
Incremental Sparse GP Regression for
Continuous-time Trajectory Estimation & Mapping

Xinyan Yan
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

xinyan.yan@cc.gatech.edu

Vadim Indelman
Faculty of Aerospace Engineering

Technion - Israel Institute of Technology
Haifa 32000, Israel

vadim.indelman@technion.ac.il

Byron Boots
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

bboots@cc.gatech.edu

Abstract
Recent work has investigated the problem of continuous-time trajectory estimation
and mapping for mobile robots by formulating the problem as sparse Gaussian
process regression. Gaussian processes provide a continuous-time representation
of the robot trajectory, which elegantly handles asynchronous and sparse mea-
surements, and allows the robot to query the trajectory to recover it’s estimated
position at any time of interest. One of the major drawbacks of this approach
is that Gaussian process regression formulates continuous-time trajectory estima-
tion as a batch estimation problem. In this work, we provide the critical extensions
necessary to transform this existing batch approach into an extremely efficient in-
cremental approach. In particular, we are able to vastly speed up the solution
time through efficient variable reordering and incremental sparse updates, which
we believe will greatly increase the practicality of Gaussian process methods for
robot mapping and localization. Finally, we demonstrate the approach and its
advantages on both synthetic and real datasets.

1 Introduction & Related Work
The problem of simultaneously recovering the location of a robot and a map of its environment from
sensor readings is a fundamental challenge in robotics, persisting as a core research topic for several
decades. Well-known approaches to this problem, such as smoothing and mapping (SAM) [1], have
focused on regression-based methods that exploit the sparse structure of the problem to efficiently
compute a solution. The main weakness of the original SAM algorithm was that it was a batch
method: all of the data must be collected before a solution can be found. For a robot traversing an
environment, the inability to update an estimate of its trajectory online is a significant drawback.
In response to this weakness, Kaess et al. [2, 3] developed a critical extension to the batch SAM
algorithm, called incremental smoothing and mapping (iSAM 2.0), that overcomes this problem by
incrementally computing a solution. The approach employs an efficient data structure called a Bayes
tree [4] to perform incremental variable reordering and just-in-time relinearization. iSAM 2.0 and its
extensions are widely considered to be state-of-the-art in robot trajectory estimation and mapping.

The majority of previous approaches to trajectory estimation and mapping have formulated the prob-
lem in discrete time. However, in the real world, the trajectory of a robot is continuous and sensor
measurements are often sampled asynchronously. A continuous-time formulation of the SAM prob-
lem where the robot trajectory is a function x(t) that maps any time t to a robot pose is more
appropriate for this problem. The problem of estimating this function along with landmark loca-

1

tions has been dubbed simultaneous trajectory estimation and mapping (STEAM). Tong et al. [5,6]
proposed a Gaussian process (GP) regression approach to solving the STEAM problem. While their
approach was able to accurately model and interpolate asynchronous data to recover a trajectory and
landmark estimate, it suffered from significant computational challenges: naive Gaussian process
approaches to regression have notoriously high space and time complexity. Additionally, Tong et
al.’s approach is a batch method, so updating the solution necessitates saving all of the data and
completely resolving the problem.

In this work, we provide the critical extensions necessary to transform the existing Gaussian process-
based approach to solving the STEAM problem into an extremely efficient incremental approach.
Our algorithm elegantly combines the benefits of Gaussian processes and iSAM 2.0. Like the GP
regression approaches to STEAM, our approach can model continuous trajectories and handle asyn-
chronous measurements, and, like iSAM 2.0, our approach uses a Bayes tree to efficiently calculate a
maximum a posteriori (MAP) estimate of the GP trajectory while performing incremental factoriza-
tion, variable reordering, and just-in-time relinearization. The result is an online GP-based solution
to the STEAM problem that remains computationally efficient while scaling up to extremely large
datasets.

