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The problem of simultaneously recovering the location of a robot and a map
of its environment from sensor readings is a fundamental challenge in
robotics. We want a continuous-time representation of the robot trajectory,
which elegantly handles asynchronous and sparse measurements, and an
efficient incremental approach to updating the estimate of the trajectory
and map.

We take a Gaussian process regression approach to state estimation as in Tong 
et al.1, where we represent robot trajectories 𝒙 as functions of time 𝑡.

Barfoot et al.2 proved that 𝓚−1 is exactly block-tridiagonal when the GP is
generated by linear, time-varying (LTV) stochastic differential equation (SDE):

 𝒙 𝑡 = 𝑨 𝑡 𝒙 𝑡 + 𝒗 𝑡 + 𝑭 𝑡 𝒘 𝑡 , 𝒘 𝑡 ~ 𝒢𝒫 𝟎,𝑸𝑐𝛿 𝑡 − 𝑡′
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We have introduced an incremental sparse Gaussian process regression algorithm that elegantly combines the
benefits of continuous-time Gaussian process-based approaches while simultaneously leveraging state-of-the-
art innovations from incremental discrete-time algorithms for smoothing and mapping.

This freely available range-only SLAM dataset is collected from an autonomous
lawn-mowing robot. The robot travelled 1.9km, occupied 9,658 poses, and
received 3,529 range measurements.

Figure 6. lawn-mowing robot 

5.2  Autonomous Lawnmower

The data consists of an exploration task with 1,500 poses, 151 landmarks, 1,499 odometry measurements 
and 1,500 range measurements.

5.1  Synthetic SLAM Exploration Task

We performed two experiments to illustrate some of the properties of the algorithm. Two types of
measurements are included; (1) odometry measurement: robot-oriented distance and heading, and (2)
range measurement: distance between the robot and a landmark.

Figure 2. Information matrix  𝓘 with different orderings.
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Figure 1. An example for trajectory and map.

𝒙 𝑡 ~ 𝒢𝒫 𝝁 𝑡 ,𝓚 𝑡, 𝑡′ , 𝑡0 < 𝑡, 𝑡′

𝒚𝑖 = 𝒉𝑖 𝜽𝑖 + 𝒏𝑖 , 𝒏𝑖 ~𝒩 𝟎,𝑹𝑖 , 𝑖 = 1, 2, … , 𝑁
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maximum a posteriori (MAP) estimate of the combined state:

Gauss-Newton method. Linearize measurements at the current estimate:
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(𝓟−1+𝑯𝑇𝑹−1𝑯) 𝛿𝜽∗= 𝑯𝑇𝑹−1 𝒚 −  𝒉 − 𝓟−1  𝜽 − 𝜼

ℐ 𝑏

Solve the linear equations by Cholesky decomposition and back substitution:

𝓘 = 𝓛𝑇𝓛, 𝓛𝒅 = 𝒃, 𝓛𝑇𝛿𝜽∗ = 𝒅

Even though 𝓟−1 is sparse, the Cholesky factor 𝓛 may have a lot
of fill-in. Good heuristic reordering methods like SYMAMD are
able to reduce fill-in dramatically, which leads to significant
improvements in terms of both time and space complexity.

(a) XL ordering (b) SYMAMD ordering

Figure 3. Cholesky factor 𝓛 with different orderings.

(a) XL ordering (b) SYMAMD ordering

In order to incrementally update the Gaussian process combined
state efficiently, we utilize a Bayes tree as in Kaess et al3. The
Bayes tree leverages a factor graph interpretation of the
problem to directly update the Cholesky factor 𝓛 with just-in-
time relinearization while maintaining sparsity.
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Figure 4. Trajectory and map with factors.
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The Gaussian process priors result from the underlying process 
model generated from Gaussian process. When the GP is assumed 
to be generated by LTV SDE, the process states are first-order 
Markovian, even though we are using a continuous-time prior.

The joint probability of variables is factored as

𝑓 𝜽 =  𝑖 𝑓𝑖(𝜽𝑖)

Figure 5.  Solving the simultaneous trajectory estimation and mapping problem on a synthetic dataset.

(a) True trajectory and landmarks (b) Estimated trajectory and landmarks (c) Comparison of accumulated time

(a) True trajectory and landmarks (b) Estimated trajectory and landmarks (c) Comparison of accumulated time

Figure 7  Solving the simultaneous trajectory estimation and mapping problem on a real-world dataset.
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