trained viewpoint-dependent classifier and 

uncertainty model P (zs
k,n|cn, xo, xk) that will be discussed in Section 3.1. Denote the corresponding measurement likelihood 

term,

Lk � P (zg
k |xo, xk) · P (zs

k|c, xo, xk), (2)

where, both geometric and classifier models are considered Gaussian as well. Using Mk and Lk , the posterior Xk can be 
computed recursively via:

P (Xk|Hk) ∝ P (Xk−1|Hk−1) ·Mk ·Lk. (3)

The likelihood terms and the motion model can be aggregated in a form of a factor-graph [31] for efficient computation of 
the parameters of P (Xk|Hk).

2.2. Distribution over class probability vector

During inference, the robot receives a raw image in which observed objects are segmented. In standard (deep-learning) 
approaches a classifier is learned beforehand and used to classify the objects within each segment (e.g. bounding box) by 
producing an output of a class probability vector. Given fixed classifier weights w , we denote a probability vector from a 
classifier at time k as

γk � P (c|Ik, w), (4)

where Ik is the raw image of the object. Denote γk,w as the probability vector given a specific w . In practice, the image 
fed into the classifier is a cropped image of an object via a bounding box. Note that γk � [γ 1

k , ..., γ m
k ] ∈Rm is a probability 

vector, thus it must satisfy the following conditions:

• All its elements must sum to 1, i.e. 
∑m

i=1 γ i
k = 1.

• Each element is bounded between 0 and 1, i.e. 0 ≤ γ i
k ≤ 1, ∀i = 1, ..., m.

In contrast to this standard approach, we reason about classifier epistemic uncertainty. Denote D as the classifier’s 
training set. Training a neural network is inherently a stochastic process, therefore w are random variables (as described in 
e.g. [2]) conditioned on D such that w ∼ P (w|D), thus making γk a random variable. Unfortunately P (w|D) is not given 
explicitly, thus we create a set W of sampled w realizations to produce a point cloud of γk vectors per object and time 
step, such that the distribution over γk is described with the delta Dirac function δ(·):

γk ∼ P (γk|Ik, D) =
∫
w

δ(γk = P (c|Ik, w))P (w|D)dw, (5)

which is approximated via sampling as:

P (γk|Ik, D) ≈ 1

|W |
∑

w

δ(γk = P (c|Ik, w)). (6)

Thus, for each time step, we get a point cloud {γk} per object where its “spread” describes the epistemic model uncertainty 
of the classifier. See Fig. 1, where an object is observed from multiple viewpoints, and the classifier outputs a cloud of 
γ ’s for each viewpoint. For example, the cloud {γk} obtained by observing the object from the bottom right corner is 
widely spread, representing high epistemic uncertainty. Contrast with the upper-right viewpoint where the spread is tight, 
representing low epistemic uncertainty. In this paper, the semantic measurements are those point clouds within the m − 1
simplex, such that zs = {γk}. The set of sampled w can be created by, for example, MC-dropout [2], or Bootstrapping [3].
k
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Fig. 1. Illustration of viewpoint dependency for classification scores and epistemic uncertainty. The figure presents simplex graphs for different viewpoints, 
where m = 3. The individual class probability scores are shown as blue points in the simplex, whose borders are light green. The large red points represent 
possible viewpoints observing the SUV in the middle. (For interpretation of the colors in the figures, the reader is referred to the web version of this 
article.)

Fig. 2. The 4 archetypes of b[λk], shown in a 3 dimensional Dirichlet simplex example, where blue to yellow correspond to low to high probability 
respectively. (a) is an out-of-distribution setting, where the classifier does not identify the object and the epistemic uncertainty is high. (b) is high data 
uncertainty setting, which is close to D , but the class is identifiable in the training set itself. In (c) the classifier recognizes the object of a certain class 
with certainty, a scenario we aim for. In (d) the classifier gives preference to one of the classes, but with a high degree of uncertainty.

2.3. Distribution over posterior class probability vector

Eventually, the posterior over a sequence of γ vectors can be inferred. This posterior considers both the epistemic uncer-
tainty from multiple observations of an object, and localization uncertainty induced by coupling between relative poses and 
class probabilities. The posterior is defined as follows:

λk � P (c|γ1:k, zg
1:k), (7)

where λk is deterministically determined by both a sequence γ1:k and the geometric measurement history. Similar to γk , 
λk � [λ1

k , ..., λm
k ] ∈Rm is a probability vector, with each element corresponding to its class ci ∀i = [1, m]:

λk �
[
P (c = 1|γ1:k, zg

1:k), · · · ,P (c = m|γ1:k, zg
1:k)
]T

. (8)

For a specific γ1:k,w sequence which is created by a specific w , the notation λk,w is used. Because γ1:k is a random variable 
(as w is a random variable), so is λk . The key concept is that λk , which is a vector of class probabilities, is a random variable 
by itself. In other words, the belief over λk is a PDF over a PMF. As such, define the belief over λk as:

b[λk] � P (λk|I1:k,Hg
k , D). (9)

The belief b[λk] encompasses the posterior classification probability vector via E(λk). Both E(λk) and the covariance �(λk)

are dependent on epistemic and localization uncertainty. The history Hg
k � {a0:k−1, Z

g
1:k} includes all geometric measure-

ments and actions up until time k. The belief b[λk] representation is more expressive than a single λk , and reflects four 
possible archetypes, as seen in Fig. 2 ([16]). Fig. 2a presents an out-of-distribution case where the inputs to the classifier 
are totally alien, therefore the output is completely unpredictable. In Fig. 2c the classifier can safely identify the object with 
a high degree of certainty, i.e. the input is close to the training set. Intuitively, this is the case we aim for, and generally has 
the highest reward. In Fig. 2b the classifier certainly cannot disambiguate between different classes because of high data 
uncertainty, i.e. the classifier “knows” that it does not know. This can result from ambiguity in the training set between 
different classes when objects from different classes look identical from certain viewpoints. Finally, in Fig. 2d the classifier 
6
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can vaguely infer the object class, but it is still far from the training set (e.g. a car of an unusual shape that there are no 
similar images in the training set), therefore with a large degree of uncertainty.

As will be discussed, the belief b[λk] can be used within belief space planning (BSP), e.g., going to relative poses where 
the epistemic uncertainty is the smallest to safely classify objects, or vice-versa going to relative poses with high epistemic 
uncertainty to learn a model online potentially. Using b[λk] within BSP is a key contribution of this paper.

More generally, λk is coupled with object and camera poses Xk . A joint belief over λk and Xk can be maintained, denoted 
as:

b[λk,Xk] � P (λk,Xk|I1:k,Hg
k , D). (10)

E(λk) may be required to, for example, compute a reward function that depends on E(λk). Consider that P (c = i|λk,Xk) =
λi

k , then for every object class c = i:

P (c = i|I1:k,Hg
k , D) =

∫
λk,Xk

λi
k · b[λk,Xk]dλkdXk = E(λi

k). (11)

In [8] we presented an approach to maintain b[λk] in a setting with a single object, without considering the coupling 
between Xk and λk , and the approach was limited to inference. On the other hand, here we account for the coupling 
between λk and Xk , present an active approach, and expand to a multi-object setting. First, we consider the formulation for 
a single object. In Sec. 3 and Sec. 4 we extend the formulation to the multiple object case, with each method having its 
specific notations.

2.4. Belief space planning (BSP)

Given a general current belief bk , one can reason about the best future action from a set of actions to maximize (or 
minimize) an object function. With bk and a set of future actions ak:k+L , the objective function is commonly defined as the 
expected cumulative reward,

J (bk,ak:k+L) = EZk+1:k+L (

L∑
i=0

r(bk+i(Zk+1:k+i)),ak+i), (12)

where r(·) is a belief-dependent reward function, and L is the planning horizon. This formulation can be extended to policies 
as well.

The above equation can also be written in a recursive form as in,

J (bk,ak:k+L) =
∫

Zk+1

P (Zk+1|Hk,ak) · · J (bk+1,ak+1:k+L)dZk+1 + r(bk,ak), (13)

where bk+1 = bk+1(Zk+1). The term P (Zk+1|Hk,ak) is the measurement likelihood of future measurement history thus far 
and ak , and is essential for BSP. In practice, the integral in Eq. (13) is intractable, thus approximated via sampling:

J (bk,ak:k+L) ≈ 1

Nz

∑
Zk+1

J (bk+1(Zk+1),ak+1:k+L), (14)

where Nz is the number of Zk+1 samples, and Zk+1 ∼P (Zk+1|Hk,ak).
The optimal action sequence a∗

k:k+L maximizes the objective function:

a∗
k:k+L = arg max

ak:k+L

(
J (bk,ak:k+L)

)
. (15)

To evaluate a∗
k:k+L , one must consider all possible sequences (possibly via search algorithms) and select the one that pro-

duces the highest objective function. Specifically, we consider bk = b[λk, Xk] for BSP, and discuss planning using various 
reward functions while focusing on classifier epistemic uncertainty reward function, namely the entropy of b[λk+i ] for a 
future time k + i. Yet, first, we must address the corresponding inference problem.

2.5. Problem formulation

Given geometric measurement history Hg
k , an image sequence I1:k , actions a0;k−1, an epistemic-uncertainty-aware clas-

sifier trained on training dataset D with a set W of weight realizations w ∈ W , the problems of inference and planning are 
defined as follows:
7
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1. Inference: Infer the posterior joint belief b[λk, Xk], as defined in Eq. (10).
2. Planning: Given b[λk, Xk], find the future action sequence a∗

k:k+L that maximizes J (b[λk, Xk], ak:k+L) with the reward 
function r(b[λk, Xk]).

We address the inference and planning problems in Sections 3 and 4, respectively.

2.6. Approach overview

Two approaches are presented for solving each of the problems presented in Sec. 2.5. The first approach is Multi-Hybrid 
(MH), a particle-based approach where multiple hybrid beliefs are maintained simultaneously. The second approach is Joint 
Lambda Pose (JLP), where a single continuous belief is maintained, and the posterior class probabilities are states within 
this belief.

The approach sections are divided into inference and planning; starting with inference, we introduce the viewpoint-
dependent classifier uncertainty model, which predicts the distribution of the classifier output and is used by both methods 
for inference and planning. In particular, the classifier uncertainty model generates predicted measurements during planning. 
Then, we introduce MH and JLP for inference.

Section 4 addresses the planning problem by delving into the specifics of both MH and JLP of generating measurements 
for multiple objects. Afterward, we discuss reward functions and specifically expand upon information-theoretic reward for 
b[λ].

3. Epistemic uncertainty aware inference

3.1. Viewpoint dependent classifier uncertainty model

We use a classifier uncertainty model that accounts for the coupling between localization and classification, and epis-
temic model uncertainty. As an example, Fig. 1 illustrates that {γk} measurements vary across different viewpoints, with 
some containing high epistemic uncertainty and some low. The model learns to predict these measurements, and subse-
quently the viewpoints containing high epistemic uncertainty. In contrast, previous works that used a viewpoint-dependent 
classifier model (e.g. [5,6,18,22]) did not consider epistemic uncertainty while learning the model.

The conditions for γk being a probability vector must be considered when one must sample from the classifier model, 
thus unlike previous works [5,6], we cannot use a Gaussian distributed classifier model. One possible solution is to consider 
the classifier model as Dirichlet distributed (see [8]), but that model cannot be incorporated into a Gaussian optimization 
framework (e.g. iSAM2 [32]) with unknown poses which are coupled with classification results. Instead, we consider the 
following solution: we use a logit transformation for γ to a vector lγ ∈Rm−1 space, such that the support of each element 
(−∞, ∞):

lγ �
[

log

(
γ 1

γ m

)
, log

(
γ 2

γ m

)
, ..., log

(
γ m−1

γ m

)]T

. (16)

Then, lγ can be assumed Gaussian such that:

P (lγ k|c, xo, xk) = N (hc(xo, xk),�c(xo, xk)), (17)

and as a consequence γk is distributed Logistical Gaussian with parameters {hc, �c}. The probability density function (PDF) 
of γk is as follows:

P (γk|c, xo, xk) = 1√|2π�c| · 1∏m
i=1 γ i

k

· e

(
− 1

2 ||lγ k−hc ||2�c

)
. (18)

In practice, a classifier provides a cloud {γk}, and each γk ∈ {γk} is transformed to lγ k . There are m such models, one for 
each class. The training set consists of tuples of relative pose and lγ point clouds such that Dcm � {xrel, {lγ }} for each class, 
where xrel � xo � x is the relative pose between object and robot. With the notation of xrel , hc(xo, xk) becomes hc(xrel), and 
similarly �c in Eq. (17). The expectation (classification scores) and covariance (epistemic uncertainty) is extracted from {lγ }
and fitted as known points either in the model using e.g. Gaussian Processes or deep-learning-based approaches. Real-life 
applications may require creating Dcm from multiple instances of the same objects, e.g. for class “car” multiple types of cars 
may be used. Fig. 3 illustrates the training data shown in black dots versus the trained model shown in blue. The model 
attempts to “predict” the epistemic uncertainty based on a given training set.