2 Batch Trajectory Estimation & Mapping as Gaussian Process Regression
Following Tong et al. [5] and Barfoot et al. [6], we take a Gaussian process regression approach to
state estimation, where we represent robot trajectories x as functions of time t.

x(t) ∼ GP(µ(t),K(t, t′)) t0 < t, t′ (1)
yi = hi(θi) + ni, ni ∼ N (0,Ri), i = 1, 2, ..., N (2)

Here, x(t) is the continuous-time trajectory of the robot through state space, represented by a Gaus-
sian process with mean µ(t) and covariance K(t, t′). Measurements yi are nonlinear functions of
the set of related variables θi plus some Gaussian noise ni. The related variables for a range mea-
surement are the robot state x(t) at the measurement time and the associated landmark location `j .
The total number of measurements is N . The landmarks ` = [`1 `2 . . . `M] are assumed
to be sampled from a joint Gaussian distribution ` ∼ N (d,W) with mean d and covariance W .
The prior distribution of the combined state θ that consists of robot poses at measurement times and
landmarks is, therefore, a joint Gaussian distribution:

θ ∼ N (η,P), η = [µ d]ᵀ, P =

[
K

W

]
(3)

To solve the STEAM problem, we compute the maximum a posteriori (MAP) estimate of the com-
bined state conditioned on measurements:

θ∗ = argmax
θ

p(θ|y) = argmax
θ

p(θ,y)

= argmax
θ

p(θ)p(y|θ) = argmin
θ

(− log p(θ)− log p(y|θ))

= argmin
θ

(
(θ − η)ᵀP−1(θ − η) + (y − h(θ))ᵀR−1(y − h(θ))

) (4)

where h(θ) andR are the mean and covariance of the measurements, respectively:

h(θ) = [h1(θ1) h2(θ2) . . . hN (θN)]ᵀ, R = diag(R1,R2, . . . ,RN)

If measurement functions hi(·) are nonlinear, nonlinear optimization methods are required. Exam-
ples include Gauss-Newton or Levenberg-Marquardt [7], which solve a sequence of approximated
linearized problems to approach the minimum iteratively. A linearization of a measurement function
at current state estimate θ̄i can be accomplished by a first-order Taylor expansion:

hi
(
θ̄i + δθi

)
≈ hi(θ̄i) +

∂hi
∂θi

∣∣∣∣
θ̄i

δθi (5)

Combining with Eq. 4, the optimal increment δθ∗ at the current combine state estimate θ̄ is

δθ∗=argmin
δθ

(
(θ̄+δθ−η)ᵀP−1(θ̄+δθ−η)+ (y−h(θ̄)−Hδθ)ᵀR−1(y−h(θ̄)−Hδθ)

)
(6)

2

WhereH is the measurement Jacobian:

H = diag(H1,H2, . . . ,HN), Hi =
∂hi
∂θi

∣∣∣∣
θ̄i

To solve Eq. 6, we take the derivative with respect to δθ, and set it to zero, which gives us δθ∗
embedded in a set of linear equations

(P−1 +HᵀR−1H)︸ ︷︷ ︸
I

δθ∗ = HᵀR−1(y − h̄)−P−1(θ̄ − η)︸ ︷︷ ︸
b

(7)

The positive definite matrix P−1 + HᵀR−1H is the a posteriori information matrix, which we
label I . To solve this set of linear equations for δθ∗, we don’t actually have to calculate the inverse
I−1. Instead, factorization-based methods can be leveraged for a fast, numerically stable solution.
For example, δθ∗ can be found by first performing a Cholesky factorization LLᵀ = I , and then
solving Ld = b and Lᵀδθ∗ = d by back substitution. If I is dense, the time complexity of a
Cholesky factorization and back substitution are O(N3) and O(N2) respectively. However, if I
has sparse structure, then the solution can be found much faster. For example, for a banded matrix,
the computation time is O(N) instead of O(N3). Fortunately, we can guarantee sparsity for the
STEAM problem (see Section 2.1 below). At each iteration we update the state θ̄ ← θ̄ + δθ∗ and
repeat the process until convergence.

