Incremental Sparse GP Regression for Continuous-time Trajectory Estimation & Mapping

Xinyan Yan¹, Vadim Indelman², Byron Boots¹

International Symposium on Robotics Research (ISRR), September 2015

Introduction

- SLAM fundamental problem in robotics
- Challenges include long term autonomy how to operate online as more data is accumulated?
- Progress in recent years:
 - Sparsity-aware smoothing approaches (e.g. g2o, iSAM)
 - Incremental smoothing (iSAM2.0):
 - Identify and update only relevant part of the state
 - Fast, incremental
 - But discrete time formulation

Continuous-Time SLAM via GP Regression

- Gaussian Processes have been recently incorporated within SLAM [Tong et al., IJRR '13]
 - Continuous time representation
 - Provide the ability to interpolate states while still using all measurements
 - Can be realized efficiently by exploiting sparsity of the inverse kernels
 - Naturally handles asynchronous measurements
- Key drawback: batch optimization

- We combine the benefits of Incremental smoothing (iSAM2.0) with the benefits of Continuous-time GP-SLAM
- This leads to:
 - State interpolation yields a major reduction in running time
 - Minor impact on accuracy

$$f(oldsymbol{ heta}) = \prod_i f_i(oldsymbol{ heta}_i)$$

 $f_j(oldsymbol{ heta}_j) \propto \exp\{-rac{1}{2} \|\mathbf{h}_k(oldsymbol{ heta}_k + \deltaoldsymbol{ heta}_k) - \mathbf{y}_k\|_{\mathbf{R}_k}^2\}$
 $f_j(oldsymbol{ heta}_j) \propto \exp\{-rac{1}{2} \|\mathbf{h}_k(ar{\mathbf{x}}(au)) + \mathbf{H}_k \mathcal{K}(au) \mathcal{K}^{-1} \delta \mathbf{x} - \mathbf{y}_k\|_{\mathbf{R}_k}^2\}$

We combine the benefits of Incremental smoothing (iSAM2.0) with the benefits of Continuous-time GP-SLAM

Algorithm 2 Incremental Sparse GP Regression via the Bayes tree with Gaussian Process Priors (BTGP)

Assign the sets of *affected* variables, variables involved in *new factors*, and *relinearized* variables to empty sets, $\theta_{aff} := \theta_{nf} := \theta_{rl} := \emptyset$. while collecting data **do**

1. Collect measurements, store as new factors. Set $\boldsymbol{\theta}_{nf}$ to the set of variables involved in the *new factors*. If $\mathbf{x}(\tau) \in \boldsymbol{\theta}_{nf}$ is a missing state, replace it by newby states (Eq. 19); If $\mathbf{x}(\tau) \in \boldsymbol{\theta}_{nf}$ is a new state to estimate, a GP prior (Eq. 23) is stored, and $\boldsymbol{\theta}_{nf} := \boldsymbol{\theta}_{nf} \cup \mathbf{x}_{i-1}$.

2. For all $\theta_i \in \theta_{aff} = \theta_{rl} \cup \theta_{nf}$, remove the corresponding cliques and ascendants up to the root of the Bayes tree.

3. Relinearize the factors, using interpolation when missing states are involved (Eq. 30).

- 4. Add the cached marginal factors from the orphaned sub-trees of the removed cliques.
- 5. Eliminate the graph by a new ordering into a Bayes tree, attach back orphaned sub-trees.
- 6. Partially update estimate from the root, stop when updates are below a threshold.

7. Collect variables, for which the difference between the current estimate and the previous linearization point is above a threshold, into θ_{rl} .

end while

- We combine the benefits of Incremental smoothing (iSAM2.0) with the benefits of Continuous-time GP-SLAM
- This leads to:

- State interpolation yields a major reduction in running time

Minor impact on accuracy

- We combine the benefits of Incremental smoothing (iSAM2.0) with the benefits of Continuous-time GP-SLAM
- This leads to:
 - State interpolation yields a major reduction in running time