3.2. Multi-Hybrid inference

We present the Multi-Hybrid (MH) inference approach to maintaining the belief from b[λk, Xk] (10). With this method, 
we maintain b[λk, Xk] indirectly via a set of hybrid beliefs, each for a realization of classifier weights. The posterior class 
8
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Fig. 3. A simplified illustration of the classifier uncertainty model is used in the paper. (a) and (b) represent γ and lγ space respectively. The black dots 
represent the corresponding γ (xrel, w) ∈ {γ }(xrel) and lγ (xrel, w) ∈ {lγ }(xrel). The expectation and covariance are learned in (b) and interpolated for new 
queries of xrel , potentially returning to (a) via the inverse logit transformation. The expectation is represented in dark blue, while the one-sigma covariance 
is represented in light blue.

x0 x1 x2

xo

(a) co = 1

x0 x1 x2

xo

(b) co = 2

Fig. 4. Factor graphs for a toy scenario where the camera observes an object for a specific w , there are |W | such factor graph pairs. The object has two 
candidate classes. Each dot and line represents a separate factor. The black factors between the camera and object represent the geometric model, while 
the colored factors represent the classifier models, c = 1 and c = 2 by blue and red respectively.

probabilities from each hybrid belief together represent the posterior classifier epistemic uncertainty. This section presents 
the important details of MH, with Appendix A.1 and Appendix A.2 containing the full derivations.

3.2.1. Single object
The belief b[λk, Xk], as defined by Eq. (10), is conditioned both on Hg

k and I1:k , and D . As discussed in Sec. 2.2, an 
epistemic uncertainty aware classifier provides a cloud {lγ 1:k} as semantic measurements. In MH, we maintain b[λk, Xk] by 
splitting it into components by marginalizing over c and w ∈ W , where W is a predetermined discrete set of w that are 
used throughout the entire scenario. Each λk component of weight w is denoted λk,w . Thereafter, b[λk, Xk] is maintained 
via:

b[λk,Xk] ≈ 1

|W |
∑

c

∑
w

hbw [Xk, c] · δ(λk − λk,w), (19)

where δ denotes the delta Dirac function, and hbw [Xk, c] is denoted as the hybrid belief of robot and object poses Xk for a 
specific weight w:

hbw [Xk, c] � P (Xk|w, c, I1:k,Hg
k , D) · P (c|w, I1:k,Hg

k , D). (20)

The above hybrid belief is maintained as in [5], and |W | hybrid beliefs must be maintained. The full derivation of Eq. (19), 
as well as the marginals over λk and Xk , can be found in Appendix A.1. See Fig. 4 for a simple example of a graph 
representation for a single object with two candidate classes.

3.2.2. Multiple objects
Let O k denote the set of objects the robot sees up to time k. We denote variables corresponding to object o with a 

superscript �o . Each object is segmented from the image with its classifier outputs {γ o
k,w }w∈W . The set of all those clouds 

for all objects in O k is denoted as {�k} with � defined as a realization of γ measurements, one per each observation. For 
a specific w ∈ W , we define the realization of γ measurements as �k,w � {γ o

k,w}o∈O k , thus {�k} � {�k,w}w∈W . We define 
l�k as the logit transformation of all γk ∈ �k as in Eq. (16). The set of all geometric measurements at time k is denoted 
Z g

k , the history Hg
k � {a0:k−1, Z

g
1:k} includes all geometric measurements and actions up until time k, and subsequently 

Hk � {I1:k, Hg
k } includes all measurement and action history up to time k.

We define the joint posterior class probability vector as:

�k � P (C |l�1:k,Hg
k ). (21)

Thus, similarly to Sec. 3.2.1, we can write b[�k, Xk] as:
9
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x0 x1 x2

xo1

xo2

(a) co1 = 1, co2 = 1

x0 x1 x2

xo1

xo2

(b) co1 = 2, co2 = 1

x0 x1 x2

xo1

xo2

(c) co1 = 1, co2 = 2

x0 x1 x2

xo1

xo2

(d) co1 = 2, co2 = 2

Fig. 5. Factor graphs used by MH with the same scenario as in Fig. 6b for a single w . Each dot and line represents a separate factor. The black factors 
between the camera and object represent the geometric model, while the colored factors represent the classifier models, c = 1 and c = 2 by blue and red
respectively.

b[�k,Xk] ≈ 1

|W |
∑

w

∑
C

hbw [Xk, C] · δ(�k − �k,w), (22)

where hbw [Xk, C] is now defined as:

hbw [Xk, C] � P (Xk|w, C,Hk, D) · P (C |w,Hk, D), (23)

with the full derivation of Eq. (22) with the marginals for Xk and �k presented in Appendix A.2.
In general, all Xk and C are coupled, and subsequently so do Xk and �k . There are two possible sources of coupling: 

class priors that depend on other objects’ classes (e.g. a computer mouse may be expected to appear next to a monitor), 
and the coupling between poses and classes induced by the viewpoint-dependent classifier uncertainty model (17).

While accurate, due to the combinatorial nature of C which considers all possible class realizations, the need to si-
multaneously maintain |W | hybrid beliefs, the worst-case complexity of MH scales poorly with the number of objects and 
candidate classes. Fig. 5 illustrates the above for a simple example with two classes and two objects. In practice, pruning 
class realizations with low probability can reduce the computational complexity to manageable levels. Incremental infer-
ence approaches for hybrid beliefs, in line with [33], could further reduce computational complexity. These, however, are 
outside the scope of this paper. As an alternative, in the next section, we propose the JLP algorithm, which is by far 
computationally more efficient than MH.

3.3. Joint Lambda Pose inference

We present Joint Lambda Pose (JLP), an alternative, computationally lighter approach. Its accuracy depends on the 
conditions discussed below. Similarly to MH, we first consider the single object case and then extend JLP to the multiple 
object case. To the best of our knowledge, no approaches combine Gaussian distributed variables with random variables 
within a simplex besides sampling-based methods. Thus, b[λk, Xk] cannot be maintained as a single continuous belief, e.g.
MH requires maintaining multiple hybrid beliefs, as discussed in Sec. 3.2. Instead, define lλk as the logit transformation of 
λk , and the corresponding belief is maintained (considering a single object, for now):

b[lλk,Xk] � P (lλk,Xk|I1:k,Hg
k , D). (24)

For a general λk , each λc
k can be updated using Bayes rule:

λc
k = η · λc

k−1 · P (lγ k|c, xrel
k ). (25)

When λk is cast into logit space, the above equation transforms into the following sum, written in a vector form:

lλk = lλk−1 + lLs , (26)
k

10
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where for each element in λk , the normalizer η gets canceled as it is identical for all elements of λk , and lLs
k is defined as:

lLs
k �

[
log

(
P (lγ k|c = 1, xrel

k )

P (lγ k|c = m, xrel
k )

)
, ..., log

(
P (lγ k|c = m − 1, xrel

k )

P (lγ k|c = m, xrel
k )

)]T

. (27)

To recursively update a Gaussian lλk in closed form from a Gaussian lλk−1, lLs
k needs to be Gaussian as well.

The condition under which lLs
k is accurately Gaussian distributed is described in the following Lemma:

Lemma 1. Given m Gaussian distributed viewpoint-dependent classifier uncertainty models P (lγ k|c, xrel
k ) as in Eq. (17), if the model 

covariance �c=i(xrel
k ) ≡ �c= j(xrel

k ) ∀i, j ∈ [1, m], then lLs
k is Gaussian distributed.

The proof is given in Appendix A.4. With the above Lemma, the following section introduces the JLP factor, which 
constructs b[lλk, Xk].

3.3.1. Joint Lambda Pose (JLP) factor
Assume the conditions in Lemma 1 are satisfied. Considering Eq. (A.24) for all i ∈ [1, m − 1], we can describe lLs

k as 
follows:

lLs
k = 
lγ k − 1

2
φ, (28)

where the matrix 
 ∈R(m−1)×(m−1) and the vector φ ∈Rm−1 depend on the individual classifier models (17) and xrel
k . Using 

Eq. (A.24), the matrix 
 is defined as


�

⎡
⎢⎣

hT
c=1�

−1
c=1 − hT

c=m�−1
c=m

...

hT
c=m−1�

−1
c=m−1 − hT

c=m�−1
c=m

⎤
⎥⎦ , (29)

and φ is defined as

φ �

⎡
⎢⎣

hT
c=1�

−1
c=1hc=1 − hT

c=m�−1
c=mhc=m

...

hT
c=m−1�

−1
c=m−1hc=m−1 − hT

c=m�−1
c=mhc=m

⎤
⎥⎦ , (30)

where hc=i and �c=i are the expectation and covariance matrix of the model for class i, ∀i = [1 : m]. If the conditions of 
Lemma 1 are satisfied, we can substitute lLs

k in Eq. (26) with the expression in Eq. (28):

lλk = lλk−1 + 
lγ k − 1

2
φ. (31)

As lγ k is assumed Gaussian, its distribution is defined by expectation E(lγ k) and covariance �(lγ k). Assuming a non-
singular matrix 
, we define the JLP factor as:

P (lλk|lλk−1, Ik, D, xrel
k ) �N

(
lλk−1 + 
E(lγ k) − 1

2
φ,
�(lγ k)


T
)

. (32)

As mentioned before, we utilize a classifier that outputs a set {γk} instead of a single γk . Each γk ∈ {γk} is then transformed 
via the logit transformation (16) to lλk , thus the entire set {γk} is transformed to {lγ k}. From there E(lγ k) and �(lγ k)

are inferred, and the JLP factor can be written as P (lλk|lλk−1, {lγ k}, xrel
k ). As in Sec. 3.2.1, {lγ k} represents the classifier’s 

epistemic uncertainty.
The factor (32) is a four-variable factor of lλk , lλk−1, xo , and x, with the latter two used to compute xrel via xrel � xo � x. 

The factor can be inserted into a graph structure that can be optimized using standard SLAM methods, where lλk for 
different k are separate variable nodes. This factor enables us to maintain b[lλk, Xk] using a single continuous belief, as 
discussed in the next section, and in turn, be faster computationally than MH.

The term 
�(lγ k)

T is positive definite when 
 is not singular, but in practice, we cannot guarantee this condition. 

If there is some xrel
k for classes c = i and c = j where hc=i(xrel) = hc= j(xrel) and �c=i(xrel) = �c= j(xrel), then at that point 


 is singular. At that certain xrel
k , the two classes cannot be discerned given the classifier models. While such a situation 

is possible, the corresponding lλ elements become unconstrained, which poses an implementation problem for SLAM opti-
mization algorithms such as iSAM2, which we use in this paper. To keep 
�(lγ k)


T non-singular, we add to it an identity 
matrix multiplied by a small positive constant ε · I(m−1)×(m−1) .
11
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x0 x1 x2

xo

lλ0 lλ1 lλ2

(a) A single object.

x0 x1 x2

xo1

xo2

lλo1
0 lλo1

1 lλo1
2

lλo2
0 lλo2

1 lλo2
2

(b) Two objects.

Fig. 6. Example of a factor graph for a scenario until k = 2, where at each time step an object (a) or objects (b) are observed. There are priors for x0, and 
lλ0 for every object. Between the camera poses are motion factors, connecting camera and object poses are geometric measurement factors, and between 
lλ’s at different time steps the 4 variable factors are connecting.

3.3.2. Recursive update formulation
A smoothing formulation may be considered where the joint belief b[lλ1:k, Xk] is maintained. Using Bayes and chain 

rules, b[lλ1:k, Xk] can then be updated as:

b[lλ1:k,Xk] = η · P (lλk|lλk−1, Ik, D, xrel
k ) ·Mk · P (zg

k |xrel
k ) · b[lλ1:k−1,Xk−1], (33)

where η is a normalization constant. In practice, previous lλ1:k−1 are typically not required for classification inference and 
planning, so we can consider the belief b[λk, Xk], without maintaining a large number of states per object. To update this 
belief recursively, it is expressed as a function of the prior b[lλk−1, Xk−1]. To do so, we marginalize over lλk−1 and use the 
Bayes rule:

b[lλk,Xk] ∝
∫

lλk−1

P (lλk|lλk−1, Ik, D, xrel
k ) ·Mk · P (zg

k |xrel
k ) · b[lλk−1,Xk−1]dlλk−1. (34)

Fig. 6a presents a simple example to illustrate the factor graph structure using JLP. In this figure, we present a scenario 
with two time steps in which the robot observes a single object.

The extension to multiple objects within the JLP framework is straight-forward. Each object o has its own set of lλo
k

nodes, as seen in the example in Fig. 6b. The set of all lλo
k for objects observed thus far is denoted as ¯lλk � {lλo

k}o∈O 1:k . In 
contrast with �k , which is a single probability vector over class realization with mNk categories, ¯lλk is a set of vectors with 
m − 1 elements each, being the logit transformation of a probability vector of an object, to a total of (m − 1) · Nk elements 
for ¯lλk . As such, the joint belief is updated similarly to the single object case:

b[ ¯lλk,Xk] = η

∫
¯lλk−1

∏
o∈O k

P (lλo
k |lλo

k−1, {lγ o
k}, xrel

k ) ·MkP (Z g
k |Xk) · b[ ¯lλk−1,Xk−1]d ¯lλk−1, (35)

with η being a normalization constant that does not participate in inference.
At worst, MH’s time computational complexity scales exponentially with the number of objects observed, whereas JLP’s 

scales polynomially. Therefore, JLP is significantly more computationally efficient. Appendix A.5 further discusses the com-
putational complexity of JLP compared to MH, and in particular, the difference between maintaining b[�k, Xk] in MH and 
b[ ¯lλk, Xk].