2.1 Sparse Gaussian Process Regression

The efficiency of the Gaussian Process Gauss-Newton algorithm presented in Section 2 is heavily
dependent on the choice of kernel. It is well-known that if the information matrix I is sparse,
then it is possible to very efficiently compute the solution to Eq. 7 [2]. For the batch GP trajectory
estimation and mapping problem, Barfoot et al. [6] suggest a kernel matrix with a sparse inverse that
is well-suited to the simultaneous trajectory estimation and mapping problem. In particular, Barfoot
et al. show that K−1 is exactly block-tridiagonal when the GP is assumed to be generated by linear,
time-varying (LTV) stochastic differential equation (SDE) which we describe here:

ẋ(t) = A(t)x(t) + v(t) + F (t)w(t), w(t) ∼ GP(0, Qcδ(t− t′)) t0 < t, t′ (8)

where x(t) is state, v(t) is exogenous input,w(t) is process noise, and F (t) is time-varying system
matrix. The process noise w(t) is modeled by a Gaussian process, and δ(·) is the Dirac delta
function. (See [6] for details). We consider a specific case of this model in the experimental results in
Section 4.1. Assuming the GP is generated by Eq. 8, and the measurements are range and odometry
measurements, the sparse information matrix becomes

I =

[
Ixx Ix`
Iᵀ
x` I``

]
(9)

where Ixx is block-tridiagonal and I`` is block-diagonal. Ix`’s density depends on the frequency
of landmark measurements and how they are carried out.

3 Bayes Tree for Fast Incremental Updates to Sparse GP Regression
The iSAM 2.0 algorithm proposed by Kaess et al. [3] was designed to efficiently solve a nonlinear
discrete-time trajectory estimation problem. It is an incremental and real-time approach that works
by directly operating on the factor graph representation of the SAM problem. The core technology
behind this approach is the Bayes tree data structure which allows for incremental variable reordering
and fluid relinearization [4]. We apply the same data structure to sparse Gaussian process regression
in the context of the STEAM problem, thereby eliminating the need for periodic batch computation.

To understand how the Bayes tree can be incorporated into the problem, it is helpful to understand
the how the GP estimation problem can be represented as a factor graph. A factor graph is a bipartite
graph G = (F ,θ, E), where F is the set of factor nodes that encodes all probabilistic constraints
on variables, including range measurements, odometry measurements or smoothing priors, θ is the
set of variable nodes to estimate, and E is the set of edges in the graph. Based on the variable
dependence captured in the factor graph, the joint probability of variables to estimate is factored as

f(θ) =
∏
i

fi(θi) (10)

3

where fi ∈ F is one of the factors, and θi is the set of variables directly connected to fi. Then the
estimation problem is to find θ∗ that maximizes Eq. 10. As stated in Section 2.1, Barfoot et al. prove
that when GPs are generated by LTV SDE, K−1 is block-tridiagonal [6]. This leads to an interesting
interpretation of the states as Markovian, even though we are using a continuous-time prior. In other
words, the Gaussian process smoothing factors only connect consecutive pairs of states, and they
result from the underlying continuous-time process model.

The factor graph can be converted to a Bayes net by a bipartite elimination game [8]. This proce-
dure is equivalent to converting Eq. 6 to least-squares form and computing the square-root infor-
mation matrix by Householder reflections or Gram-Schmidt orthogonalization. In order to facilitate
marginalization and optimization, a Bayes-tree is constructed from the Bayes net [4]. The Bayes
tree groups several variables together based on their dependence, with each node corresponding to
a clique in the net. From a linear algebra perspective, the Bayes tree captures the structure of the
Cholesky factor L of I , and the sequence of back substitutions that can be performed. When we add
a new measurement, add a prior for new variables, or relinearize a previous measurement, L will
change accordingly. Importantly, all these modifications to the factor graph only have local effects
on L. Exploiting this observation is the foundation for efficient incremental updates.

Since the nodes of Bayes tree encode conditional probability distributions which directly correspond
to rows in L, the structure of the tree can be leveraged to efficiently update the factor L. The
nodes containing the variables that are involved in new factors or whose linear step is larger than
a predetermined threshold are identified.1 Only these nodes and their ascendants in the Bayes tree
are then updated. Note that when a sub-tree is updated, variables in the sub-tree are reordered by
constrained COLAMD [9] to heuristically maximize the locality of future updates. Last but not
least, δθ∗ is computed from tree root to leaves because of the information about the structure of
L encoded in the Bayes tree. This propagation stops when updates to the conditioning variables
are below a predetermined threshold. Algorithm 1 summarizes the incremental Gaussian process
regression leveraging the Bayes tree data structure in detail.