4. Epistemic uncertainty aware semantic belief space planning

This section presents a framework for epistemic uncertainty-aware semantic BSP (EUS-BSP). Our framework incorpo-
rates reasoning about future posterior epistemic uncertainty within BSP. Moreover, future semantic and geometric mea-
surements are generated using the coupling between λ and X . Importantly, maintaining the corresponding future posterior 
belief b[λ, X ] within BSP allows us to utilize a variety of reward functions, and in particular, information-theoretic rewards 
over epistemic uncertainty. As such, EUS-BSP provides critical capabilities for reliable autonomous semantic perception 
in uncertain environments. Each inference approach developed in Section 3 has its BSP counterpart. As discussed in de-
tail below, they are not compatible with each other, i.e. MH, planning must be used with inference, and the same for
JLP.
12
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Planning (Sec. 4)

BSP Approaches

MH-BSP
(Sec. 4.1)

JLP-BSP
(Sec. 4.2)

Reward Functions

r(b[X ])
(Sec. 4.3)

r(E(λ))

(Sec. 4.3)
r(b[λ])

(Sec. 4.4)

MH JLP

LG
(Sec. 4.5)

Dirichlet
(Appendix A.8)

LG
(Sec. 4.5)

Fig. 7. A diagram of aspects considered in Sec. 4. Dir stands for Dirichlet distribution.

This section is structured as follows; first, we discuss MH-BSP in Sec. 4.1 and JLP-BSP in Sec. 4.2. Afterward, we 
address possible reward functions, first mentioning rewards in the form of r(b[X ]) and r(E(λ)) in Sec. 4.3, both indirectly 
involving reasoning about epistemic uncertainty. Furthermore, we discuss an epistemic uncertainty information-theoretic 
reward r(b[λ]) in Sec. 4.4, specifically the negative of differential entropy −H(λ). The computation of −H(λ) is discussed 
for LG in Sec. 4.5, which is relevant for both MH and JLP. In Appendix A.8 we discuss the alternative of Dirichlet distributed 
λ for MH, and in Appendix A.9 we discuss the difference between LG and Dirichlet. Fig. 7 presents a diagram of all aspects 
considered in this section.

4.1. Multi-Hybrid planning (MH-BSP)

In this section and thereafter we assume the set of possible candidate actions ak,k+L is discrete and known. Our approach 
may use any action generation method, e.g. Probabilistic Road-Map (RPM) [34] or fixed motion primitives. Considering 
multiple objects, future Z g and {l�} must be generated, s.t. the objective function is as follows:

J (b[�k,Xk],ak:k+L) = E{l�k+1:k+L },Z g
k+1:k+L

(

l∑
i=1

r(b[�k+i,Xk+i],ak+i)), (36)

where b[�k, Xk] is obtained by MH from Sec. 3.2.2, and

b[�k+i,Xk+i] = P (�k+i,Xk+i |{l�k+1:k+i}, Z g
k+1:k+i, I1:k,Hg

k , D). (37)

As each l�k+i,w consists of separate lγ o
k+i,w , and similarly Z g

k+i consists of zg,o
k+i , MH-BSP first predicts which objects will 

be observed at time k + i. This can be done using an object observation model (see e.g. [5]) and sampled robot and object 
poses (either by sampling all objects or using a heuristic, see e.g. [11]). These objects are included in the predicted O k+i
set, and form X inv

k+1 � xk+1 ∪ {xo}o∈O k+1 .

To present the generative model, first consider the generation of {l�k+1} and Z g
k+1 from b[�k, Xk] conditioned on action 

ak . We follow the formulation in Eq. (13), and expand upon P (Zk+1|Hk,ak) for the specific case of MH-BSP. As such, the 
following marginalization scheme describes the sampling hierarchy:

P ({l�k+1}, Z g
k+1|Hk,ak) =

∑
C

∫
�k,Xk+1

Lk+1 · P (C |�k) ·Mk+1 · b[�k,Xk]d�kdXk+1, (38)

which induces the following sampling hierarchy, for every object o ∈ O k+1:

w ∼ P (w|D) (39)

Xk+1 ∼ Mk+1P (Xk|�k,w , lγ 1:k,w ,Hg
k ) (40)

C ∼ Cat(�k,w) (41)

zg,o
k+1 ∼ P (zg,o

k+1|xrel,o
k+1 ) (42)

{lγ o
k+1} ∼ P (lγ o

k+1|co, xrel,o
k+1 ), (43)

where xrel,o
k+1 � xo � xk+1, and is determined by X inv

k+1. Recall that O k+1 must be determined by sampling Xk+1. First, w is 
sampled uniformly from |W |. From there, as b[�k] is already represented by a set of samples {�k,w }, sampling w chooses 
�k,w as well. Next, definition (23) for hbw [Xk, C], and that �k,w is chosen:
13
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Algorithm 1 MH-BSP Measurement Generation.

Input: Belief b[�k, Xk], action ak

1: b[�k, Xk+1] ← Mk · b[�k, Xk]
2: �k, Xk+1 ← Sample(b[�k, Xk+1])
3: O k+1 ← PredictObs(Xk+1)

4: X inv
k+1 ← O k+1, Xk+1

5: C ← Sample(Cat(�k))

6: Z g
k+1 ← ∅

7: {l�k+1} ← ∅
8: for o ∈ O k+1 do
9: xrel,o

k+1 ← xo, xk+1 ∈ X inv
k+1

10: co ← C
11: zg,o

k+1 ← Sample(P (zg,o
k+1|xrel,o

k+1 ))

12: Z g
k+1 ← Z g

k+1 ∪ zg
k+1

13: {lγ o
k+1} ← ∅

14: for w ∈ W do
15: {lγ o

k+1} ← {lγ o
k+1} ∪ Sample(P (lγ o

k+1|co, xrel,o
k+1 ))

16: end for
17: {l�k+1} ← {l�k+1} ∪ {lγ o

k+1}
18: end for
19: return Z g

k+1, {l�k+1}

Algorithm 2 MH-BSP Objective Function.

Input: MH Belief b[�k, Xk], a set of actions ak:k+L

1: J ← 0
2: for number of samples Ns do
3: Z g

k+1, {l�k+1} ←
MH Measurement Generation(b[�k, Xk], ak)(Alg. 1)

4: b[�k+1, Xk+1] ← UpdateMH(b[�k, Xk], {l�k+1}, Z g
k+1, ak)

5: r(b[�k+1, Xk+1]) ← Reward(b[�k+1, Xk+1]
6: J ← J + r(b[�k+1, Xk+1])/Ns

7: if L �= 0 then
8: J ← J

+MH Objective Function(b[�k+1, Xk+1], ak+1:k+L)/Ns

9: end if
10: end for
11: return J

P (Xk|�k,w , lγ 1:k,w ,Hg
k ) =

∑
c

hbw [Xk, C]. (44)

Then, P (Xk|�k,w , lγ 1:k,w ,Hg
k ) is propagated via:

P (Xk+1|�k,w , lγ 1:k,w ,Hg
k ,ak) =

∑
c

Mk+1hbw [Xk, C], (45)

and Xk+1 is sampled, from there we determine O k+1.
For each object o ∈ O k+1, MH-BSP determines the appropriate xrel,o

k+1 , and generates its own geometric measurement zg,o
k+1. 

Next, class realization C is sampled; as the action ak alone does not change � from time k to k + 1 without measurements, 
�k,w is used to sample C . As such, C is a categorical random variable with the probability vector �k,w as its parameters. 
Finally, with c ∈ C and xrel,o

k+1 , MH-BSP samples a set of |W | vectors lγ o
k+1.

Often planning algorithms use Maximum Likelihood (ML) estimation to reduce computational effort compared to sam-
pling. In our case, taking the ML estimation of C can be problematic because it only considers the most likely class 
realization, ignoring all possible others.

For the following time steps, MH-BSP uses the generated {l�k+1} and Z g
k+1 to infer b[�k+1, Xk+1] using MH inference 

from Sec. 3.2.2. Now using action ak+1, MH-BSP generates {l�k+2} and Z g
k+2, then b[�k+2, Xk+2], and continues generating 

measurements and inferring corresponding belief until the end of the planning horizon. Algorithm 1 presents the MH-
BSP measurement generation algorithm, where the function PredictObs predicts which objects are observed given sampled 
camera and object poses.

Algorithm 2 summarizes MH-BSP objective function computation, where the function UpdateHB is the hybrid belief 
update approach presented in Sec. 3.2.2, and InferDist infers b[�k+1, Xk+1] from measurement generated in Algorithm 1. 
Algorithm 2 recursively calls itself until the action set only includes one action, allowing non-myopic planning.
14
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4.2. Joint Lambda Pose planning (JLP-BSP)

This section presents JLP-BSP, an epistemic uncertainty aware semantic BSP framework that leverages JLP from Sec-
tion 3.3 as the inference engine. If the assumption in Lemma 1 is exactly or approximately satisfied, we can utilize JLP for 
planning. As in inference, JLP-BSP is computationally faster than MH-BSP with a tradeoff of reduced accuracy.

Similarly to MH-BSP, the generation of new measurements is discussed. As described in Sec. 4.1, MH-BSP uses the clas-
sifier uncertainty model (17) parameters hi(xrel

k+1) and �i(xrel
k+1) to generate {lγ k+1} given class c = i and xrel

k+1. On the other 
hand, JLP-BSP does not require generating {lγ k+1} and elegantly uses hi(xrel

k+1) and �i(xrel
k+1) as generated measurements. 

With this, the objective function takes the following form:

J (b[ ¯lλk,Xk],ak:k+L) = EE(l�k+1:k+L),�(l�k+1:k+L),Z g
k+1:k+L

(

L∑
i=1

r(b[ ¯lλk,Xk+i],ak+i)), (46)

where,

b[ ¯lλk+i,Xk+i] = P ( ¯lλk+i,Xk+i |E(l�k+1:k+L),�(l�k+1:k+L), Z g
k+1:k+i, I1:k,Hg

k , D), (47)

with E(l�k) � {E(lγ o
k)}o∈O k and similarly �(l�k) � {�(lγ o

k)}o∈O k

As in Sec. 4.1, we consider measurement generation for time k + 1 from time k. Likewise, we follow the formulation in 
Eq. (13), and expand upon P (Zk+1|Hk,ak) for the specific case of JLP-BSP. This time, we present a sampling hierarchy 
that is described by the following marginalization scheme:

P (E(l�k+1),�(l�k+1), Z g
k+1|Hk,ak)

=
∫

Xk+1, ¯lλk

∏
o∈O k+1

P (E(lγ o
k+1),�(lγ o

k+1)|lλo
k,Hk,ak) · P (zg,o

k+1|Xk+1) · b[ ¯lλk,Xk+1]dXk+1. (48)

Using the above equation, the generative model used to generate measurements for every o ∈ O k+1 is written. First, JLP-
BSP determines the set O k+1, and samples the hypothesized object class co from lλo

k ∈ ¯lλk . It is done by sampling Xk+1 and 
¯lλk using b[ ¯lλk, Xk] as follows:

¯lλk,Xk+1 ∼ Mk+1 · b[ ¯lλk,Xk]. (49)

Similar to MH-BSP, ¯lλk stays the same conditioned on ak , thus not propagated. Then JLP-BSP determines O k+1, X inv
k+1 and 

xrel,o
k+1 per object as in Sec. 4.1. Subsequently, for o ∈ O k+1, JLP-BSP samples co and afterwards generates the measurements:

co ∼ Cat(λo
k) (50)

zg
k+1 ∼ P (zg

k |xrel,o
k+1 ) (51)

E(lγ o
k+1) = hc(xrel,o

k+1 ) (52)

�(lγ o
k+1) = �c(xrel,o

k+1 ), (53)

where hc(xrel,o
k+1 ) and �c(xrel,o

k+1 ) are the Gaussian parameters of P (lγ o
k+1|c, xrel,o

k+1 ), as in Eq. (17).

Algorithm 3 presents the JLP measurement generation algorithm, where E(l�k) � {E(lγ o
k)}o∈O k , and similarly �(l�k) �

{�(lγ o
k)}o∈O k . Algorithm 4 presents the objective function computation approach. UpdateJLP refers to updating b[ ¯lλk, Xk] as 

in Sec. 3.3 given generated measurements. Algorithm 4 calls itself recursively until there is only one action left in the set. 
The algorithm is similar to Algorithm 2, except for the measurement generation and update functions specific to JLP.

4.3. Reward functions over b[λ, X ]

Predicting future b[λk+i, Xk+i] at a future time k + i allows us to consider multiple reward functions, all captured by the 
general formulation r(b[λ, X ]). To the best of our knowledge, we are the first to consider reasoning about future posterior 
epistemic uncertainty within a BSP setting. For rewards based on the poses r(X ) e.g. distance-to-goal, or rewards based on 
the belief over the poses r(b[X ]) e.g. information-theoretic costs, we can compute the marginal b[Xk+i ] as for MH, or by 
marginalizing out lλk+i from b[λk+i, Xk+i] for JLP.

In addition, a reward over the posterior class probability r(P (c|H)) may also be considered, which can be extracted by 
computing E(λk+i) from the marginal b[λk+i]:
15
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Algorithm 3 JLP-BSP Measurement Generation.