Algorithm 1 Updating sparse GP Regression by Bayes tree
while collecting data do

1. Get new measurement results, and identify new factors Fnew and related variables θrel =
⋃

θi,
fi ∈ Fnew

2. For each affected variable in θaff = θlin ∪ θrel, remove the corresponding clique and ascendants up
to the root of Bayes tree
3. Relinearize all factors required to recreate the removed part of the tree
4. Add cached marginal factors from orphaned sub-trees of removed cliques and create a factor graph
5. Eliminate the factor graph by a new variable ordering, create a Bayes tree, and attach back orphaned
sub-trees
6. Partially update estimate from root to leaves and stop walking down a branch when the updates to
variables that the child clique is conditioned on are not significant enough
7. Collect variables involved in the measurement factors Flin where previous linearization point is far
from current estimate, θlin =

⋃
θi, fi ∈ Flin

end while

4 Experimental Results
4.1 Synthetic SLAM Exploration Task
The data consists of an exploration task with 1,500 process states x(ti) = [p(ti) ṗ(ti)]ᵀ,
p(ti) = [x(ti) y(ti) θ(ti)]ᵀ, with a contant time interval, 151 landmarks, and 1,500 range
and odometry measurements (Fig 1a). Each process state has one odometry and one range measure-
ment. The trajectory is generated from a white noise acceleration prior p̈(t) = w(t), i.e. constant
velocity prior.

ẋ(t) = Ax(t) + Fw(t) (11)
where

x(t) =

[
p(t)
ṗ(t)

]
, p(t) =

[
x(t)
y(t)
θ(t)

]
, A =

[
0 I
0 0

]
, F =

[
0
I

]
, w(t) ∼ GP(0,Qcδ(t− t′))

1The reader is referred to [3] for additional details regarding this just-in-time relinearization.

4

(a) True trajectory and landmarks (b) Estimated trajectory and landmarks

Figure 1: Solving the STEAM problem on a synthetic dataset. Ground truth (a) and combined state
estimate (b). In (a), the lines between trajectory points and landmarks indicate range measurements.
At each time step, the robot receives a noisy measurement of the distance between itself and a
random nearby landmark. (b) shows that the estimate is very close to the ground truth.

(a) Comparison of time spent on each time step (b) Comparison of accumulated time

Figure 2: Comparison of time spent on each time step and accumulated time for each of the three
approaches – periodic batch relinearization, periodic batch relinearization with variable reordering,
and the incremental Bayes tree-based approach. Because the number of landmarks, which is 151, is
not negligible compared to the number of process states, variable reordering dramatically improves
the performance. In all cases, a new iteration of the algorithm, i.e. an update to the combined
state estimate, is carried out when 5 new range measurements have accumulated. So in (a), the
computation time in many time steps is close to zero. Notice that the Bayes tree approach has
almost no increase in computation time when the size of problem grows.

Note that velocity ṗ(t) has to be included in process state to represent the motion in LTV SDE form,
which leads to Markovian states and block-tridiagonal inverse kernel matrix K−1. The odometry
and range measurements are specified in Eq. 12 and Eq. 13 respectively.

yio =

[
cos θ(ti−1) · (x(ti)− x(ti−1)) + sin θ(ti−1) · (y(ti)− y(ti−1))

θ(ti)− θ(ti−1)

]
+ no (12)

yir =

∥∥∥∥[x(ti)
y(ti)

]
− `ij

∥∥∥∥
2

+ nr (13)

where yio consists of robot-oriented distance and heading difference between ti and ti−1, and yir is
the distance between the robot and a specific landmark `ij at ti. The results are shown in Fig. 1b.
In Fig. 2, we compare the performance of the periodic relinearization approach, a naive periodic
relinearization with variable reordering approach, and the Bayes tree approach from Section 3.

4.2 Autonomous Lawnmower
In our second experiment, we applied all three approaches to a freely available range-only SLAM
dataset collected from an autonomous lawn-mowing robot [10]. The environment, including the

5

(a) True trajectory and landmarks (b) Estimated trajectory and landmarks

Figure 3: Solving the STEAM problem on a real dataset. Ground truth (a) and estimate (b) of “Plaza”
dataset. In (a), the lines between trajectory points and landmarks represent range measurements. The
range measurements are sparse, with approximately 11 time steps (and up to 500 steps) between
range readings for the worst landmark. (b) shows that ground truth and estimate are very close.