Input: Belief b[ ¯lλk, Xk], action ak

1: b[ ¯lλk, Xk+1] ← Mk · b[ ¯lλk, Xk]
2: ¯lλk, Xk+1 ← Sample(b[�k, Xk+1])
3: O k+1 ← PredictObs(Xk+1)

4: X inv
k+1 ← O k+1, Xk+1

5: Z g
k+1 ← ∅

6: E(l�k+1) ← ∅
7: �(l�k+1) ← ∅
8: for o ∈ O k+1 do
9: xrel

k+1 ← xo, xk+1 ∈ X inv
k+1

10: co ← Sample(Cat(λo
k))

11: zg,o
k+1 ← Sample(P (zg,o

k+1|xrel
k+1))

12: Z g
k+1 ← Z g

k+1 ∪ zg
k+1

13: E(lγ o
k+1) ← hc(xrel

k+1)

14: E(l�k+1) ←E(l�k+1) ∪E(lγ o
k+1)

15: �(lγ o
k+1) ← �c(xrel

k+1)

16: �(l�k+1) ← �(l�k+1) ∪ �(lγ o
k+1)

17: end for
18: return Z g

k+1, E(l�k+1), �(l�k+1)

Algorithm 4 JLP-BSP Objective Function.

Input: JLP Belief b[ ¯lλk, Xk], a set of actions ak:k+l

1: J ← 0
2: for number of samples Ns do
3: Z g

k+1, E(l�k+1), �(l�k+1) ←
JLP Measurement Generation(b[λ̄k, Xk], ak:k+l)(Alg. 3)

4: b[ ¯lλk+1, Xk+1] ← UpdateJLP(b[ ¯lλk, Xk]),
Z g

k+1, E(l�k+1), �(l�k+1)

5: r(b[ ¯lλk+1, Xk+1]) ← Reward(b[ ¯lλk+1, Xk+1]
6: J ← J + r(b[ ¯lλk+1, Xk+1])/Ns

7: if l �= 0 then
8: J ← J

+JLP Objective Function(b[ ¯lλk+1, Xk+1], ak+1:k+l)/Ns

9: end if
10: end for
11: return J

P (c | {lγ k+1:k+i}, zg
k+1,k+i, I1:k,Hg

k , D) =
∫

λk+i

P (c|λk+i) · b[λk+i]dλk+i = E(λk+i), (54)

therefore we can write r(P (c|H)) as r(E(λ)). An example of such reward is the negative of Shannon Entropy, such that 
r(E(λ)) =∑c λc log(λc). This reward favors class probability vectors when one of the candidates has a probability close to 
one, and others close to zero. Crucially, as b[�k+i, Xk+i] for MH-BSP and b[ ¯lλk+i, Xk+i] for JLP-BSP both reason about 
epistemic uncertainty, it affects implicitly every reward. Thus, we account for future posterior epistemic uncertainty indi-
rectly in all the cases discussed in this section.

4.4. Information-theoretic reward over b[λ]

In Sec. 4.3 we discussed reward functions in the form of r(b[X ]) and r(P (c|H)). But crucially, maintaining b[λk+i, Xk+i]
opens the possibility of planning directly over b[λ]. We consider info-theoretical rewards over λ in the form of r(b[λ]). 
Specifically, we consider the differential entropy of λk+i , denoted H(λk+i), and is defined as:

H(λk+1) �−
∫

λk+1

b[λk+1] · log b[λk+1]dλk+1. (55)

The reward considered is the minus of the entropy, i.e. r(b[λ]) = −H(λ), which, as we will see in Sec. 4.5 (and Appendix A.8), 
is dependent both on E(λ) and the epistemic model uncertainty.

A possible alternative is a reward of the following general form for λ (see e.g. [27]):

r(b[λ]) = ω1 · f1(E(λ)) + ω2 · f2(�(λ)), (56)
16



V. Tchuiev and V. Indelman Artificial Intelligence 319 (2023) 103903
where ω1 and ω2 are hyperparameters, and f1 and f2 are general functions. Here λ can be interchangeable with its logit 
transformation lλ. This reward requires the tuning of ω1 and ω2 manually, as opposed to using r(b[λ]) = −H(λ), which does 
not require parameter tuning at all. In particular, as seen in Sec. 4.5, H(λ) addresses both E(λ) and �(λ) simultaneously. 
H(λ) diminishes (i.e., r(b[λ]) grows) when E(λ) is closer to the simplex corners, i.e., when one category has its probability 
close to 1 and the rest close to 0. Also, H(λ) diminishes the smaller �(λ) becomes, which corresponds to smaller epistemic 
uncertainty.

However, computing H(λk+i) requires the PDF value of b[λ], according to Eq. (55), thus necessitates modeling the distri-
bution of λk+i . This distribution can be either parametric e.g. Dirichlet or LG, which we will discuss here, or non-parametric 
such as Kernel Density Estimation (KDE). MH provides {λ}, therefore any distribution that supports probability vectors can 
be chosen. On the other hand, JLP limits λ to be LG distributed per definition. Sec. 4.5 details using the Logistical Gaussian 
distribution for b[λk] in the context of computing entropy. To simplify notations, all of the variables in the next section are 
considered at the same time step, the time index is dropped. In addition, we use the single-object notation, i.e. λ and c.

4.5. Logistic Gaussian for b[λ]

b[λk] can be modeled as Logistic Gaussian (LG) distributed, which is supported by both MH and JLP, as illustrated in 
Fig. 7. This distribution (with PDF as in Eq. (18)) supports probability vectors with conditions presented in Sec. 2.2 for γ , 
thus samples from LG are probability vectors. This distribution does not have an analytical expression for expectation and 
covariance, and must be computed numerically or approximated, e.g. via bounds, as discussed later.

To compute the parameters from a point cloud of probability vectors, e.g. {λ}, the logit transformation is applied on λ ∈
{λ} to get {lλ}. Then, as lγ is modeled Gaussian the LG parameters E(lλ) and �(lλ) are inferred. In addition to expectation 
and covariance, the LG distribution does not have a closed-form solution for its differential entropy. However, the LG variable 
is a transformation of a Gaussian variable with a known expression for entropy. As such, the entropy is expressed using the 
following lemma.

Lemma 2. Let λ = [λ1, ..., λm]T be Logistical-Gaussian distributed, and lλ its logit transformation as in Eq. (16), thus lλ is Gaussian 
with parameters E(lλ) and �(lλ). As such, the differential entropy H(λ) is described by:

H(λ) = H(lλ) +
m−1∑
i=1

E[lλi] −
∫
lλ

log

(
1 +

m−1∑
i=1

elλi

)
P (lλ)dlλ. (57)

The complete proof is shown at Appendix A.6.
As lλ is Gaussian, H(lλ) = 0.5 · log(2πe|Cov(lλ)|). The integral in Eq. (57) does not have an analytical solution to the 

best of our knowledge. One approach is to compute the entropy numerically from {λ} that is already available, but it is 
computationally expensive to do so for a large number of candidate classes. Another option is to compute bounds for the 
entropy, presented in the following lemma.

Lemma 3. Let λ = [λ1, ..., λm]T be Logistical-Gaussian distributed, and lλ its logit transformation as in Eq. (16), thus lλ is Gaussian 
with parameters E(lλ) and �(lλ). As such, an upper bound for H(λ) is given by:

H(λ) ≤ H(lλ) +
m−1∑
i=1

E(lλi) − m · max
i

{0,E(lλi)}, (58)

and similarly, a lower bound is given by:

H(λ) ≥ H(lλ) +
m−1∑
i=1

E(lλi) − m · max
i

{0,E(lλi)} − m log m −
√

σmax
ii

2π
, (59)

where σmax
ii � maxi �ii(lλ) is the largest value element in the covariance of lλ.

The complete proof is shown at Appendix A.7.
One can observe from the upper bound that H(lλ) is necessarily larger than H(λ) as lγ is not subjected to the probability 

vector constraints, thus E(lγ i) can be negative for every i and 
∑m−1

i=1 E(lγ i) −m ·maxi{0, E(lγ i)} is necessarily non-positive.
Fig. 8 presents the entropy values of b[λ] as a function of its LG parameters E(lλ) and V ar(lλ) in two candidate classes 

case. As a probability vector of two candidate classes has a single degree of freedom, two parameters can fully describe the 
distribution. The figure shows that the farther E[lλ] is from zero, i.e. the closer E[λ1] to either one or zero, the smaller 
the entropy gets generally. The effect is more pronounced when V ar(lλ) is small. If we minimize entropy during planning, 
the robot will aim to reach regions where E[λ] is close to the edges of the simplex, with smaller posterior epistemic 
uncertainty.
17
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Fig. 8. Entropy of a one dimensional Logistical Gaussian that corresponds to two dimensional probability vector γ . The x and y axes represent E(lγ ) and 
V ar(lγ ) respectively. Blue to yellow colors correspond to low to high entropy.

The scenarios presented in Fig. 2 correspond to the following cases in Fig. 8:

• The unknown-unknown case (Fig. 2a) corresponds to E(lλ) close to 0, and large V ar(lλ), i.e. the upper central part of 
Fig. 8.

• The known-unknown case (Fig. 2b) corresponds to E(lλ) close to 0, and small V ar(lλ), i.e. the lower central part of 
Fig. 8.

• The known-known case (Fig. 2c) corresponds to E(lλ) with large absolute value, and small V ar(lλ), i.e. the lower areas 
at the sides.

• The uncertain classification case (Fig. 2d) corresponds to E(lλ) with large absolute value, and large V ar(lλ), i.e. the 
upper areas at the sides.

5. Evaluation

We evaluate our approaches for semantic SLAM inference and planning in simulation (Sec. 5.2) and an experiment 
(Sec. 5.3) over the Active Vision Dataset scenario Home-3-01 [30], with viewpoint dependent classifier uncertainty models 
trained using the BigBIRD dataset [35]. We considered environments with multiple spatially scattered objects, and the 
robot’s task is to accurately classify them while localizing. Our implementation uses the GTSAM library [31] with a Python 
wrapper. The hardware used is an Intel i7-7700 processor running at 2.8 GHz and 16 GB RAM, with GeForce GTX 1050 Ti
with 4 GB RAM.

5.1. Compared approaches and metrics

We consider three approaches for inference and planning: MH and JLP methods with the corresponding MH-BSP and
JLP-BSP, and an approach that does not consider model uncertainty, denoted as Without Epistemic Uncertainty (WEU). In 
this approach, we maintain a single hybrid belief and use it for inference and planning, similar to approaches presented in 
[5,23].

Our approach is evaluated for classification accuracy using the Mean Square Detection Error metric (MSDE, also used by 
Teacy et al. [18] and Feldman & Indelman [20]). Given b[λk], MSDE is defined as follows:

M S D E � 1

m

m∑
i=1

(
λi

gt −E(λi
k)
)2

, (60)

where λi
gt is the ground truth probability of the object being of class c = i and is equal to 1 if the object is class i and 0 

otherwise. For a completely incorrect classification M S D E ≤ 1, ideal classification M S D E = 0, and for classification results 
where all class probabilities are equal, M S D E = m−1

m2 .

5.2. Simulation

5.2.1. Simulation setting
We consider a closed set setting and assume m = 2 candidate classes. The camera senses objects up to 10 meters dis-

tance, with an opening angle of 120◦ . In the main paper, a model that satisfies Lemma 1 is chosen. In Appendix A.10 results 
are presented for a model that does not satisfy Lemma 1. The baseline MSDE score for m = 2 where all class probabilities 
18
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Fig. 9. The ground truth of the scenario in Sec. 5.2.2. The red dot represents the robot’s starting point, with the red curve being the path. The green dots 
represent the objects’ location with the corresponding object labels. The green line represents the object orientation, with the yellow line presenting 90◦
of that orientation. The blue cones represent the observation viewpoints in which the classifier identifies the object class well with low uncertainty, i.e. 
case 1.

are equal is M S D E = 0.25. We corrupt the simulated measurements, both geometric and semantic, with Gaussian noise. 
In the passive case, the robot’s motion is deterministic. In the active case, while the motion primitives used are fixed, the 
motion is stochastic with a small Gaussian noise.

5.2.2. Inference: single run
The setting for this comparison is an environment with 5 objects. These objects are placed within the environment, 

presented in Fig. 9 along with the ground truth trajectory. The robot passes through an area where the objects have 
classification scores with high epistemic uncertainty. Normally, with methods that do not consider epistemic uncertainty, 
classification results will have a high chance of being incorrect, but our approach provides more accurate results as it 
considers epistemic uncertainty. Denote ψ as the relative orientation between the object’s orientation (chosen during the 
classifier uncertainty model training) and the camera’s pose. We simulate a classifier model that considers the following 
cases:

1. The classifier differentiates well between classes with low epistemic uncertainty, ψ = 0◦ .
2. The classifier does not differentiate well between the two classes, ψ = 90◦, 270◦ .
3. The classifier differentiates between classes well, but with high epistemic uncertainty, ψ = 180◦ .

As such, ψ = 0◦ is the relative orientation where the best classification with the lowest uncertainty is expected (corre-
sponding to the blue cone in Fig. 9 that represents this relative orientation), and ψ = 180◦ is the relative orientation that 
most prone to classification errors when not considering epistemic uncertainty. Considering the ground truth trajectory for 
the scenario, objects 1 and 2 represent case 3. As such, we expect our approaches to infer the correct class within a large 
number of steps because of the uncertainty. Object 3 represents case 1, and when it is observed the classification will be 
accurate on the first view. Objects 4 and 5 represent case 2, where classification is difficult as the model does not differen-
tiate well between the classes of those objects. The object ground truth classes are c = 1 for objects 1, 2, and 5, and c = 2
for objects 3 and 4.