(a) Comparison of time spent on each time step (b) Comparison of accumulated time

Figure 4: Comparison of time spent on each time step and accumulated time. There are 4 landmarks,
which is extremely small relative to the number of process states, so no performance gain is observed
from variable reordering. However, in the Bayes tree-based approach, which is fully incremental,
the update of each iteration has very limited local effects and the computation time almost remains
the same even with a large number of process states. The gap around time step 5,000 in (a) is caused
by the vacancy of range measurements in that time period.

locations of the landmarks and the ground truth paths, are shown in Fig. 3a. While collecting the
dataset the robot travelled 1.9km, occupied 9,658 poses, and received 3,529 range measurements.
The path is a commonly used path pattern in lawn mowing applications. This dataset is very sparse,
with approximately 11 time steps (and up to 500 steps) between range readings for the worst land-
mark. Besides range measurements, the dataset also contains odometry measurements at each time
step. And all the measurements are considered in the same manner as in Section 4.1. The results
of our algorithm are shown in Fig. 3b and demonstrate that we are able to accurately estimate the
robot’s trajectory and map.

Performance of three approaches – periodic batch relinearization, periodic batch relinearization with
variable reordering, and incremental Bayes tree are compared in Fig. 4. In all cases, as in Section 4.1,
a new iteration, i.e. an update to the combined state estimate, is carried out when 5 new range
measurements have accumulated. In this dataset, the number of landmarks are 4, which is extremely
small relative to the number of process states, so there is no performance gain from reordering.
However, the Bayes tree-based approach dramatically outperforms the other two approaches. As the
problem size increases, there is negligible increase in computation time, even for close to 10,000
process states.

6

References

[1] Frank Dellaert and Michael Kaess. Square root sam: Simultaneous localization and mapping
via square root information smoothing. International Journal of Robotics Reasearch, 25:2006,
2006.

[2] M. Kaess, A. Ranganathan, and F. Dellaert. isam: Incremental smoothing and mapping.
Robotics, IEEE Transactions on, 24(6):1365–1378, Dec 2008.

[3] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J.J. Leonard, and F. Dellaert. iSAM2: Incremental
smoothing and mapping using the Bayes tree. Intl. J. of Robotics Research, IJRR, 31(2):217–
236, Feb 2012.

[4] Michael Kaess, Viorela Ila, Richard Roberts, and Frank Dellaert. The bayes tree: An algorith-
mic foundation for probabilistic robot mapping. In Algorithmic Foundations of Robotics IX,
pages 157–173. Springer, 2011.

[5] Chi Hay Tong, Paul Furgale, and Timothy D Barfoot. Gaussian process gauss–newton for
non-parametric simultaneous localization and mapping. The International Journal of Robotics
Research, 32(5):507–525, 2013.

[6] Tim Barfoot, Chi Hay Tong, and Simo Sarkka. Batch continuous-time trajectory estimation as
exactly sparse gaussian process regression. In Proceedings of Robotics: Science and Systems,
Berkeley, USA, July 2014.

[7] J. E. Dennis, Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations (Classics in Applied Mathematics, 16). Soc for Industrial & Applied
Math, 1996.

[8] Pinar Heggernes and Pontus Matstoms. Finding good column orderings for sparse qr factor-
ization. Technical report, In Second SIAM Conference on Sparse Matrices, 1996.

[9] Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond G. Ng. Algorithm 836: Co-
lamd, a column approximate minimum degree ordering algorithm. ACM Trans. Math. Softw.,
30(3):377–380, September 2004.

[10] Joseph Djugash. Geolocation with Range: Robustness, Efficiency and Scalability. PhD thesis,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, November 2010.

7

	Introduction & Related Work
	Batch Trajectory Estimation & Mapping as Gaussian Process Regression
	Sparse Gaussian Process Regression

	Bayes Tree for Fast Incremental Updates to Sparse GP Regression
	Experimental Results
	Synthetic SLAM Exploration Task
	Autonomous Lawnmower