A visualization of the models presented can be seen in Fig. 10.
We consider noisy geometric measurements of relative pose (both for motion and geometric models), and cloud point 

semantic measurements, i.e. the classifier gives {γ } per each object, sampled from the classifier uncertainty model. The 
classifier uncertainty model uses the following expectation function (see Eq. (17)):

hc=1(xrel) = 1

2
cos(2 · ψ) + 1

2

hc=2(xrel) = −1

2
cos(2 · ψ) − 1

2
,

(61)

and the following function for root-information:

Rc=1(xrel) = Rc=2(xrel) = 1.4 + 0.6 · cos(ψ). (62)

Subsequently, the covariance parameter from Eq. (17) in the two class case is computed as follows:

�c(xrel) =
√

1

Rc(xrel)
. (63)
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Fig. 10. A visualization of the classifier uncertainty model used in Sec. 5.2.2. We present the value of P (γ c=1|c, xrel) ≡ P (γ c=1|c,ψ) as a function of 
relative orientation ψ and γ c=1 value, for classes c = 1 and c = 2 in (a) and (b) respectively. Blue and yellow colors correspond to low and high PDF values 
respectively.

Fig. 11. (a), (b), (c), and (d) show MSDE results per time step for MH per object, each in a different color, for 5, 10, 25, and 100 respectively. (e) shows 
MSDE results for JLP. (f) shows MSDE results for WEU. In the legend, Unin. means uninformative classification, i.e. the case where P (c1) =P (c2) = 0.5.

With the covariance parameter being equal, the presented model satisfies the assumption of Lemma 1, allowing us to use 
the JLP approach.

Fig. 11 presents MSDE results for each object separately. We perform inference with MH with a different number of 
hybrid beliefs and compare it to JLP and WEU. With MH and JLP, the class of objects 1 and 2 is inferred using multiple 
observations, eventually inferring the correct class. The class of object 3, once seen, is quickly and accurately inferred. The 
class of objects 4 and 5 remain ambiguous (MSDE of approximately 0.25) because they are observed from viewpoints that 
correspond to case 2. In general, MH in Fig. 11a-11d tends to present smoother results the more hybrid beliefs are used 
and also compared to JLP in Fig. 11e where for each time step the entropy must be computed numerically from new λk
samples. WEU in Fig. 11f shows that objects can be classified incorrectly if not considering epistemic uncertainty, such as 
object 4, as shown in the figure.

In summary, Fig. 12a presents average MSDE results for all the objects combined, showing that epistemic uncertainty 
aware approaches outperform WEU, while MH with 10 beliefs and JLP perform similarly. Fig. 12b presents a computation 
time comparison between WEU, JLP, and MH for different numbers of hybrid beliefs. From this figure, we can see that JLP
is comparable to WEU, with MH being significantly more computationally intensive as the number of simultaneous beliefs 
increases.
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Fig. 12. (a) compares MSDE to time step between MH with 100 beliefs in red, JLP in blue, and without uncertainty in green. (b) compares run-time per 
inference step between realizations of MH with different number of hybrid beliefs in red, JLP in black, and WEU in green.

Fig. 13. Examples of a sampled environment in which the inference is performed. The red trajectory is the robot’s path. The green dots denote the objects, 
numbered O1 to O5. The green and yellow lines represent their orientation, 0◦ and 90◦ respectively.

Fig. 14. (a) compares MSDE to time step between MH in red, JLP in blue, and without uncertainty in green. The transparent colors correspond to the 
respective plot in one σ value. (b) compares run-time per inference step between realizations of MH with different number of hybrid beliefs in red, JLP in 
black, and WEU in green.

5.2.3. Inference: statistical study
We perform a Monte-Carlo study to compare between MH, JLP, and WEU. We run the simulation 10 times and present 

results for MSDE and computational time. The setting for this comparison is an environment with 5 objects with randomized 
poses, with examples presented in Fig. 13. Otherwise, the same setting and classifier uncertainty model are used as in 
Sec. 5.2.2.

We present MSDE statistical results in Fig. 14a, with one σ uncertainty. MH was performed with 100 beliefs. While MH
and JLP perform similarly, both outperform the approach that does not consider epistemic uncertainty, especially in cases 
where the camera goes through areas that correspond to ψ = 180◦ . Fig. 14b presents run-time results for the algorithms. 
Expectedly, as the number of simultaneous beliefs increases for MH, the algorithm runs slower. JLP is comparable to main-
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Fig. 15. (a) is the ground truth of the scenario in Sec. 5.2.4. The red dot represents the robot’s starting point. The green dots represent the objects’ location 
with the corresponding object labels. The green line represents the object orientation, with the yellow line presenting 90◦ of that orientation. The blue 
cones represent the observation angles in which the objects are classified most accurately with the lowest epistemic uncertainty, with 3 overlapping areas 
as low epistemic uncertainty areas. (b) presents the five motion primitives in the scenario. The red dot represents the origin point, the black arrows the 
possible actions, and the red cones represent the field of view after the action.

taining a single hybrid belief in this case, demonstrating that it is more practical when the conditions of Lemma 1 are 
satisfied. Appendix A.10 presents results for the case where the conditions of Lemma 1 are not satisfied.

5.2.4. Planning: single run
We simulate a planning scenario of 9 objects placed such that there are 3 zones of low uncertainty with high expected 

classification scores, as shown in Fig. 15a. We compare two reward functions for planning. R1 is the negative of the entropy 
of λ as defined in Eq. (55), while R2 is the entropy of E(λ) as defined in Sec. 4.3. Reward function R1 is modified to include 
a cap of Rmax = 5 per object to encourage exploration and classification of all objects in the scene. We modify R1 and R2

to include all objects by summing the entropy of each marginal λk+1 per object. For a future belief of all b[λo
k+1] per object 

o in the set of 9 objects:

R1 =
∑

o

min(−H(λo
k+1), Rmax)

R2 = −
∑

o

H(E(λo
k+1))

(64)

For both reward functions, we use MH-BSP and JLP-BSP. We use only R2 for WEU as R1 is not applicable because 
it does not consider epistemic uncertainty, while R2 can use the posterior class probability as E(λo

k+1). Optimally, the 
robot would plan to go through the high separation low uncertainty zone. We have five possible motion primitives, as 
represented in Fig. 15b with a vision cone of 120◦ emanating from the camera. The trajectory length is 20 time steps, at 
each time step trajectories are randomly sampled for a horizon L = 10. At each action sample, we consider the Maximum 
Likelihood Estimation of the propagated pose for measurement generation. When the horizon is reached, we perform the 
action at the current time that leads to the best reward. We perform re-planning after every action step, and the entire 
belief b[λ, X ] is updated for each sampled action and estimated observation. While more efficient planning schemes exist 
(e.g. PFT-DPW [36]), considering state-of-the-art POMDP algorithms is beyond the scope of the paper. The setting for the 
classifier model, viewing radius and angle, motion, and geometric noise are the same as in the inference simulation. MH-
BSP uses 10 hybrid beliefs. Optimally, the robot would plan to go through all three zones to achieve accurate classification 
of all objects.

Fig. 16 presents the trajectories created for all the methods. The ones that plan over R1 create trajectories that pass 
closer to the overlapping low uncertainty areas from Fig. 15a, resulting in more accurate classification than planning over 
R2 for all methods, especially WEU.

Fig. 17 presents a comparison for H(λk) at the inference phase, when comparing planning over R1, and R2 for MH-BSP
in Fig. 17a and JLP-BSP in Fig. 17b. In both figures planning over R1 yields lower entropy, correlating to lower epistemic 
uncertainty. The effect is more noticeable for MH-BSP than JLP-BSP.

Fig. 18 presents MSDE results for all the methods, split into results for MH-BSP in Fig. 18a and for JLP-BSP in Fig. 18b, 
both showing a comparison to WEU in the green plot. Evidently, planning over R1 slightly outperforms planning over R2, 
with WEU lagging far behind.

Fig. 19 presents a bar graph with an error representation of the classification results at time k = 20 for all objects. 
Generally, planning over R1 tends to have a more accurate classification than planning over R2 with lower uncertainty. On 
the other hand, WEU tends to go towards extremes of class probabilities 0 or 1, whether it is the correct class.
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Fig. 16. This figure presents the ground truth of planned trajectories. (a) for planning over R1 for MH-BSP (purple) and JLP-BSP (black). (b) for planning 
over R2 for MH-BSP (red) and JLP-BSP (blue). (c) for WEU (green). All are for the multiple object scenario. The object is shown in a green dot, with 
the green line representing the object orientation, with the yellow line presenting 90◦ of that orientation. The blue cones represent the areas where 
observations have the lowest epistemic uncertainty.

Fig. 17. H(λ20) values for MH-BSP (a) and JLP-BSP (b) as a function of the time step. In (a), the purple and red plots represent R1 and R2 respectively, 
and similarly in (b), the black and blue plots represent R1 and R2 respectively.

Fig. 18. Single-run study for multiple object scenario study for MSDE comparing planning over R1 and R2 for MH-BSP (a) and JLP-BSP (b), and WEU.

Fig. 20 presents the computational time per step for all our approaches using R2 reward function. Here MH-BSP uses 10 
hybrid beliefs. This figure shows that JLP-BSP is slightly faster than WEU while also reasoning about posterior epistemic 
uncertainty, because the number of states in JLP-BSP scales linearly with the number of objects and candidate classes, 
as opposed to exponentially with WEU and MH-BSP. On the other hand, JLP-BSP is significantly more computationally 
efficient than MH-BSP.

See Appendix A.10.1 for additional results for planning around a single object.

5.2.5. Planning: statistical study
For the statistical study, we randomly corrupt geometric and semantic measurements with noise. We use the scenario 

from Sec. 5.2.4, using R1, and R2 with JLP-BSP, and compare it to WEU. We perform 10 iterations, each with a planning 
horizon L = 10, and present results for entropy and MSDE. Each run was performed up to 20 time steps.
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Fig. 19. Probability of the objects being ground truth class for our methods at time k = 20 for all objects. We compare planning over R1 and R2, JLP-BSP,
MH-BSP, and WEU. Purple and red for R1 and R2 respectively using MH, black and blue for using for R1 and R2 respectively using JLP-BSP, and green for
WEU. The one σ deviation is represented via the black line at each relevant bar, and represents the posterior model uncertainty.

Fig. 20. This figure compares run-time per inference step between realizations of MH-BSP with 5 hybrid beliefs in red, JLP-BSP in black, and WEU in 
green.

Fig. 21. Statistical study for the scenario in Sec. 5.2.5. (a) presents a comparison for the sum of entropy over all objects between trajectories for R1 and R2

as a function of the time step for MH-BSP. (b) presents an MSDE comparison between MH-BSP, JLP-BSP, and WEU as a function of time step. In both, 
the line represents the statistical expectation, while the colored area represents a one σ deviation.

Fig. 21 presents the statistical results for the sum of the entropy in Fig. 21a, and the MSDE results in Fig. 21b, with the 
colored areas representing one σ deviation. All in all, planning over R1 performs better over planning over R2 for JLP-BSP, 
with lower entropy and MSDE. In addition, MSDE results compared to WEU are vastly superior for epistemic-uncertainty-
aware methods.

5.3. Experiment

5.3.1. Setup
For the experiment, we consider a myopic planning scenario in a semantic SLAM setting, using Active Vision Dataset 

(AVD) [30] Home 005 with example images presented in Fig. 22. In this scenario, the objects are grouped into two groups, 
one on a table near the window back-lit by sunlight as seen in Fig. 22a, and another on the kitchen counter seen in Fig. 22b. 
We perform planning for a 20 time step trajectory, at each step performing myopic planning. In this dataset, the candidate 
24



V. Tchuiev and V. Indelman Artificial Intelligence 319 (2023) 103903
Fig. 22. Example images of the Active Vision Dataset, home 005. The red boxes represent the bounding boxes for the objects, and the notation O x represents 
the x-th object.

Fig. 23. Example images of the BigBIRD dataset for training the classifier models. (a) is an example for the “pop bottle” class, while the rest are examples 
of “packet”.

actions are given for each image a-priori. We aim to compare JLP-BSP and WEU for classification accuracy using MSDE 
(60), differential entropy representing epistemic uncertainty, and computational time. The reward functions R1 and R2 are 
identical to those presented in Eq. (64).

Five candidate classes are considered: “Packet”, “Book Jacket”, “Pop Bottle”, “Digital Clock”, and “Soap Dispenser”. For 
each class, we trained classifier uncertainty models using images from BigBIRD dataset [35], with example images presented 
in Fig. 23. For classification, we used VGG convolutional neural network [37] with dropout activated during test time. The 
R1 upper limit Rmax per object is 500, as the increasing number of objects increases the scale of R1 values. Recall Lemma 2, 
the entropy depends on the covariance of lγ via H(lλ).

The classifier models were trained via PyTorch on fully connected networks with five hidden layers. Recall Eq. (17), we 
train hc(xrel) and �c(xrel) from a dataset Dc = {xrel, {lγ }} per object, where xrel = [ψ, θ] is parametrized by relative yaw 
angle ψ and relative pitch angle θ . hc and �c are represented by separate neural networks, up to a total of 2m networks. 
As seen in Sec. 3.3, all �c=i ≡ �c= j for i, j = 1, ..., m − 1 for the JLP factor to be Gaussian. This constraint limits the 
expressibility of �c , thus not accurately representing the epistemic uncertainty from certain viewpoints of objects. As such, 
instead of enforcing a hard constraint on all �c , we train the classifier uncertainty model with a loss function that imposes 
a penalty if �c for different c are not similar, enforcing a soft constraint.

The loss function Lh for the hc network is mean square error (MSE):

Lh(hc, {lγ }) = M S E(hc, {lγ }) =
m∑

i=1

(
hi

c −E(lγ i)
)2

, (65)

where hi
c is the i-th element of hc . The loss function L� for the �c uses MSE over the covariance matrix elements and adds 

a Frobenius norm term that acts as the soft constraint that makes the values of �c closer:

L�(hc,�c, {lγ }) = M S E(�c,�(lγ )) + κ · F N(hc,�c) (66)

where the MSE for the above loss function is defined:

M S E(�c,�(lγ )) = 1

(m − 1)2

m∑
i=1

m∑
j=1

([�c]i j − [�(lγ )]i j)
2, (67)

F N(·) is the Frobenius Norm, defined:
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Fig. 24. This figure presents the ground truth of planned trajectories with object pose estimations. (a) for planning over R1 for JLP-BSP in black. (b) for 
planning over R2 for JLP-BSP in blue. (c) for WEU (green). All for the AVD scenario. The object estimation is shown in a green dot with corresponding 
estimation covariance of 3σ in gray. The red dots represent the starting position of each trajectory.

Fig. 25. Experimental results for the scenario in Sec. 5.3.1. (a) presents a comparison for the sum of entropy over all objects between trajectories for R1

and R2 as a function of the time step for JLP-BSP. (b) presents an MSDE comparison between JLP-BSP, and WEU as a function of time step.

F N(�c) = T r
(
(�−1

c=i − �−1
c=m) · (�−1

c=i − �−1
c=m)T

)
, (68)

and κ is a positive constant. In our case, κ = 0.005.

5.3.2. Results
Fig. 24 presents the paths created by the planning session. The path for planning over R1 focuses on the object group 

on the kitchen counter, while the others focus more on the object on the table by the window. This can be explained by 
poorer visibility of the objects near the window, induced by the sunlight, therefore inducing higher epistemic uncertainty 
than the objects on the counter. As we consider a SLAM setting without prior knowledge of how many objects are in the 
scene, the robot corresponding to the black trajectory did not observe the objects in the bottom-left cluster. Therefore it did 
not take into account these objects during inference and planning.

The results of those trajectories chosen can be seen in Fig. 25, where the entropy and MSDE results are presented. In 
Fig. 25a the lower epistemic uncertainty for planning with R2 can be evident. In addition, the MSDE comparison in Fig. 25b 
significantly favors planning over R1 over R2 and especially compared to WEU, with epistemic-uncertainty-aware planning 
outperforms both.

Fig. 26 shows the class probability of the ground truth class for all the objects for time-step k = 20. While both JLP-BSP
with R2 and WEU observe an object more as the group near the window contains more objects, the objects that JLP-BSP
with R1 observes are classified more accurately.

Fig. 27 presents a computational time comparison between JLP-BSP and WEU. The figure shows a significant advantage 
for JLP-BSP over WEU, as the number of candidate classes is 5, instead of 2 in the simulation. WEU computational time per 
step drops with time steps as some class realizations are pruned. As evident from the figure, JLP-BSP offers computational 
efficiency greater than WEU, while also opening access to model uncertainty, both for inference and planning.

6. Discussion and limitations

This paper extends the classical formulation of Gaussian passive and active SLAM to include object classification scores 
that also reason about the classifier’s epistemic uncertainty (e.g., via MC-Dropout). The first presented approach, MH, as dis-
cussed in Sec. 3.2, is practically intractable without aggressive pruning (i.e., using a high pruning threshold) as the number 
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Fig. 26. Probability of the objects being ground truth class for our methods at time k = 20 for all objects. We compare planning over R1 and R2, JLP-BSP, 
and WEU. Black and blue for using for R1 and R2 respectively using JLP-BSP, and green for WEU. The one σ deviation is represented via the black line 
at each relevant bar and represents the posterior model uncertainty. The colored X marks represent that object was not observed by the corresponding 
method.

Fig. 27. This figure compares run-time per inference step between realizations of JLP-BSP in black, and WEU in green for the AVD scenario.

of hybrid beliefs grows exponentially with the number of objects. Also, each hybrid belief is computationally intensive, es-
pecially for cases where m is large (e.g., 1000 candidate class on ImageNet [38]). Aggressive pruning may induce impossible 
to recover from incorrect classification results.

On the other hand, JLP maintains a single continuous belief that does not require pruning, making it significantly more 
computationally feasible than MH. That being said, JLP is constrained by the dimension of each lλ: each object contributes 
m − 1 variables to be optimized; therefore large m also induces significant computational effort for the optimization, as 
(m − 1)2 terms are added to the Jacobian per object, which in general are not sparse. Moreover, to the best of the au-
thor’s knowledge, there are no convergence guarantees for JLP. The computational effort may be reduced by, for example, 
sparsification of the Jacobian during optimization.

7. Conclusions

We presented a unified semantic SLAM framework for inference and BSP that maintains a joint belief over robot and 
objects’ poses and posterior class probability, addressing viewpoint-based classification aliasing and reasoning about the 
epistemic uncertainty of the classifier. In particular, two approaches were introduced; firstly, we introduced MH which 
simultaneously maintains multiple hybrid beliefs over poses and object classes, with semantic class probability vector mea-
surements varying with different predetermined weights. Secondly, we introduced JLP, a more computationally efficient 
alternative that uses the novel JLP factor. Furthermore, we introduced MH-BSP and JLP-BSP as the formulation of both 
approaches to a BSP framework. We introduced a novel information-theoretic reward to plan over future posterior epis-
temic uncertainty, improving classification performance over methods and reward functions that do not consider epistemic 
uncertainty. Both approaches leverage the coupling between relative poses and object classes via a viewpoint-dependent 
classifier uncertainty model, allowing us to predict future epistemic uncertainty for planning. In simulation and experiment, 
we showed that reasoning about epistemic uncertainty improves classification performance in inference and planning.
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Appendix A

A.1. Multi-Hybrid: derivation of Eq. (19) and marginals for single object

We marginalize b[λk, Xk] over w:

b[λk,Xk] =
∫
w

P (Xk, λk|I1:k,Hg
k , w) · P (w|D)dw ≈ 1

|W |
∑

w

P (Xk, λk|I1:k,Hg
k , w). (A.1)

Then, using chain rule yields

b[λk,Xk] ≈ 1

|W |
∑

w

P (Xk|λk, w, I1:k,Hg
k ) · P (λk|w, I1:k,Hg

k ). (A.2)

Each term on the right-hand side of the above is addressed separately. P (Xk|λk, w, I1:k,Hg
k ) is marginalized over c and 

using chain-rule can be split into the following distributions:

P (Xk|λk, w, I1:k,Hg
k ) =

∑
c

P (Xk|c, λk, w, I1:k,Hg
k ) · P (c|λk, w, I1:k,Hg

k ) (A.3)

Xk is conditioned on c, thus λk can be omitted. For c, given the posterior probability vector λk , the rest can be omitted, and 
P (c|λk) = λc

k where λc
k is the element c of λk .

λk is a function of w , I1:k , and Hg
k ; therefore, P (λk|w, I1:k,Hg

k ) is a Dirac function δ(·), such that

P (λk|w, I1:k,Hg
k ) = δ(λk − λk,w). (A.4)

As such, Eq. (A.2) is rewritten as:

b[λk,Xk] ≈ 1

|W |
∑

c

∑
w

P (Xk|c, lγ 1:k,w ,Hg
k )︸ ︷︷ ︸

bc
w [Xk]

·λc
k · δ(λk − λk,w), (A.5)

where bc
w [Xk] is the continuous belief conditioned on w and c. Each w ∈ W is constant throughout the scenario with 

the reasoning of keeping the number of particles constant, thus avoiding managing an exponentially increasing number of 
components (such as in [8]). This can be achieved by, e.g., training multiple models on the same dataset via bootstrapping, 
or re-using classifier weight sets created by MC-dropout. That way, Eq. (A.5) shows that maintaining b[λk, Xk] is equivalent 
to maintaining bc

w [Xk] and λc
k for all w ∈ W and c.

Each class probability λc
k,w within the particle λk,w is updated using Bayes rule as follows:

λc
k,w = η · λc

k−1,w · P (zg
k , lγ k,w |c), (A.6)

where η is a normalizing constant such that 
∑

c λc
k = 1, and does not affect inference. As the classifier model is viewpoint 

dependent (Eq. (17)), we must marginalize P (zg
k , lγ k,w |c) over xo and xk to fully utilize our models as follows:

λc
k,w ∝ λc

k−1,w

∫
xo,xk

Lk · bc−
w [xo, xk]dxodxk, (A.7)

where bc−
w [xo, xk] is the propagated conditional continuous belief, constructed as follows, all the other variables are 

marginalized out from Xk beside xo and xk:

bc−
w [xo, xk] �

∫
Xk/xo,xk

Mk · bc
w [Xk−1]d(Xk/xo, xk). (A.8)

bc
w [Xk] from (A.5) is incrementally updated using standard SLAM state-of-the-art approaches (e.g. iSAM2 [32]):

bc
w [Xk] ∝ bc

w [Xk−1] ·Mk ·Lk. (A.9)

Essentially, for every w , we maintain a hybrid belief over robot and object poses, and classes, defined as:

hbw [Xx, c] � bc
w [Xk] · λc , (A.10)
k,w
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and using the above definition, and considering that the Dirac function only “blocks” all λk except for λk,w , we can rewrite 
Eq. (A.5) in terms of hbw [Xx, c]:

b[λk,Xk] ≈ 1

|W |
∑

c

∑
w

hbw [Xk, c] · δ(λk − λk,w). (A.11)

Practically, for every w ∈ W , MH maintains bc
w [Xk] with the accompanying λc

k,w for every object class realization, overall 
maintaining |W | hybrid beliefs hbw [Xk, c] in parallel.

Further, one may require to infer the marginals b[λk] or P (Xk|I1:k,Hg
k , D), e.g. to compute an appropriate reward func-

tion, as we shall see in Section 4. We can describe b[λk] in term of λk,w particles by marginalizing b[λk] over w:

b[λk] ≈ 1

|W |
∑

w

P (λk|w, I1:k,Hg
k )

= 1

|W |
∑

w

P (λk|lγ 1:k,w ,Hg
k )

= 1

|W |
∑

w

δ(λk − λk,w).

(A.12)

On the other hand, to compute P (Xk|I1:k,Hg
k , D), we marginalize over w and c,

P (Xk|I1:k,Hg
k , D) ≈ 1

|W |
∑

w

∑
c

hbw [Xk, c]. (A.13)

A.2. Multi-Hybrid: derivation of Eq. (22) and marginals for multiple objects

Define the joint posterior class probability vector as:

�k � P (C |l�1:k,Hg
k ), (A.14)

where C � {co}o∈O 1:k is the class realization of all objects observed up to time k, with co being the o-th object class. In 
addition, we include in Xk the poses of all the objects, such that Xk � x0:k ∪ {xo}o∈O 1:k . Subsequently, the belief over �k and 
Xk is:

b[�k,Xk] � P (�k,Xk|I1:k,Hg
k , D). (A.15)

Observe that �k is still a probability vector but with mNk possible categories. To illustrate this, consider an example with 
two objects and three candidate classes, i.e. O 1:k = {o, o′} and m = 3. Then each category contains a class hypothesis for all 
object classes, e.g. co = 1, co′ = 3. As such, there are 9 possible class realizations and therefore �k has 9 categories whose 
probabilities should sum to one. That way, the number of categories in �k grows exponentially with the number of objects, 
potentially to intractable levels. Fortunately, this can be mitigated by pruning components with low probability, as was done 
in [5,6].

For every w ∈ W , updating �k is largely similar to updating λk in Appendix A.1, except for a few differences. The 
likelihood terms include all objects O k observed at time k, and the conditional probability over the poses is conditioned on 
class realization C instead of the class of a single object,

�C
k,w ∝ �C

k−1,w

∫
xinv

k

Lk · bC−
w [X inv

k ]dxinv
k , (A.16)

where �C
k,w denotes the posterior probability of class realization C at time k for weight realization w , and X inv

k represents 
the last robot pose and all poses of objects observed at time k, i.e. X inv

k � xk ∪ {xo}o∈O k . Likelihood Lk now encompasses all 
the measurement likelihoods of all objects as follows:

Lk �
∏

o∈O k

P (lγ o
k |C, xo, xk) · P (zg

k |xo, xk). (A.17)

The belief bC−
w [X inv

k ] is the propagated belief conditioned on C , and marginalized over the uninvolved variables such that 
Xk =X inv

k ∪X¬inv
k :

bC−
w [X inv

k ] =
∫

X¬inv

Mk · bC
w [Xk−1]dX¬inv

k . (A.18)
k
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Similarly to Sec. 3.2.1 we can rewrite b[�k, Xk] as:

b[�k,Xk] ≈ 1

|W |
∑

w

∑
C

hbw [Xk, C] · δ(�k − �k,w), (A.19)

where hbw [Xk, C] is the hybrid belief conditioned on w:

hbw [Xk, C] � bC
w [Xk] · �C

k,w , (A.20)

and bC
w [Xk] � P (Xk|c, lγ 1:k,w ,Hg

k ). Similarly to Eq. (19), maintaining b[�k, Xk] is equivalent to maintaining hbw [Xk, C] for 
all w ∈ W and C . In case b[�k] is required, for the multi-object case Eq. (A.12) becomes:

b[�k] ≈ 1

|W |
∑

w

δ(�k = �k,w); (A.21)

Similarly. In case P (Xk|I1:k,Hg
k , D) is required, for the multi-object case Eq. (A.13) becomes:

P (Xk|I1:k,Hg
k , D) ≈ 1

|W | .
∑

w

∑
C

hbw [Xk, C]. (A.22)

A.3. Multi-Hybrid: computation complexity analysis

With m candidate classes and n objects, the number of possible class realizations per �k,w is mn , as C considers all 
possible class realizations of all objects observed thus far, making C combinatorial in nature. Inference over continuous 
states (k camera poses and n object poses), i.e. the conditional belief P (Xk|C, lγ 1:k,H

g
k ), can be efficiently done using, 

e.g. the state of the art iSAM2 approach [32], with a computational complexity of O ((k + n)1.5), and at worst O ((k + n)3)

for loop closures. To compute an individual λk particle, we must account for the attached P (Xk|C, lγ 1:k,H
g
k ), and thus the 

worst-case computational complexity is O (mn(k + n)3). Eventually MH maintains |W | particles, and therefore the overall 
time computational complexity for b[λk] inference is O (|W |mn(k + n)3) at worst without pruning.

The computational complexity can be further reduced by pruning e.g. low probability classes for individual particles, 
but as with any pruning, this can induce a problem where a certain realization gets “locked” in either probability 0 or 1, 
rendering the possibility of probability changing for the said realization impossible.

For memory complexity, we require the latest robot pose, the n poses, and m sized class probability vector for every 
object per λ particle. All in all, we must maintain O (nmn) random variables in memory per particle, and O (|W |nmn)

variables for b[λ]. This also can be reduced by e.g. pruning low probability class realizations or incremental inference 
methods.

A.4. Proof of Lemma 1

In this proof, the time index k and occasionally xrel
k from hc and �c are omitted to reduce clutter. We prove by con-

struction by writing the PDF of the classifier uncertainty model for the i-th element of lLs . The model for class i has an 
expectation hc=i(xrel) and a covariance matrix �c=i(xrel). Thus:

lLs
i = log

⎛
⎝ (2π)

m−1
2

√|�c=m|e− 1
2 ||lγ −hc=i ||2�c=i

(2π)
m−1

2
√|�c=i|e− 1

2 ||lγ −hc=m||2�c=m

⎞
⎠

= −1

2
log(|�c=i|) + 1

2
log(|�c=m|)

− 1

2
||lγ − hc=i||2�c=i

+ 1

2
||lγ − hc=m||2�c=m

.

(A.23)

Now, applying the condition �c=i(xrel) ≡ �c= j(xrel), and denoting both as �c we get the following expression:

lLs
i = lγ T �−1

c hc=i − 1

2
hT

c=i�
−1
c hc=i − lγ T �−1

c hc=m + 1

2
hT

c=m�−1
c hc=m. (A.24)

From the above equation, if lγ is a multi-variate Gaussian random variable, then lLs
i is a linear combination of Gaussian 

random variables, therefore Gaussian by itself. This is valid for every i ∈ [1, m − 1].
In general, the classifier model covariance functions may not be equivalent. Therefore, Eq. (A.23) includes a quadratic ex-

pression of lγ , making lLs
i a mixture of Gaussian and Generalized Chi distributions. To counter this, the models’ covariances 

must be “close” to each other to approximately describe lLs
i as a Gaussian. If lLs is assumed Gaussian via moment match-

ing or other methods, it will only approximate the true distribution of lLs with the accuracy dependent on the “distance” 
between �c=i(xrel) and �c= j(xrel) for all i, j ∈ [1, m]. This distance can be represented by, for example, Frobenius Norm.
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Remark: The Frobenius norm can be inserted into the loss function while training the viewpoint-dependent classifier 
uncertainty models (17), thereby enforcing sufficiently close covariance functions between different models such that the 
approach presented in this section can be used. Our implementation utilizes this concept, as explained in Sec. 5.3.1.

A.5. Joint Lambda Pose computational complexity analysis and discussion

MH maintains �k , a posterior joint probability vector for all class realizations, with mnk categories as seen in Sec. 3.2.2. 
Thus �k grows exponentially with the number of objects observed, and considering that the inference is done for |W | times, 
each w with its own �k , MH is intractable unless pruning methods are applied. The overall time computational complexity 
for b[λk] inference is O (|W |mn(k + n)3) at worst without pruning, see Appendix A.3. for detailed analysis.

On the other hand, JLP maintains ¯lλk which essentially maintains a separate lλk per object, resulting in a size of 
(m − 1) · nk , which grows linearly with the number of objects, and results in better scaling. Moreover, the inference is done 
only once, as the set W only plays a role in classifier output γ .

Consider again, for example, the scenario with two objects and three candidate classes, �k is a probability vector with 
9 categories. On the other hand, ¯lλk = {lλo

k, lλ
o′
k } where lλo

k and lλo′
k , each, is a vector with two elements as they are the 

logit transformation of λo
k and λo′

k , respectively, totaling in 4 elements for ¯lλk . JLP has a single continuous belief with at 
most k pose states, and n object pose states. In addition, each object has lλ with m − 1 variables. Consider pose states with 
d variables each; at worst the total number of variables in JLP is dk + dn + n · (m − 1). In total, the computational time 
complexity is O  

(
(dk + dn + nm)3

)
at worst. Compared to MH, JLP scales significantly better with the number of objects.

We can compare Fig. 5 and Fig. 6b to illustrate the difference between MH and JLP inference. Those figures present a 
scenario with two objects and two candidate classes. Fig. 5 presents the factor graphs for a specific w . Therefore in this case 
we have to maintain 4|W | factor graphs. On the other hand, with JLP we have to maintain a single one that also contains 
additional lλ nodes. As we can see, the advantage of the JLP approach compared to the MH approach is that it does not 
require maintaining multiple hybrid beliefs. It maintains a single continuous belief that encompasses all poses and object 
classes while reasoning about classifier epistemic uncertainty, allowing a rich, viewpoint-dependent representation of object 
class probabilities.

The main disadvantage of this approach is the requirement of Lemma 1 to hold for accuracy. While the requirement can 
be offset by enforcing additional constraints on the training of classifier uncertainty models, using the resulting models will 
render JLP as an approximation compared to MH. Another potential drawback is that JLP forces λ to be LG distributed, 
which results in slower entropy computation (see Appendix A.9 for details). Despite that, the advantage in computational 
efficiency of JLP is significant enough to offset slower entropy computation relative to MH, thus practically significantly 
more feasible.

A.6. Proof of Lemma 2

The reverse logit transformation from lλ to λ is given by:

λ =
[

elλ1

1 +∑m−1
i=1 elλi

, ...,
elλm−1

1 +∑m−1
i=1 elλi

,
e1

1 +∑m−1
i=1 elλi

]T

. (A.25)

Thus, λ is LG distributed, and the probability density function is given as:

P (λ) = 1√
2π |�| · 1∏m

i=1 λi
· e− 1

2 ||lλ−μ||2�, (A.26)

with μ ∈Rm−1 and � ∈R(m−1)×(m−1) being the LG parameters. The term 1∏m
i=1 λi is the determinant of the transformation 

Jacobian and is denoted as | J (λ)|. Thus we write P (λ) as:

P (λ) = P (lλ)| J (λ)|, (A.27)

with P (lλ) �P (lλ) =P (lλ)(μ, �), and write H(λ) as:

H(λ) = −
∫
λ

P (λ) · logP (λ)dλ (A.28)

Then, we transform the integral variable back to lλ, as we have a closed form expression for H(lλ). As | J (λ)| is the trans-
formation Jacobian, | J (λ)|dλ = dlλ. From there we can write the integral in Eq. (A.28) as a function of lλ:
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H(λ) = −
∫
λ

P (lλ) · | J (λ)| · log(P (lλ) · | J (λ)|)dλ =

−
∫
lλ

P (lλ) · log(P (lλ) · | J (λ)|)dy =

−
∫
lλ

P (lλ) · log(P (lλ))dlλ −
∫
lλ

P (lλ) · log(| J (λ)|)dlλ =

H(lλ) −
∫
lλ

P (lλ) · log(| J (λ)|)dlλ.

(A.29)

The term 
∫

lλP (lλ) · log(| J (λ)|)dlλ is positive, as P (lλ) is always positive and J (λ) > 1, therefore H(λ) < H(lλ). Next, we 
describe log(| J (λ)|) in as a function of lλ:

log | J (λ)| = log

(
1∏m

i=1 λi

)
= −

m−1∑
i=1

logλi − logλm =

−
m−1∑
i=1

⎡
⎣log(elλi

) + log

⎛
⎝1 +

m−1∑
j=1

elλ j

⎞
⎠
⎤
⎦

− log(1) + log

⎛
⎝1 +

m−1∑
j=1

elλ j

⎞
⎠=

−
m−1∑
i=1

lλi + m · log

⎛
⎝1 +

m−1∑
j=1

elλ j

⎞
⎠ .

(A.30)

Now we plug the above expression for log | J (λ)| into Eq. (A.29) and express H(λ) as a function of lλ:

H(λ) =H(lλ)

+
∫
lλ

P (lλ) ·
⎡
⎣m−1∑

i=1

lλi − m · log

⎛
⎝1 +

m−1∑
j=1

elλ j

⎞
⎠
⎤
⎦dlλ.

(A.31)

As 
∫

lλP (lλ)lλidlλ =E[lλi], we can simplify the above equation into the form shown in Lemma 2:

H(λ) = H(lλ) +
m−1∑
i=1

E(lλi) − m

∫
lλ

log

⎛
⎝1 +

m−1∑
j=1

elλ j

⎞
⎠ · P (lλ)dlλ. (A.32)

A.7. Proof of Lemma 3

A.7.1. Upper bound

Let us look at the integral in Eq. (A.32). The term log
(

1 +∑m−1
j=1 elλ j

)
can be bounded from below by:

log

⎛
⎝1 +

m−1∑
j=1

elλ j

⎞
⎠≥ log(max

i
{1, elλi }) = max

i
{0, lλi}. (A.33)

Substituting the above equation to Eq. (A.32) yields the following inequality:

H(λ) ≤ H(lλ) +
m−1∑
i=1

E(lλi) − m

∫
lλ

max
i

{0, lλi} · P (lλ)dlλ. (A.34)

The integral term is similar to the expectation definition for lλi , except that it considers only positive lλi , making the 
resulting value from the integral larger than E(lλi). For the next step, we consider the case where there is at least a single 
E[lλi] ≥ 0, and the case where for all i, E[lλi] < 0. Considering both cases we can write:
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{∫
lλ maxi{0, lλi} · P (lλ)dlλ ≥ 0 E(lλi) < 0 : ∀i∫
lλ maxi{0, lλi} · P (lλ)dlλ ≥ maxE(lλi) ∃E(lλi) ≥ 0.

Considering both cases:∫
lλ

max
i

{0, lλi} · P (lλ)dlλ ≥ max{0,Elλi}. (A.35)

Finally, we can substitute the above expression into Eq. (A.34) and get the expression in Lemma 3:

H(λ) ≤ H(lλ) +
m−1∑
i=1

E(lλi) − m max{0,E(lλi)}. (A.36)

A.7.2. Lower bound
Let us look again at the integral in Eq. (A.32). This time, the term log

(
1 +∑m−1

j=1 elλ j
)

can be bounded from above by:

log

⎛
⎝1 +

m−1∑
j=1

elλ j

⎞
⎠≤ log(max

i
{m,melλi }) = max

i
{0, lλi} + log(m). (A.37)

Now, we substitute the above inequality into Eq. (A.32), and we get the following expression:

H(λ) ≤ H(lλ) +
m−1∑
i=1

E(lλi) − m log(m) − m

∫
lλ

max
i

{0, lλi} · P (lλ)dlλ. (A.38)

This time we look for an upper bound for 
∫

lλ maxi{0, lλi} ·P (lλ)dlλ. Let us consider that:

∞∫
0

lλi

√
2π

e
− (lλi )2

2�ii dlλi =
√

�ii

2π
≤
√

�max
ii

2π
(A.39)

where �ii is the element (i, i) in the diagonal of matrix �, and �max
ii is the largest element of �. Then we can bound ∫

lλ maxi{0, lλi} ·P (lλ)dlλ by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
lλ maxi{0, lλi} · P (lλ)dlλ ≤

√
�max

ii
2π E(lλi) < 0 : ∀i∫

lλ

max
i

{0, lλi} · P (lλ)dlλ ≤

≤ maxE(lλi) +
√

�max
ii

2π

∃E(lλi) ≥ 0.

From the above equation, we reach:

∫
lλ

max
i

{0, lλi} · P (lλ)dlλ ≤ max
i

{0,E(lλi)} +
√

�max
ii

2π
, (A.40)

and by substituting into Eq. (A.32), we reach the lower bound presented in Lemma 3:

H(λ) ≥H(lλ) +
m−1∑
i=1

E(lγ i)

− m · max
i

{0,E(lγ i)} − m log m −
√

σmax
ii

2π
.

(A.41)
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Fig. A.28. Entropy of a two-dimensional Dirichlet distribution as a function of the log of parameters. Blue to yellow colors correspond to low to high entropy 
values.

A.8. Dirichlet distribution for b[λ]

An alternative to LG for b[λ] (Sec. 4.5) is the Dirichlet distribution, which is supported only by MH, as illustrated in Fig. 7. 
This distribution is a natural representation of distribution over probability vectors in which samples necessarily satisfy all 
the conditions of probability vectors presented in Sec. 2.2.

The Dirichlet distribution is parametrized by a parameter set α � {α1, ..., αm}, and the PDF is:

Dir(λ;α) = 1

B(α)

m∏
i=1

(λi)αi−1, (A.42)

with λi being the i-th class probability. B(α) is a normalization constant defined as

B(α) �
∏m

i=1 �(αi)

� (α0)
, (A.43)

where �(·) is the Gamma function and α0 �
∑m

i=1 αi for shorthand.
Recall that in MH b[λ] is maintained via maintaining each λw ∈ {λw}w∈W as in Eq. (A.6) and Eq. (A.16). Dirichlet’s 

distribution parameters, given {λ}, can be estimated in an iterative manner as follows [39]:

ψ(αnew
i ) = ψ(

m∑
j=1

αold
j ) + log λ̂i, (A.44)

where log λ̂i � 1
|W | log λi

w , and ψ(·) is the digamma function. The following expression shows the entropy of the Dirichlet 
distribution given α parameters:

H(λ) = log B(a) + (α0 − m)ψ(α0) −
m∑

i=1

(αi − 1)ψ(αi). (A.45)

The term B(α) needs to be numerically computed. While it is not an analytical solution, the computation is significantly 
faster than computing differential entropy using samples.

This entropy takes the maximal value when αi = 1, ∀i, and at the “edges” of the distribution, where a single parameter 
is much larger than the others, the entropy is the lowest. If one of the parameters is zero, then H(λ) = −∞, as ψ(0) = −∞. 
This behavior of entropy can be observed in Fig. A.28 which shows an example of a two-dimensional distribution.

The scenarios presented in Fig. 2 correspond to the following cases in Fig. A.28:

• The unknown-unknown case (Fig. 2a) corresponds to α1 and α2 that are close to 1, i.e. the central part of Fig. A.28.
• The known-unknown case (Fig. 2b) corresponds to α’s with large and similar values, i.e. the upper right part of Fig. A.28.
• The known-known case (Fig. 2c) corresponds to the case where one α is significantly larger than the other and larger 

than 1, i.e. left or bottom areas of Fig. A.28.
• The uncertain classification case (Fig. 2d) corresponds to the case where one α is not significantly larger than the other, 

i.e. the areas between the high and low entropy in Fig. A.28.
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Fig. A.29. This figure presents a comparison between Dirichlet and Logistical Gaussian (denoted LG) in terms of computational time, entropy, and log-
likelihood values. (a) presents a computational time comparison between Dirichlet and LG for inference as a function of probability vector dimension. 
Similarly, (b) presents a computational time for entropy computation, both for numerical and upper bound. (c) presents a value comparison between the 
different entropy computations. Note that in (b) and (c), the plots are given the parameters calculated for (a). (d) presents an entropy value comparison 
between distributions with different expectations with a fixed covariance. Similarly, (e) presents an entropy value comparison between distributions with 
different covariance values with a fixed expectation.

A.9. Comparison between Dirichlet and Logistic Gaussian

When considering the reward H(λ) we have to consider two steps:

1. Computation of b[λ] parameters. With MH we maintain separately λw ∈ {λw}w∈W and subsequently describe b[λ] using 
{{λw}w∈W }. To compute H(λ), we must assume a distribution for b[λ] and infer its parameters. JLP on the other hand 
limits b[λ] to be LG distributed.

2. Calculation of H(λ) to use as a reward function for planning, either via numerical computation or by using bounds.

This discussion is relevant for H(λ) computation for MH, as in JLP λ is LG distributed by definition.
Parameter inference for Dirichlet is faster than for LG although the process is numeric. On the other hand, LG is more 

expressive. For m classes, Dirichlet distribution has m parameters, while LG has m − 1 parameters for E(lλ), and m·(m−1)
2

parameters for �(lλ), totaling in (1 + m
2 ) · (m − 1) parameters.

LG does not have an analytical solution for computing entropy, and its numeric computation is slower than Dirichlet’s. On 
the other hand, computing bounds of entropy for LG is comparable in terms of computational effort to computing Dirichlet 
entropy. One must note that while Dirichlet is less computationally expensive than LG when MH with Dirichlet and JLP are 
compared, JLP is still computationally much more efficient.

Fig. A.29 compares the two distributions in terms of computational effort and value of the entropy. In all figures, the 
x-axis is the number of candidate classes, and for each, a dataset of 1000 class probability vectors was sampled. Fig. A.29a 
presents the measured time of parameter computation, clearly showing an advantage for Dirichlet distribution for high 
dimensional probability vectors despite the parameter computation process for Dirichlet distribution containing functions 
that must be numerically computed. Fig. A.29b presents the computational time of the entropy, for numerical computation 
for both LG and Dirichlet, and the bounds for LG (computation time is identical both for upper and lower bounds; thus 
only the upper bound is shown). Here entropy computation for Dirichlet holds a significant advantage over the numerical 
computation of entropy for LG, and the bound computation time is comparable to Dirichlet. Fig. A.29c presents entropy 
values for Dirichlet, numerical LG, lower and upper bounds for LG. The upper bound tends to be close to the numerical 
solution for fewer candidate classes. In addition, entropy for Dirichlet distribution tends to be higher. In Fig. A.29d the 
number of candidate classes is fixed to two, i.e. the dimension of lλ is R1. The covariance �(lλ) is fixed at 3, and E(lλ)

goes from 0 to 20. In this figure, the entropy value monotonically decreases when increasing E(lλ). The lower bound is 
tighter between the two bounds as E(lλ) increases. In Fig. A.29e E(lλ) is fixed instead at E(lλ) = 3 and �(lλ) varies 
between 0 and 10. We can see that the entropy value increases with the increase in �(lλ), but the bigger effect is for LG 
compared to the Dirichlet distribution. The upper bound is tighter at lower E(lλ) values, while the lower bound is tighter 
for higher values.

One may ask: which distribution should be used? As mentioned previously, JLP is limited to LG. For MH, the trade-off 
is between distribution expressiveness and computational effort. While Logistical Gaussian is more expressive because of 
a larger number of parameters, the computation effort is significantly higher than for Dirichlet distribution. Also, Dirichlet 
distribution, unlike the Logistical Gaussian, can manage a very small number of probability vector samples.

A.10. Inference: Joint Lambda Pose assumption

One may consider the ramifications of using JLP with models that do not satisfy Lemma 1. The most straightforward 
result is that MH and JLP results do not coincide with each other, and that may result in either erroneous or overconfident 
classification (i.e. large values of E(lλ) and/or too small values of �(lλ)).

This time, the classifier model uses the following parameters: for expectation:
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Fig. A.30. A visualization of the classifier uncertainty model used in Appendix A.10. We present the value of P (γ c=1|c,ψ) as a function of relative orienta-
tion ψ and γ c=1 value, for classes c = 1 and c = 2 in (a) and (b) respectively. Blue and yellow colors correspond to low and high PDF values respectively.

Fig. A.31. An approximate PDF value graph for JLP assumption where ψ = 0◦ . The yellow area represents the distribution of lγ k , the red area represents 
Ls

k PDF when JLP assumption is used, and the blue area represents the real PDF of Ls
k .

hc=1(xrel) = 0.3 · cos(2 · ψ) + 0.3

hc=2(xrel) = −0.3 · cos(2 · ψ) − 0.3,
(A.46)

and the following parameters for root-information:

Rc=1(xrel) = 1.4 + 0.6 · cos(ψ)

Rc=2(xrel) = 1.4 − 0.6 · cos(ψ).
(A.47)

The goal is creating opposing �c(ψ) for the two classes, such that Lemma 1 does not hold and may result in inaccurate 
classification while using JLP. Fig. A.30 presents a visualization of the model. Specifically, the problematic areas are around 
ψ = 0◦ where the models actually predict that when γ c=1 > 0.8 the likelihood is actually higher for c = 2, and vice-versa 
when ψ = 180◦ when γ c=2 > 0.8 predicts a higher likelihood for c = 1.

Fig. A.31 presents the PDF values of lγ k , and Ls
k with and without JLP assumption at ψ = 0◦ . Here lγ k ∼ N (0.6, 0.25), 

coinciding with the classifier uncertainty model parameters of class c = 1. In this figure, the difference between the ap-
proximation and real Ls

k is evident, with the approximated Ls
k risking a larger chance of incorrect classification as the area 

below 0 is larger than that for the real Ls
k .

In this scenario, we use the same setting we used at Sec. 5.2.1, 5.2.2, and 5.2.3, and compare the MSDE scores in Fig. A.32. 
For Fig. A.32a and A.32b we use the scenario from Sec. 5.2.2. In Fig. A.32a MSDE results for MH with 100 hybrid beliefs are 
shown as the most accurate, where objects 1 and 2 have more accurate classification than the rest. Fig. A.32b presents 
MSDE results for JLP, where we see significantly less accurate results. Finally, we perform a statistical study with 5 random 
object locations of 10 runs as in Sec. 5.2.3, comparing between MH with 10 hybrid beliefs, JLP, and WEO, and see that 
statistically the difference between MH and JLP is not large even without Lemma 1 holding, as opposed to the specific run 
from Figs. A.32a and A.32b.

A.10.1. Planning: single object
We simulate a planning scenario of a single object using EUS-BSP. Relative to the object, there is an area with low 

epistemic uncertainty and high separation between classes, represented as a blue cone in Fig. A.33a. We use the same 
settings as in Sec. 5.2.4, with the same reward functions R1 and R2. The trajectory length is 20 time steps, at each time 
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Fig. A.32. (a) shows MSDE results to time step per object for MH with 100 hybrid beliefs which we consider most accurate, while (b) shows JLP results 
for MSDE. (c) is a statistical study comparing average MSDE over all objects for WEU in green, JLP in blue, and MH in red. The line corresponds to MSDE 
expectation and the colored area to one σ range.

Fig. A.33. (a) is the ground truth of the scenario in Sec. 5.2.4. The red dot represents the robot’s starting point. The green dot represents the object’s 
location with its label. The green line represents the object orientation, with the yellow line presenting 90◦ of that orientation. The blue cones represent 
the observation angles in which the objects are classified most accurately with the lowest epistemic uncertainty. (b) presents the five motion primitives in 
the scenario. The red dot represents the origin point, the black arrows the possible actions, and the red cones represent the field of view after the action.

Fig. A.34. This figure presents the ground truth of planned trajectories. (a) for planning over R1 for MH-BSP (purple) and JLP-BSP (black). (b) for 
planning over R2 for MH-BSP (red) and JLP-BSP (blue). (c) for WEU (green). All are for the multiple object scenario. The object is shown in a green dot, 
with the green line representing the object orientation, with the yellow line presenting 90◦ of that orientation. The blue cones represent the areas where 
observations have the lowest epistemic uncertainty.

step, trajectories are randomly sampled for a horizon L = 10. This section presents results for a single object. We analyze 
the differences in performance and the trajectories over R1 and R2 for MH-BSP and JLP-BSP, and compare them to the 
baseline WEU.

Fig. A.34 presents the ground truth trajectories calculated by planning over R1 and R2 both for JLP-BSP and MH-BSP, 
and planning for R2 for WEU. The epistemic-uncertainty-aware methods seek to pass near the blue-cone area for more 
accurate classification with lower epistemic uncertainty. Methods that plan over R1 tend to pass through the cone.

The behavior presented in Fig. A.34 is reflected in Fig. A.35 where the values of H(λk) are shown as a function of 
time during inference after the corresponding action has been performed. The values of H(λk) correlate to the epistemic 
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Fig. A.35. H(λ20) values for MH (a) and JLP (b) as a function of the time step. In (a), the purple and red plots represent R1 and R2 respectively, and 
similarly in (b), the black and blue plots represent R1 and R2 respectively.

Fig. A.36. MSDE values as a function of time step for MH (a) and JLP (b), compared to WEU. In (a), the purple and red plots represent R1 and R2 respectively, 
and similarly in (b), the black and blue plots represent R1 and R2 respectively. WEU is represented in both figure with a green plot.

Fig. A.37. Probability of the object being class c = 2 (ground truth) for our methods at time k = 20. We compare planning over R1 and R2, JLP-BSP,
MH-BSP, and WEU. Purple and red for R1 and R2 respectively using MH-BSP, black and blue for using for R1 and R2 respectively using JLP-BSP, and 
green for WEU. The one σ deviation is represented via the black line at each relevant bar and represents the posterior model uncertainty.

uncertainty. Evidently, planning over R1 yields lower epistemic uncertainty for both MH-BSP (Fig. A.35a) and JLP-BSP
(Fig. A.35b).

Fig. A.36 presents MSDE results for all the methods, split into results for MH in Fig. A.36a and for JLP in Fig. A.36b, both 
showing a comparison to WEU in the green plot. WEU performs significantly worse in this setting than all the other methods. 
When comparing planning over R1 and R2, the first presents better results for both JLP and MH.

Fig. A.37 presents the results at time k = 20 for all methods as a bar graph with error margins for the ground truth 
class. We can compare the entropy from Fig. A.34 and MSDE from Fig. A.36 with the bar graphs, with lower entropy values 
resulting in smaller posterior epistemic uncertainty. Similarly, lower MSDE values result in a more “certain” result in the bar 
graph, as we can see for methods that plan over R1.
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Fig. A.38. This figure compares run-time per inference step between realizations of MH with 5 hybrid beliefs in red, JLP in black, and WEU in green.

In Fig. A.38 we perform computation time comparisons between WEU, MH-BSP, and JLP-BSP. The significant advantage 
in computational time for JLP-BSP is evident against MH-BSP, and while WEU is lower still, JLP-BSP also opens the 
possibility of reasoning about epistemic uncertainty.
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